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0 Introduction

In january 2007, | gave a talk about the link between the difigable stacks and the Lie groupoids
during the workshop on orbifolds which held at the Universif Pardeborn. | explained how one can
associate to a Lie groupoi@ a differentiable staclBG consisting of the principalz-bundles and to a
generalized morphism of Lie groupoigs G — G’ a morphism of stack®&(f): BG — BG'. At the
end, | stated two questions:

Q1. IsB amorphism of (2-)categories ?

Q2. Ifitis, doesB induce an equivalence of (2-)categories ?

In the article [LTX, Rem 2.6], positive answers are given anthe elements of proof can be found in
[BX] (cf. [BX, Dictionnary Lemmas, Part 2.6]). This docunteis devoted to the study of these two
guestions. Our work is based on the articles of Behrend, X(],[Bleinloth [H], Laurent-Gengoux, Tu
and Xu [LTX], Naumann [N], Pronk [P].

We now give some details on the plan and on the results.

1 We explain the notion of principak-bundles over a manifold for a Lie groupo@. This is a
generalization of the corresponding notion wh@&ris a Lie group. We follow very closely the
exposition of Moerdijk and Mrcun [MM, Chap 5].

2-3 We recall some basic properties of stacks and explaindmercan descend a morphism between
two atlases to a morphism between the corresponding diffielde stacks. The results of these
two parts are well known results for algebraic stacks andafier the reader to the book of Laumon
and Moret-Bailly [LM-B] for the proofs.

4-8 We define the 2-categories of Lie groupoitis and rigidified differentiable stack8 DS (an object
of RDS is a differentiable stack with a fixed atlas) and we consttwot 2-functorsA: RDS —
LG andB’: LG — RDS. We note that the definition aB’ on the level of 1-morphisms differs
from the one given during the talk. The comparison of the temastructions is left to further in-
vestigations. We prove the following

Theorem (8.1)— The 2-functorsA and B’ are inverse equivalences of 2-categories.
These five parts are translations from the algebraic stadketdifferentiable stacks of the results

of Naumann [N, 3.1,3.2,3.3].

9 On the one hand many properties of Lie groupoids are inviatiader Morita equivalences and
on the other hand one may be interested in the 2-categonyffefatitiable stack®S instead of
RDS. Note that we have an obvious forgetful 2-funcféer: RDS — DS and that every Lie
groupoid is Morita equivalent to an étale Lie groupoid. Tin@n result of this part is the

Theorem (9.2)— The 2-functorFor o B’ induces a morphism of bicategoriés: ELG[W 1] —
DS which defines an equivalence of bicategories.

Here£LG[W ~!] is the localisation of the 2-category of étale Lie grougdidcG w.r.t. the class
of weak equivalencedl in the sense of Pronk [P, Part 2]. We point out that Pronk defaiso
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an equivalence of bicategories betwe®fiG[IW ~1] and DS via the 2-category of differentiable
étendues [P, Cor 42].

10-11 The bicategorg £LG[W ~1] can be described using the notion of generalized morphismthis
part we prove this fact, i.e. the

Theorem (11.2)— We have a canonical morphism of bicategorfe’s ££G — £L£G™ which in-
duces an equivalence of bicategori@s ELG[W 1] — £LGT.

12 In this last part we use the previous results to deduce ainadence of categories (see Thm 12.1).
In fact we divide boti€ LG[W ~1] andDS by their 2-cells. As a consequence we can not consider
anymore 2-morphisms i®S. This leads to a notion which is not so easy to handle.

Acknowledgments: | am very glad to thank Stefan Wolf for interesting discussi@n differentiable
stacks and Patrick Schitzdeller for indicating me thelkertof Pronk [P] and explaining me some points
on Lie groupoids. | thank also Torsten Wedhorn for his helprduthe preparation of the talk and the
redaction of this document. In particular he suggested mgthie article of Naumann [N] could be help-
ful to answer the questions Q1 and Q2.

Notations:

M the category of manifolds,
G  the 2-category of groupoids,
YLS Yoneda Lemma for stacks (cf. [H, Lem 1.3]),
* horizontal composition of 2-morphisms in a 2-category.

1 Principal G-bundles over a manifold for a Lie groupoid G

Let
G = (Go,G1,s,t,e,m, 1) be a Lie groupoid,
M be a manifold,
(H,e,m,1) be a Lie group,

H:= (e,H,H — o, H — o,e,m,i) be the Lie groupoid associated kb

We recall the following definitions.

Definition 1.1 [MM, p. 125] — A right action ofG on M along a smooth map: M — Gj is given by
a smooth map

w: M x Gy — M, (m,g)+— mg
e,Go,t
such that
a) e(mg) = s(g) forallm € M, g € Gy, such that(m) = t(g),
b) me(e(m)) =mforallme M,

c) (mg)g =m(gg’)forallm e M, g,¢' € Gy, such thats(g) = t(¢'), e(m) = t(g).
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A left action ofG on M along a smooth map: M — Gy is defined analogously.
Remark 1.2 — Aright action ofH on M along M — e is nothing but that a right action off on M.
We now define the notions @f-bundles ove and morphisms between them.
Definition 1.3 [MM, p. 144-145]—
i) A G-bundle overM is a manifoldP equipped with two smooth maps

P—€>G0
M

and a right action of alonge,

pw: P x Gy — P, (p,g)r—npg
e,Go,t

such thatr(pg) = w(p) forall p € P, g € G such that(p) = t(g).

iy Let (P,m,e,pn) and (P, 7', &', 1) be twoG-bundles overM. A morphism ofG-bundles over
M from (P, 7,e, ) to (P, ', &', 1) is @a smooth magf: P — P’ which commutes with all the
structure maps, i.e.

a) m(p) =='(f(p)) forallpe P,
b) e(p) =€'(f(p)) forallp € P,
c) f(pg) = f(p)gforall p € P, g e Gy suchthat(p) = t(g) (=<'(f(p)) according to b).

Remark 1.4 [BX, Rem p. 11}- Behrend and Xu give the following interpretation ofzabundle over
a manifold M. An elemenp of P can be viewed as an arrow from(p) to (p). The action of5 on M
alonge corresponds then to the composition of such arrows.

Remark 1.5 — The morphisms aff-bundles overM/ can be composed in an obvious way. So we have
defined a category which is called the category-ebundles overl/.

Remark 1.6 — The functor

‘H-bundles over/ —  H-bundles overV/,
(P,m,e, 1) — (P, 1)
wherey in the right hand side is viewed asfa-action onP (cf. Remark 1.2), and the functor

H-bundles oveiM — H-bundles oved/,
(P, ) = (P, P — o, 1)

wherey in the right hand side is viewed as a right action7@fon P along P — e (cf. Remark 1.2),
are mutually inverse to each other. So the categorytdfundles oveM and the category off-bundles
over M are isomorphic.



In the sequel we will focus on a full subcategory of the catg@d G-bundles overV/. In order to define
its objects we introduce the following definition.

Definition 1.7 [MM, p. 145] — A G-bundle(P, 7, ¢, 1) over M is said to be principal if
a) = is a surjective submersion,

b) the map(pri,u): P x Gy — P x P, (p,g)— (p,pg)is adiffeomorphism.

e,Go,t 7, M,

Example 1.8 — The manifold=; equipped with the two maps

G1 —— Gy

|

Go

and the right action of+ along s

m: G1 X G1 — G1
s,Go,t

given by the multiplication of7 is a principal bundle overtz, which is called the unit bundle @f and
denoted by (G).

Example 1.9 — LetP := (P, 7, ¢, 1) be a principal bundle ovelM and letf: N — M be a smooth

map. The manifoldvn x P equipped with the maps
M,

Nf,]\?,nP&P—a>Go

pnl

N
and the right action of7 alonge o pry given by

Idy xpu: N x (P x Gj)=(N x P) x G —N x P
f7M>7rOprl €,Go,t f,M,ﬂ' eopra,Go,t f7M77T

defines a principatz-bundle overN which we denotg*P. Here all the fiber products are well defined
sincer is a submersion.

We introduce the catego®G (M) defined as the full subcategory of the category=etbundles over\/
characterized by
Ob(BG(M)) = the class of all principal?-bundles over\/.

This category is a groupoid according to the following lemma

Lemma 1.10 [MM, Remarks 5.34 (4) and (5)} A morphism between two princip&!-bundles ovei\/
is an isomorphism.

2 Onthe 2-category of stacks

We refer to [H, Rem 1.2.4] for the definition of the 2-categofytacks which we denots.



2.1 The universal property of the fiber product in the 2-cate@ry of stacks

In this part, we state the universal property of the fiber pobéh S as defined in [H, Def 2.1].

Let f: Y — X andg: Z — X be two 1-morphisms of stacks. Then the statkx Z is equipped
X9
with two canonical 1-morphims

pri: Y x Z—=)Y and pry: Y x Z— Z
X9 X9

and a canonical 2-morphisnan

and the following universal property holds.

Proposition 2.1 — For all triples (k: 7T — Y, I: T — Z, a: fok = gol) there exist a unique triple

(h: T —Y x Z,[B:prioh =k, v: preoh = 1[) such that the composition of the 2-morphisms in
f,X.g
the diagram

is equal toc.

Proof: Straightforward. O

Remark 2.2 — It follows from Proposition 2.1 thaty) x Z,pry,pre,can) is a fiber product in the

f,.X.g
2
2-categoryS and we should noty x Zinstead of )Y x 2Z.
f,X,9 £,X.9

2.2 Monomorphisms, epimorphisms ans isomorphisms

We define the notion of monomorphism and of epimorphism irctttegoryS. These are translations of
the corresponding definitions in the category of algebriicks.

Definition 2.3 [LM-B, p.15] — A monomorphism i& is a monomorphism in the category of 2-functors
fromMtogG.



Definition 2.4 [LM-B, Def 3.6] — Let F': X — X’ be a 1-morphism of stacks. We say tlats an
epimorphism irS if and only if the following condition holds. For all manittd M’, P’ € Ob(X'(M")),
there existsf: M — M’ a surjective submersion and € Ob(X (M)) such thatFy, (P) ~ f*P’.

Remark 2.5 — Let f: X — Y be a smooth map between manifolds. Then the associated israrjgh
S between the associated stacks is an epimorphism if andfofilig ia surjective submersion.

Then we state two properties. These are analog of knowntsdauhe category of algebraic stacks (see
[LM-B, Cor 3.7.1 and Prop 3.8.1]). The proofs work in an angous way and we leave the details to
the reader.

Proposition 2.6 — A 1-morphism inS which is a monomorphism and an epimorphism is an isomor-
phism.

Proposition 2.7 — Let us consider the following 2-cartesian diagram of mospig of stacks.

Y

y N
]
X X’

i) If f”is an epimorphism, then so js

i) If fandz are epimorphisms, then so js.

3 Constructions of morphisms in the2-category of differentiable stacks

The category of differentiable stackS is the full sub-2-category af whose objects are the differ-
entiable stacks. We give two propositions which we will usdoty two construct 1-morphisms and
2-morphisms between stacks. These are the analogs of therpes for differentiable stacks of proper-
ties stated for algebraic stacks in the proof of Proposiid8 in [LM-B] (see also [BX, p. 10] and [H,
Lem 2.27]).

Consider differentiable stack®, X’ and letp: X — X be an atlas oft. Fromp and a descent datum
we can construct a canonical 1-morphidgm— X”.

Proposition 3.1 — If f: X — X’ is a morphism of stacks anddfis a 2-morphism irS

a: (fopri: X x X - X)= (fopra: X x X —X')
p,Xp PP

which satisfies the following cocycle condition&n x X x X
p,X.p  p,Xp

PragQ * prig = priso (1)

then there exist a morphism of stacks X — X’ and a 2-morphisng

X ! X’
Nﬁ%
X



such that the following diagram 2-commutes

D(g, )

i.e. a*x prif*@.can = pri3, wherecan is the structural 2-morphism of the fiber produtt x X.
p,X,p
Moreover, this pair(y, 3) is unique up to a unique 2-morphism, i.e. if

(X=X, ¢ op=f)

is another pair such that the diagram(y’, 3) commutes then there exists a unique 2-morpliisip =
¢’ such that the composition of the 2-morphisms in the diagram

W

Proof : We refer to [H, p. 10] for the construction gf. This is done using essentially the gluing
conditions for stacks (cf. [H, Def 1.1 1,2]). In fact the whgbroposition is a consequence of these
axioms. O

/

is equal tog.

Proposition 3.2 — Let f, f': X — X’ be two 1-morphisms of stacks and let

a: (fopri: X X X—>X’):>(fopr2:X X X_>X’)
p,X.p p,X.p

O/:(f’op?“l:X X X—)X’):>(f,opr2:X X X_>X’)
p,X.p p,X.p

be two 2-morphisms i§ which satisfy the cocycle condition (1) 8h x X x X. Thenwe associate
p,Xp pX,p

to (f,«) (resp. (f’,a’)) a morphism of stackg: X — X’ (resp. ¢': X — X’) and a 2-morphism
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B:pop= f(resp.B': ¢’ o p= f') using the previous Proposition. Let f = f’ be a 2-morphism
in S such that the diagram
fopri== fopr

prﬁﬂ ﬂpré 0l

f'opri==f"oprs

commutes. Then there exists a unique 2-morphisf,ifi: ¢ = ¢, such that the diagram

2-commutes.

Proof : This is also a consequence of the gluing conditions for stack O

4 The2-category of rigidified differentiable stacks
The 2-category of rigidified differentiable stacks is defirzes follows.
0. The objects are differentiable stacks equipped with &s 4tf. [H, Def 2.3]), i.e. the pairs
(X,p: X — X) whereX’ is a differentiable stack andis an atlas (cf. [H, Def 2.3]) oft'.

1. A 1-morphism from(X,p: X — X)to (X',p': X’ — X’) is a pair of 1-morphisms i&
(f: X - X' f': X - X') and a 2-morphism in S:

be f

X .

/

p p

7

X

/
f! X

The composition of 1-morphisms is defined componentwise.

2. Given two 1-morphismsf, f',«), (9,4, 8): (X,p: X — X) — (X, p: X' — X'), a 2-
morphism is by definition a 2-morphism frofiito ¢’ in S.



These data define a 2-category which we defI&S. We note that we have a forgetful 2-functor

For: RDS — DS, (X,p: X - X)— X.

5 The2-category of Lie groupoids

We define the-category of Lie groupoids as follows.

0. The objects are the Lie groupoi@Sy, G1, s, t, e, m, ).

1. A l-morphim between of Lie groupoids frof&, G1, s,t, e, m, i) to (G, G, s, t',¢/,m/,i') isa
pair of smooth morphisméfy: Go — Gj, f1: Gi1 — G’) which commutes with all the structure
maps.

2. Given two 1-morphisms$fy, f1), (90, 91): (Go,G1) — (G, GY), a 2-morphisne: (fo, fi1) =
(g0, g1) is @ smooth morphism: Gy — G such thats’c = f, ¢ = go and the diagram

e G ox @

Gi————"aaw
(Cthfl)[ l /
m
! /
e — 1

commutes. Foffy, f1) = (90,91), the identity 2-morphism is given by := ef,. Given two
2-morphisms:: (fo, f1) = (90,91) andc’: (go, 91) = (ho, h1) , their composition is defined by

e x G o !
Go—""1 s Gt l— Gl'

One checks that the axioms of a 2-category are satisfied. Weelég the 2-category defined above.

6 From rigidified differentiable stacks to Lie groupoids
We define a 2-functod: RDS — LG as follows.

0. Let(X,p: X — X) be an object oRDS. We define

Go =X,
G1 =X X X,
p,X,p

s:=pri: X x X —X,

p,X,p
t:=pra: X x X — X,

p,X,p
e:=Idx,Idx): X - X x X, =z~ (z,2),

p,X,p
(X x X) x (X x X)=X x X x X (iws) X x X

m.—( p,X,p )s,th( p,X,p ) pXp pXp p,X,p
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i X x X—>X x X, (z,y)— (y,x).
p,X,p p,X,p

Then one checks that(X,p: X — X) := (Gy, Gy, s,t,e,m, i) is a Lie groupoid.

1. 1 (f,f,a): (X,p: X = X) = (X,p: X' — X')is a 1l-morphism ilRDS, we define the
1-morphismA(f, f', ) in LG by A(f, f',a) = (f, [ x f).

2. Let(f,f,a),(9,9,0): (X,p: X — X) — (X',p/: X — X') be two 1-morphisms and a 2-
morphism from(f, f’', ) to (¢, ¢’, 3) in RDS. Then by definition, we have a 2-morphismd&n
v: f" — ¢ which induces the 2-morphism i p*y: f' o p = ¢’ o p. So we have the following

%\
\\//

We defineA(y) € HoMgoorn (X, X' x  X') =Homs(X, X’ x X')=X x X' (X)
p’,X'p X p X p

(cf. YLS)by A(7) = (f, 9,87 xp*y x ).

7 From Lie groupoids to rigidified differentiable stacks

We define a 2-functoB’: LG — RDS as follows.

0. LetG = (Go,G1,s,t,e,m,i) be a Lie groupoid. We associate @bthe differentiable staclBG
(see part 1):

BG: M - g
M — BG(M)
fiM—-N ~— f*:BG(N)— BG(M).

The following lemma gives an atlas fé&G.

Lemma 7.1 [H, Lem 3.1] — The mapu: Gy — BG which corresponds to the uni-bundle
U(G) overGy (cf. YLS) is an atlas oBG.

We define the objecB’G of RDS asB'G := (BG,u: Gy — BG).

Remark 7.2 — The inverse map off, i: G; — G7, induces a canonical isomorphism in the
category ofG-bundles over=; from s*U(G) to t*U(G) which corresponds (cf. YLS) to a unique
2-morphism in S

t: (uos: Gy —» BG) = (uot: G — BG).
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Then the triple(s, t, ¢) gives a 1-morphism: Gy — Gy x G which is an isomorphism, and
u,BG,u

(Gy, s: G1 — Go, t: Gy — Gp,t: uos=wuot)

is the fiber product of.: Gy — BG andu: Gy — BG in the 2-categons.

1. Let(fo, f1): (Go,G1) — (G}, G}) be a 1-morphism irG.

i) Let f: Go — BG' be the composition/ o fy whereu': G — BG' is the morphism of
stacks which corresponds to the u@ftbundle overGy,.

i) We want now to define a 2-morphism &

a: (f opry: Go XG Go — BG/) _ (f opro: GO XG Go — BGI)
: u,BG,u u, BG,u
(W ofopos=uos o f1: Gy — BG') (o foot=u"ot' o f: Gy — BG).

We definex asa := f;// where
Ji(Wos': G — BG') = (v ot': G} — BG)

is the canonical 2-morphism i associated to the inverse map of the Lie grougéi, G )
(see Remark 7.2).

iif) Using Proposition 3.1, we associate tf, «) a canonical pair
(p: BG — BG',B: pou=f)

such that the tripléfy, ¢, 3~ !) defines a 1-morphism betweéhG and B’G’ in RDS which
we denoteB’(fo, f1)-

2. Let(fo, f1),(90,91): (Go,G1) — (Gy, GY) be two 1-morphisms and let Go — G} be a 2-
morphism from( fo, f1) to (g0, 91) In £LG.

i) We want to define a 2-morphismin S
v: (W o fo: Go — BG') = (u' o go: Go — BG').
We haves’ o ¢ = fy andt’ o ¢ = go. Let~ be the composition of the 2-morphisms in the
following diagram

Go

fo 1 . 1 9o
= =

Gy
s’ t
/ \
! L GI
0 = 0
SN S

BG'
where the 2-morphismis defined in Remark 7.2.

G
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") If we denOteB,(f(]a fl) =: (an 2 ﬁ_l) andB,(.gOa gl) =: (907 80/’ ﬁ/_l)’ then USing PrOpO'
sition 3.2, we associate tpa canonical 2-morphisif

0: p= ¢

and we defind3’(c) asB'(c) = 6.

8 Comparison of two 2-categories

Theorem 8.1 — The above 2-functord: RDS — LG and B': LG — RDS are inverse equivalences
of 2-categories.

Proof:

a) We construct an isomorphism of 2-functers B’ o A = Idgrps. Let (X,p: X — X) be an
object of RDS. We need to define a 1-isomorphiso{X,p: X — X)), in RDS

B/(A(X’p; X—>X)) v(X,p: X—X)

(B(X,X X X),u:X—>B(X,X X X))
p,X,p p,X,p

(X,p: X = X).

We consider the morphisp: X — X and we want to build a 2-morphism &

a: (uopry: X X X = X)= (uoprg: X X X — X)
u,B(X,X ;<( X),u u,B(X,X ;é X),u
p,t,p p,t,p

to define a 1-morphisnp: B(X, X x X) — X and a 2-morphisnt: ¢ o u = p in S using
p,X,p
Proposition 3.1. By Remark 7.2, the 2-morphisms

(popri: X X X —=X)= (popra: X X X —X)
u,B(X,X ;<( X),u u,B(X,X ;é X),u
p.X,p pX,p

correspond bijectively to the 2-morphisms

(POPHZX X X—>X)=>(pop7"2:X X X—>X).
p,X,p p,X,p

We definea to be the 2-morphism which corresponds to the canonical Bhiem

t:(popri: X x X —=X)=(popra: X x X — X)
p,X,p p,X,p
induced by the inverse map of the Lie groupdiit’, p: X — X), i.e. the map which interchanges

both factors onX x X (cf. Remark 7.2). One checks that the cocycle condition s10By
p,X,p
Proposition 3.1, we get a canonical pair

(p: B(X, X x X)—X,B:¢pou=Dp)
P,X,p

as explained above.
It follows from Remark 7.2 and the propergyo u ~ p that is @ monomorphism i&. This is

13



b)

also an epimorphism (singeis), thus an isomorphism (cf. Lemma 2.6).
We define the 1-isomorphism(X,p: X — X)) as

v(X,p: X — X) := (Idx, ¢, 7).

One checks that the datd X, p: X — X) for (X,p: X — X) € Ob(RDS) define a 2-natural
transformationv: B’ o A — Idrps Which is an isomorphim of 2-functors.

We define an isomorphism of 2-functofs A o B’ = Idyg. LetG = (Go, G1,s,t,e,m, i) be a
Lie groupoid. Then we have

AOB/(GQ,Gl) = (GQ,GO X Go)
u, BG,u

and a canonical ismomorphistn G; — Gy x Go by Remark 7.2. One checks that
u,BG,u

)

n(G) := (Idg,,0"): Ao B'(Go,G1) = (Go, Gy X Go) — (Go,G1)

)

is an 1-isomorphism of Lie groupoids and the dat&') for G € Ob(LG) define a natural trans-
formationv: B’ o A — Idrps Which is an isomorphim of 2-functors.

O

9 Localization w.r.t. weak equivalences and a comparison dfvo bicate-

gories

Many properties of Lie groupoids are invariant under Modtpiivalences (cf. [M2, 2.4]) (e.g. being
proper, see [MM, Part 5.4]). Thus it might be useful to coasittmorphisms irCG up to Morita equiv-
alences (cf. [M2, 2.4]). We note that being étale is notiiiaret under Morita equivalences since any Lie
groupoid is Morita equivalent (cf. [M2, 2.4]) to an étaleelgroupoid. On the other it is not so easy to
work in the 2-categorfR DS where an object is a differentiable stack with a fixed atlas.

We would like to have a "localized” version of 8.1, i.e. an salence of 2-categories between the 2-

category "LG localized w.r.t. weak equivalences” (cf. [M2, 2.4]) and soBicategory constructed from
RDS. In fact we will consider bicategories rather than 2-catEgo(see Theorem 9.2).

Since any Lie groupoids is Morita equivalent to an étaledneupoid and since we would like to invert
all the weak equivalences, it is natural to restrict ourrdibe to the full sub-2-category LG of LG
such thatOb(ELG) is the class of all étale Lie groupoids. Lt be the class of all weak equivalences
between étale Lie groupoids.

Using the notion of weak fiber product [MM, p. 123-124] onewhdhat any diagram of 1-morphisms
of étale Lie groupoids

Vel
f

G'——H

14



wheree is a weak equivalence, can be completed to get a 2-comnmeitdiigram of 1-morphisms of Lie
groupoids

/

K

el 2)

f o f
174

G ———H

wheree’ is a weak equivalence (see [M1, 7.5]). This is a weaker forrma pfoperty we ask for in the
definition of a class admitting a calculus of fractions, ivee can findf’, ¢’ such that the diagram (2)
commutesd = 1). This leads us to consider bicategories instead of 2-oatesy

The clasgV satisfies the propertieBF'1, ..., BF'5 of [P, 2.1]. In part 4.1 of [P], Pronk checks this for
topological stacks. The arguments works as well for thexghffitiable stacks. Thus we can consider the
bicategory of fraction€ £LG[W ~1] defined in [P, Part 2]).

Proposition 9.1 — Let(fo, f1): G = (Go,G1, s,t,e,m,i) — G = (G}, Gy, s, t',¢/,m’,i") be amor-
phism of Lie groupoids and I€fy, », 3) be the 1-morphisnB’( fo, f1) in RDS. Then the 1-morphism
¢: BG — BG'in RDS is an isomorphism if and only {ffy, f1) is a weak equivalence.

Proof:
i) Using Proposition 2.7 and Remarks 7.2 and 2.5, one obsdiat, is an epimorphism if and only
ifthe mapt’ opra: Gy x G} — Gj is a surjective submersion.
vaG/ONSI

ii) It follows from Remark 7.2 that the following commutagisquare

a—"1

(s,t)l lwct')
Go x Go P ar x

is cartesian if and only i is an isomorphism.
iii) Then the result is a consequence of Proposition 2.6.

0

As a consequence, by the universal property of the bicagefo6 W —1] (see [P, p. 253]), the 2-functor

B/
Foro B"gﬁg: e L RDS For DS

factors through the canonical morphism of bicategoties£ £G — £L£G[W ] and we get a canonical
morphism of bicategories

B: ELGIW Y — DS
such thatF'or o B’ = Bo U.

The following Theorem is an analog of Theorem 8.1 where onsiders the morphisms of Lie groupoids
up to Morita equivalences and the differentiable stackbhauit any fixed atlas.

The author does not know if this stronger property holdslierdlassV .

15



Theorem 9.2 — The morphism of bicategorigd: ££LG[W '] — DS defines an equivalence of bicate-
gories.

Proof. We check the necessary and sufficient conditions given iR{&) 24].

i) B is essentially surjective on objects.

Since B’ defines an equivalence of 2-categories, it is essentialjgdaive on objects. The same
property holds forF or since any differentiable stack has an atlas. Then the clallowfs from the
fact that any Lie groupoids is Morita equivalent to an étakegroupoid.

ii) B is fully faithful on 2-cells.

This is clear forB’ since it defines an equivalence of 2-categories and alsé'dorbecauseDS
andRDS have the same 2-cells.

i)y Forall G = (Gy,G1),G = (G}),G)) € Ob(ELG), for any 1-morphisn¥': BG — BG' in DS,
there exists a weak equivaleneeof Lie groupoids and a 1-morphisift G — G’ in LG such that
B(f)andF o B(w) are isomorphic.

It is a consequence of the following two lemmas (cf. Propmsi9.5).
O

Lemma 9.3 — LetG = (Gy,G1), G’ = (G{,, G}) be two Lie groupoids and lef': BG — BG' be a
1-morphism inS. Then there exist a Lie groupold = (Hy, H; ), a weak equivalence of Lie groupoids
(fo, f1): (Ho, H1) — (Go,G1) and a smooth mayf;: Hy — G, such that the diagram

o, 2 ¢, Ba,

.

Gy~ B

2-commutes. As above; Gy — BG (resp.u': G, — BG’) is the morphism which corresponds to the
unit bundle ofG (resp.G’) (cf. YLS).

Proof: Let Hy be the manifold7, X GY,. Then we have two canonical smooth maps
Fou,BG’ v/

fo =pri: Hy — Go andfé =pry: Hy — G6

and a canonical 2-morphisan: Fouo fy = u'o f|. Moreoverf is a surjective submersion. Thus we
can consider the induced Lie groupgi§iG = (Ho, H1) (see [M2, p. 121-122]) and we have a canonical
map f1: Hy — G; such that(fy, f1) is a morphism of Lie groupoids. In fact one checks easily that
(fo, f1) is a weak equivalence. O

16



Lemma 9.4 — LetG = (Gy,Gy,s,t,e,m,i), G = (Gy, G, s, t',¢,m' i) be two Lie groupoids
and let F': BG — BG’ be a morphism irS such that there exisfy: Go — G{, and a 2-morphism
a: u' o fo — Fou,ie.a2-commutative diagram

fo

Go G

’

u u

7
BG

BG'

Then there exists a smooth m#p: G; — G such that(fo, f1) is @ morphism of Lie groupoids and
B(fo, f1) ~ F.

Proof: Let 3 be the composition of the 2-morphisms of the following diagr

Gy

/N

La

Gy = G
u

o

0
/ N \
Gj, & Ny G

G
\ F/

BG’

!
0

By the universal property of the fiber productSh(fy o s, fo ot, 3) defines a unique morphism of stacks

FiGL— G x  Gh=G!
u',BG' !

such thatfp o s = s’ o fyand fo ot = t' o f1 (cf. YLS). One checks thalfy, f1) is @ morphism of
Lie groupoids and thaB’( fy, f1) is the morphism associated to’ o fy, «) via Proposition 3.1, i.e.

B(fo, f1) ~ F.
[l

Proposition 9.5 — LetG = (G, G1), G’ = (G}, G}) be two Lie groupoids and lef: BG — BG' be
a 1-morphism irDS. There exists a weak equivalenesf Lie groupoids and a 1-morphisiit G — G’
in £G such thatB(f) and F o B(w) are isomorphic.

Proof: We apply Lemma 9.3 to get a Lie groupatfl), a weak equivalence of Lie groupoids

(fo, f1): (Ho, H1) — (Go, G1)
and a smooth magy,: Hy — G}, such that

Fouo fo~u'o ff. 3)

17



Let us introduce the morphisi Hy — B.H which corresponds to the unit bundle &f(cf. YLS). We
have
B(fo, f1) ov =~ wuo fo. (4)
Combining (3) and (4), we get
FoB(fo, f1)ov=uo fp. )
By Lemma 9.4 and the relation (5), there exigfs H; — G’ such that(f/, f{) is a morphism of Lie
groupoids and such that

B(fo, f1) = F o B(fo, 1)-

10 The bicategory of Lie groupoids with generalized morphims

We recall now the definition of a generalized morphism betwlge groupoids.

Definition 10.1 [LTX, Def 2.1] — Let G = (Go,G1) and G’ = (G|, G})) be two Lie groupoids. A
generalized morphism fro to G’ is given by a manifold®, two smooth maps

P—==G},

Go

a left action\ of G along, a right actionp of G’ alonge such that the two actions commute aRds a
principal G’-bundle oveiG,.

Then we introduce a notion of (iso)morphisms between tweggized morphisms.

Definition 10.2 [HM, Def 3.1] — Let (P, m, &, A, p) and(P’, 7', ', X, p') be two generalized morphisms
from G to G’. A generalized 2-morphisms frof®, 7, e, \, p) to (P',7’,&’, X', p’) is a diffeomorphism
P — P’ which isG- and G’-equivariant.

Remark 10.3 — One defines in an obvious way the composition of two genedalzmorphisms be-
tween two generalized morphisms between two fixed Lie gidsip&very generalized 2-morphism is
invertible.

The following two lemmas explain the terminology.

Lemma 10.4 [LTX, p. 846] — Let(fo, f1): (Go,G1,s,t,e,m,i) — (G, G, 8\t ¢/ ,m/ ") be a 1-
morphism of Lie groupoids. Then the following data:
P .= GQ X Gll,
fO,Gé),t/
W:P_)G(b ($,g/)'—>$,
8: P - G/7 (x7g/) = S/(g/)7
A:Gy x P—P/(g,(x,9))— (t(9), fr(9)d),

s,Go,m
p: P x G, ((x,g"), 1) — (s, d'1).

£,Got
define a canonical generalized isomorphism which we cahedgeneralized morphism associated to

(fo, f1)-

18



Proof: Straightforward. O

We define the identity generalized morphism of a Lie grougeidienoted byl d ., as the associated
generalized morphism associated fdq,, [dg,): (Go, G1) — (Go, G1).

Lemma 10.5 — Let( fy, f1) and(go, g1) be two 1-morphisms of Lie groupoids frdy, G1, s, t,e,m, i)
to (Gi, GY, s, t',¢/,m/,i'). Letc: Gy = G be a 2-morphism irLG. Then the map

GO X G/l — G(] X Glla (:Uagl) = (ZC,C(CC)Q/)
fo,Gg,t 90,G{,t

defines a generalized 2-morphism fréhfy, f1) to C(go, g1) called the generalized 2-morphism asso-
ciated toc.

Proof: Straightforward. O

Proposition 10.6 [LTX, Prop 2.2]— Let(P, m, e, A, p) be ageneralized morphism frof@, G1, s,t, e, m, 1)
to (Gy, G, '\t ¢/,m/,i")andlet(P’, 7', &', X, p’) be a generalized morphism frof@¥, G, s, ¢/, ¢/, m/, i)
to (Gy, GY,s",t", ", m” i"). The following data

P" := the quotient of P x P’ by the following action of G, :  (p,p')d = (pd, (¢')~'p'),
e,Gy,m’

R N G', [(p,p/)] — a(p) = ﬂ'(pl),

e P"— Gy, [(pp)] = (),

AGy o x PP P (¢ p)]) = (gD = [p(d) P,

s/ ,Gl,m!”
p//: P// ) é/ ) G/ll N ‘P//7 ([(p7p/)]7g//) — [(p7 p/g//)].
€5,Gg,

define a generalized morphism frq@y, G1, s, t, e, m, i) to (Gy, G, s, t", ", m” i") which is by def-
inition the composition of P, 7, &, A, p) and (P’, 7', ", N, p').

Remark 10.7 [HM, below Def 3.1]— Since we define the composition of generalized morphisms us-
ing a pullback, this composition is not associative. In faicts easy to check that the composition of
generalized morphisms is associative up to generalizesb@orphisms.

We define the bicategory of étale Lie groupoids with geriegdlisomorphisms which we denaf&€G ™
as follows.

0. The objects are the étale Lie groupoids.
1. The 1-morphisms are the generalized 1-morphisms.

2. The 2-morphisms are the generalized 2-morphisms.

11 Localization w.r.t. weak equivalences versus generaézd morphisms
We define a morphism of bicategori€$: ££G — £L£G™ as follows.

0. C'is the identity on the O-cells.
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1. If fis a 1-morphism of étale Lie groupoids thefy( f) is the generalized morphism associated to
(fo, f1) (cf. Lemma 10.4).

2. If cis a 2-morphism ir€ LG thenC’(f) is the generalized 2-morphism associated fcf. Lemma
10.5).

Our first aim is to check that the morphism of bicategoiigs ££G — £LG™ factors through the
canonical morphism of bicategoriés: ££G — ELG[W 1.

Proposition 11.1 —

i) Let f := (P,me¢,\,p) be a generalized morphism fro = (Go,Gq,s,t,e,m,i) to G' =
(Gy, GY, 8t €' ,m!i") such that(P, 7, e, \) is a (left) principal G-bundle overGy,. Then there
exists a generalized morphiggn G’ — G such thatg o f = Id} and f o g ~ Id},.

i) Letf: G — G’ be aweak equivalence of Lie groupoids. Then there existaergzed morphism
g: G' — G suchthatyo C'(f) = Id}, andC’(f) o g ~ Id},.

Proof:

) If (P,m,¢,\, p)is a(left) principalG-bundle overG|, then the following data

P,
7 i=¢e: P— G),
g =m: P — Gy,

N:Gy x P—P (¢, plg)"
s ,G{,e

p:P x Gi— P, (pg)r—g'p
m,Go,t

define a generalized morphism fraf# to G' which we denotgy. One checks easily thato f =
Id5 andfog~Idf,.

ii) Let f: G — G’ be a weak equivalence of Lie groupoids andlétf) = (P, «,¢, A, p). Then one
Remarks thatP, 7, ¢, \) is a (left) principalG-bundle oveiGy,.

0

By the universal property of LG[W 1] (cf. [P, p. 253]), we get a canonical morphism of bicategorie
C: ELGIW 1] — £L£GT suchthalC o U = C".

Theorem 11.2 — The morphism of bicategorieS: ELG[W '] — £L£G induces an equivalence of
bicategories.

Proof: We check the necessary and sufficient conditions given iR[&} 24].

i) C'is essentially surjective on objects.
Straightforward.

ii) C'is fully faithful on 2-cells.
It follows from the proof of Lemma 2.4 in [LTX].
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iy Forall G = (Go,G1),G" = (Gy,G) € Ob(ELG), for any generalized morphisth: G — &,
there exists a weak equivalenaeof Lie groupoids and a 1-morphisth: G — G’ in ££G such
that B(f) and F' o B(w) are isomorphic.
We refer the reader to the proof of Proposition 2.3 in [LTX].

12 Comparison of two categories

Let 3 be a bicategory. The we define the categByy as follows.
0. Ob(B)3) = Ob(B).

1. LetA, B be two objects irOb(B,,). Let ~ be the equivalence relation on Ha, B) defined
by f ~ gif and only if there exists a 2 morphismissuch tha¥(f) = g. Then we define the mor-
phisms fromA to B in B/, as

Homg , (A, B) := Homy(A4, B)/ ~ .

If F': B — Cis a morphism of bicategories, then it induces a canonicadtbr denoted by, from 5,
to C/,. Moreover if /' is an equivalence of bicategories, thEp is an equivalence of categories.

Applying thistoB: ELG[W 1) — DS we get the following theorem.
Theorem 12.1 — The functorB 5 : (££G[W 1), — DS, defines an equivalence of categories.

Remarks 12.2 — This theorem is not so good to work with stacks. We have losy inéormations. For
example we can not consider anymore the gluing data on tled ddstacks. We refer the reader to the
pages 2490 and 2491 of [HM] for a longer discussion.

We can also apply this general constructioto£ LG[W ~!] — £L£GT. Then we get an equivalence of
categories’/o: (ELGW 1) — (ELGY) /2. In [LTX], the authors consider the categagLG™")
and the following diagram links this one and the categd,:

C B
(ELGY) )y == (ELGIWY]) j, —== DS )5 .
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