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The sheaf theory of polylogarithms, first developed for the multiplicative group,
provides an interpretation of special values of the zeta function in terms of Hodge
theory (Part 1). Such a theory of polylogarithms exists also for complex abelian
schemes (Part 2). For elliptic curves the objects of this theory have been intensely
studied (see e.g. Results R1, R2 and R3 below). In the higher dimensional case,
some results have been proven (see e.g. Results R1’, R2’), but no link between
this theory and some special values of L-functions was known. Specializing the
geometric context to Hilbert-Blumenthal modular families of abelian varieties, we
establish such a link (see Result R3’) and obtain a geometric proof of the Klingen-
Siegel Theorem (Part 3).

1. Review of the classical case

Beilinson’s conjectures hold for Spec(Q) (Borel, Rapoport, . . . ) and one may
interpret this result as follows. The subspace ζ(3)Q of R = Ext1MHSR

(R(0), R(3)),
where MHSR denotes the category of polarizable real mixed Hodge structures,
compares extensions of motives and extensions of real mixed Hodge structures.
Thus

(∗) ζ(3)Q is a canonical subspace of Ext1MHSR
(R(0), R(3)).

The sheaf theory of polylogarithms for Gm (Beilinson, Deligne, Ramakrish-
nan) provides an explanation of the assertion (∗) using only Hodge theory. Let
VMHS(X) be the category of admissible polarizable variations of rational mixed
Hodge structures over X , for X a smooth complex algebraic variety. The objects
of this theory are

• the logarithm (a pro-object of VMHS(Gm,C)), denoted by Log,
• the polylogarithm (an element of Ext1VMHS(Gm,C\{1})(Q(0),Log|Gm,C\{1}),

• the Eisenstein classes (elements of Ext1MHS(Q(0), Q(k)) for some k ≥ 0,
where MHS denotes the category of polarizable rational mixed Hodge
structures).

All of these objects can be described explicitly, e.g. the polylogarithm corre-
sponds to a pro-matrix in which appear all the multivalued functions Lik, k ≥ 1.
It turns out that the Eisenstein classes are related to some special values of the
zeta function and this provides the desired explanation of the assertion (∗) using
only Hodge theory.
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2. The abelian case

This sheaf theory of polylogarithms is defined in a more general geometric set-
ting (cf. [13]) and gives some special elements (the Eisenstein classes) which should
have remarkable properties. For instance, such a theory exists for complex abelian
schemes.

Fix a smooth complex algebraic variety S and a complex abelian scheme π : A →

S of pure relative dimension g. Let U be the complement of the zero section and let
H := (R1π∗Q)∨ (polarizable variation of rational pure Hodge structures of weight
−1 over S). For X a smooth complex algebraic variety, we denote by MHM(X)
the category of algebraic mixed Hodge modules over X and we recall that one can
see VMHS(X) as a full subcategory of MHM(X) in a canonical way. As in the
case of the mupltiplicative group, one can define (see e.g. Sections 3–5 of [4])

• the logarithm (a pro-object of VMHS(A)), denoted by Log,
• the polylogarithm (an element of Ext2g−1

MHM(U)((π
∗H)|U ,Log|U (g)),

• the Eisenstein classes (elements of Ext2g−1
MHM(S)(Q(0), (SymkH)(g)) for some

k ≥ 0).

For the elliptic case (g = 1), the definition and the study of these objects are due
to Beilinson and Levin. For the universal elliptic curve over the modular curve, we
have the following properties. We refer the reader to [1] for precise formulations
and proofs (see also [11] for R3).

R1 The Eisenstein classes have a motivic origin.
R2 The polylogarithm is a 1-extension of admissible polarizable variations of

rational mixed Hodge structures which can be explicitly described by a
pro-matrix in which appear the Debye polylogarithms.

R3 The residues of the Eisenstein classes at the ∞ cusp of the modular curve
are related to some values of Bernoulli polynomials.

Later the definitions have been extended to any complex abelian schemes (this
follows from the content of [13]) and the following results have been proven.

R1’ The Eisenstein classes have a motivic origin (see [6]).
R2’ The currents constructed by Levin in [9] provide an explicit description

of the polylogarithm at the topological level. This result had been con-
jectured by Levin and is announced in the Note [2]. We refer to [4] for a
proof (see the proof of Théorème 4.5 and Corollaire 4.7 in loc. cit.). We
note that if the relative dimension of the abelian scheme is greater than 2,
the polylogarithm is not an extension of admissible polarizable variations
of rational mixed Hodge structures (cf. Theorem III-2.3 b) of [13]).
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3. The Hilbert-Blumenthal case

If one specializes the geometric setting to Hilbert-Blumenthal modular families
of abelian varieties, we show, using the result R2’, the following generalization of
the result R3.

R3’ The Eisenstein classes degenerate at the ∞ cusp of the Baily-Borel com-
pactification of the base in special values of an L-function associated to
the underlying totally real number field. This result is stated in the Note
[3] and the reader may consult [5] for a proof (see the proof of Théorème
5.2 in loc. cit.).

We mention that there exists a different proof of the result R3’ (see [7]). Since
the residues at the ∞ cusp are rational numbers, we can deduce from the result
R3’ the Klingen-Siegel Theorem. We note that our proof presents some analogy
with the original one (cf. [8]). We also point out that there exist two other proofs
due to Sczech [12] and Nori [10] which use rational cohomology classes to deduce
the Theorem. Thus our proof has also some analogy with both of them.
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