Un corrigé du problème portant sur la réduction (piste rouge) par Guy Barat (CCMP PSI 2025)

I. Polynômes réciproques

Un polynôme $P \in \mathbb{C}[X]$ de degré $p \in \mathbb{N}^*$ est dit *réciproque* s'il vérifie l'identité $P = X^p P\left(\frac{1}{X}\right)$.

Q 1. Soit $\mathbb{C}[X] \ni P = \sum_{k=0}^{p} a_k X^k$ de degré $p \in \mathbb{N}^*$. Alors,

$$X^{p}P\left(\frac{1}{X}\right) = X^{p}\sum_{k=0}^{p} a_{k}\left(\frac{1}{X}\right)^{k} = \sum_{k=0}^{p} a_{k}X^{p-k} \overset{(j=k-p)}{=} \sum_{i=0}^{p} a_{p-j}X^{j}.$$

Par unicité de la décomposition sur la base canonique,

P est réciproque $\iff \forall k \in [0, \deg(P)] : a_k = a_{\deg(P)-k}$.

Q 2. Pour
$$P = a_p \prod_{i=1}^d (X - \lambda_i)^{m_i}$$
, on a $\sum_{i=1}^d m_i = \deg(P) = p$, d'où

$$X^{p}P\left(\frac{1}{X}\right) = a_{p}X^{p}\prod_{i=1}^{d}\left(\frac{1}{X} - \lambda_{i}\right)^{m_{i}} = a_{p}\prod_{i=1}^{d}(1 - \lambda_{i}X)^{m_{i}} = (-1)^{p}a_{p}\prod_{i=1}^{d}\lambda_{i}^{m_{i}}\prod_{i=1}^{d}\left(X - \frac{1}{\lambda_{i}}\right)^{m_{i}},$$

la dernière égalité supposant les λ_i tous non nuls. Si P est réciproque, c'est bien le cas, puisque, d'après la question 1, $a_0=a_p\neq 0$ et, pour tout $i\in [\![1,d]\!],\, \frac{1}{\lambda_i}$ est racine de P d'ordre m_i .

Q 3. Un polynôme $Q \in \mathbb{C}[X]$ de degré $p \in \mathbb{N}^*$ est dit antiréciproque s'il vérifie l'identité $Q = -X^pQ\left(\frac{1}{X}\right)$.

Soit un tel polynôme Q. Alors, $Q(1) = -1^p \times Q(1) = -Q(1)$, d'où Q(1) = 0. De manière équivalente, $X - 1 \mid Q$ et il existe un unique polynôme P tel que Q = (X - 1)P. En reportant dans la définition du caractère antiréciproque, il vient

$$(X-1)P = -X^p \left(\frac{1}{X} - 1\right) P\left(\frac{1}{X}\right) = (X-1) \times X^{p-1} P\left(\frac{1}{X}\right),$$

d'où $P = X^{p-1}P\left(\frac{1}{X}\right)$ par identification (on a dit que P était unique). Ainsi, ou bien P et constant, ou bien P est réciproque.

Dans les deux dernières questions de cette partie, on considère $R \in \mathbb{C}[X]$ de degré $p \geqslant 1$, tel que les racines de R sont non nulles et $(X-a)^m \|P$ entraı̂ne $\left(X-\frac{1}{a}\right)^m \|P$ (rappelons que la notation signifie que a est racine de R d'ordre exactement m).

Q 4. Par hypothèse,

$$R = a_p \prod_{i=1}^{d} (X - \lambda_i)^{m_i} = a_p \prod_{i=1}^{d} \left(X - \frac{1}{\lambda_i} \right)^{m_i} \qquad \therefore \qquad R(0) = (-1)^p a_p \prod_{i=1}^{d} \lambda_i^{m_i} = (-1)^p a_p \prod_{i=1}^{d} \frac{1}{\lambda_i^{m_i}}.$$

Posons $a = \prod_{i=1}^{d} \lambda_i^{m_i}$. Comme $R(0) \neq 0$, l'égalité ci-dessus est équivalente à $a = \frac{1}{a}$, soit $a^2 = 1$, ou encore $a \in \{-1, 1\}$.

Q 5. Pour
$$R = a_p \prod_{i=1}^{d} (X - \lambda_i)^{m_i}$$
 et $a = \prod_{i=1}^{d} \lambda_i^{m_i}$, on a

$$X^{p}R\left(\frac{1}{X}\right) \stackrel{(Q.2)}{=} (-1)^{p}a_{p}\prod_{i=1}^{d}\lambda_{i}^{m_{i}}\prod_{i=1}^{d}\left(X-\frac{1}{\lambda_{i}}\right)^{m_{i}} = (-1)^{p}aR = \pm R,$$

donc R est réciproque ou antiréciproque. On peut préciser : a est du signe de $(-1)^m$ où m est l'ordre de multiplicité de la racine -1 (éventuellement 0) et R est réciproque si $(-1)^p a = 1$, donc si 1 est racine d'ordre pair de R, les racines autres que ± 1 marchant par paires.

II. Le cas diagonalisable

Dans les deux questions suivantes, on considère $A \in \mathbf{GL}_n(\mathbb{C})$.

Q 6. Soit $x \in \mathbb{C}^*$. Alors,

$$xI_n - A = -xA \times \left(\frac{1}{x}I_n - A^{-1}\right) \qquad \therefore \qquad \det(xI_n - A) = (-1)^n x^n \det(A) \det\left(\frac{1}{x}I_n - A^{-1}\right).$$

En d'autres termes, $\chi_A(x)=(-1)^nx^n\det(A)\chi_{_{A^{-1}}}(x^{-1}).$

Q 7. Le déterminant est un invariant de similitude. Si A est semblable à son inverse, on a donc $\det(A) = \det(A^{-1})$. Or, pour toute matrice inversible, $\det(A) \det(A^{-1}) = 1$, d'où $\det(A) \in \{-1, 1\}$ (c'est la remarque de la question 4.) En reportant dans la formule de la question précédente, il vient

$$\chi_A(x) = \pm x^n \chi_{A^{-1}}(x^{-1}) = \pm x^n \chi_A(x^{-1}),$$

puisque le polynôme caractéristique est un invariant de similitude. Par définition, χ_A est réciproque ou antiréciproque.

 \mathbf{Q} 8. Soit $B \in \mathbf{M}_n(\mathbb{C})$ une matrice diagonalisable dont le polynôme caractéristique est réciproque ou antiréciproque. Par définition, 0 n'est pas racine de χ_B , donc B est inversible. Par ailleurs, deux matrices diagonalisables sont semblables si, et seulement si, elles ont le même polynôme caractéristique, puisqu'elles sont alors toutes deux semblables à la même matrice diagonale, à savoir celle dont les éléments diagonaux sont les racines de leur polynôme caractéristique commun comptées avec leur multiplicité.

La question 6 montre que si χ_B est réciproque ou antiréciproque, alors $\chi_B = \chi_{B^{-1}}$. Comme B est diagonalisable, B^{-1} l'est également (avec les mêmes espaces propres), donc B et B^{-1} sont semblables.

Dans la suite de ce corrigé, on note $\operatorname{Diag}(A_1, A_2, \ldots, A_m)$ la matrice diagonale par blocs dont les blocs diagonaux, supposés carrés, sont, dans l'ordre, A_1, A_2, \ldots, A_m .

Q 9. Posons $A = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. La matrice A est inversible et l'on a $A^{-1} = 2 \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$. On a ici $B = \text{Diag}(2I_2, A)$, qui est inversible, puisque $2I_2$ et A le sont et $B^{-1} = \text{Diag}\left(\frac{1}{2}I_2, A^{-1}\right)$. On a bien $\chi_B = \chi_{B^{-1}} = (X - 2)^2 \left(X - \frac{1}{2}\right)^2$, mais dim $E_2(B) = 2 \neq 1 = \dim E_2(B^{-1})$, donc B et B^{-1} ne sont pas semblables.

III. Produits de matrices de symétrie

Q 10. Comme les symétries sont inversibles et que $\mathbf{GL}_n(\mathbb{C})$ est stable par produit, $A = S_1S_2$ est inversible.

De plus, la relation $S_1S_2 = S_1(S_2S_1)S_1^{-1}$ montre que S_1S_2 et S_2S_1 sont semblables. Notons que ce la n'utilise que l'inversibilité de S_1 , ce qui est une hypothèse beaucoup plus faible que le fait que S_1 et S_2 soient des symétries.

Q 11. Si
$$A = S_1 S_2$$
 et $P \in \mathbf{GL}_n(\mathbb{C})$, alors

$$P^{-1}AP = P^{-1}(S_1S_2)P = (P^{-1}S_1P)(P^{-1}S_2P)$$

est également un produit de deux symétries, puisque la propriété d'avoir un certain polynôme comme polynôme annulateur (ici, $X^2 - 1$) est un invariant de similitude.

Q 12. Pour $A = \begin{pmatrix} B & 0_n \\ 0_n & C \end{pmatrix}$ et $S_1 = \begin{pmatrix} 0_n & P \\ Q & 0_n \end{pmatrix}$, les règles de calculs par blocs donnent

$$S_1^2 = \begin{pmatrix} PQ & 0_n \\ 0_n & QP \end{pmatrix}, \quad S_2 = S_1A = \begin{pmatrix} 0_n & PC \\ QB & 0_n \end{pmatrix} \quad \& \quad S_2^2 = \begin{pmatrix} PCQB & 0_n \\ 0_n & QBPC \end{pmatrix}.$$

Ainsi, S_1 est une matrice de symétrie si, et seulement si, $PQ = QP = I_n$, i.e. si $Q = P^{-1}$. Cela acquis, S_2 est une matrice de symétrie si, et seulement si, $PCP^{-1}B = P^{-1}BPC = I_n$, i.e. si $PCP^{-1} = B^{-1}$ car les deux égalités sont équivalentes :

$$P^{-1}BPC = I_n \iff (PC)(P^{-1}BPC)(PC)^{-1} = I_n \iff PCP^{-1}B = I_n.$$

Q 13. Si C et B^{-1} sont semblables, il existe $P \in \mathbf{GL}_n(\mathbb{C})$ telle que $PCP^{-1} = B^{-1}$. Notons $Q = P^{-1}$. Alors, les calculs faits à la question précédents montrent que S_1 et S_2 sont des matrices de symétries et $A=S_1^{-1}S_2$ est alors le produit de deux matrices de symétrie.

IV. Blocs de Jordan

Q 14. Soit $g \in \mathcal{L}(E)$ un endomorphisme nilpotent d'indice n. Par hypothèse, il existe un vecteur $x \in E$ tel que $g^{n-1}(x) \neq 0_E$. Montrons que $\mathscr{B} = \left(g^{n-1}(x), g^{n-2}(x), \dots, g(x), x\right)$ est une famille libre. Pour $(\nu_k)_{0 \leq k < n} \in \mathbb{C}^n$, supposons que $\sum_{k=0}^{n-1} \nu_k g^k(x) = 0_E$. Si tous les ν_k ne sont pas nuls, soit j le plus petit indice tel que $\nu_j \neq 0_{\mathbb{C}}$. On a ainsi

 $\sum_{k=j}^{n-1} \nu_k g^k(x) = 0_E.$ En composant par g^{n-1-j} , il vient $\nu_j g^{n-1}(x) = 0$, d'où $\nu_j = 0_{\mathbb{C}}$ et une contradiction. Ainsi, \mathscr{B} est

libre et, par cardinalité, c'est une base de E. De manière immédiate, $\max_{\mathscr{B}}(g) = N$.

Q 15. On pose
$$J_n(\lambda) = \lambda I_n + N = \lambda \left(I_n + \frac{1}{\lambda} N \right)$$
. Alors,
$$\left(I_n + \frac{1}{\lambda} N \right) \sum_{k=0}^{n-1} \frac{(-1)^k}{\lambda^k} N^k = \sum_{k=0}^{n-1} \frac{(-1)^k}{\lambda^k} N^k + \sum_{k=0}^{n-1} \frac{(-1)^k}{\lambda^{k+1}} N^{k+1} = I_n + \frac{(-1)^{n-1}}{\lambda^n} N^n = I_n,$$

ce qui montre que $J_n(\lambda)$ est inversible et que

$$J_n(\lambda)^{-1} = \sum_{k=0}^{n-1} \frac{(-1)^k}{\lambda^{k+1}} N^k = \frac{1}{\lambda} I_n + \underbrace{\sum_{k=1}^{n-1} \frac{(-1)^k}{\lambda^{k+1}} N^k}_{N'}.$$

Q 16. On peut écrire $N' = N \sum_{j=0}^{n-2} \frac{(-1)^{j+1}}{\lambda^{j+2}} N^j = NN''$ (toutes les puissances de N sont positives) avec $N'' \in \mathbb{C}[N]$. Alors, N et N'' commutent et l'on a donc $N'^n = N^n N''^n = 0_{\mathbf{M}_n(\mathbb{C})}$.

De plus, $N'' = -\frac{1}{\sqrt{2}}I_n + N'''$ est inversible par le même calcul qu'à la question 15 et $N'^{n-1} = N^{n-1}N''^{n-1}$ est le produit de $N^{n-1} \stackrel{\lambda^2}{=} E_{1,n}$, matrice non nulle de la base canonique de $M_n(\mathbb{C})$, et d'une matrice inversible, donc $N^{n-1} \neq 0$. On peut alors appliquer la question 14, qui montre qu'il existe $P \in \mathbf{GL}_n(\mathbb{C})$ telle que $P^{-1}N'P = N$,

$$P^{-1}J_n(\lambda)^{-1}P = P^{-1}\left(\frac{1}{\lambda}I_n + N'\right)P = \frac{1}{\lambda}I_n + N = J_n\left(\frac{1}{\lambda}\right).$$

Q 17. Pour $P \in \mathbb{C}_{n-1}[X]$, on calcule $s_1^2(P) = P(-(-X)) = P$ et $s_2^2(P) = P((1-(1-X)) = P$, ce qui montre que $s_1^2 = s_2^2 = \mathrm{id}_{\mathbb{C}_{n-1}[X]}$. De plus,

$$s_1 \circ s_2(P) = s_1(P(1-X)) = P(1+X) = g(P) + P$$
 \therefore $s_1 \circ s_2 = g + \mathrm{id}_{\mathbb{C}_{n-1}[X]}$.

Q 18. Pour tout $k \in \mathbb{N}$, on a $g(X^k) = (X+1)^k - X^k = \sum_{j=0}^{k-1} \binom{k}{j} X^j$ est de degré k-1. Ainsi, si $\deg(P) = d$, on peut écrire $P = a_d X^d + R$ avec $\deg(R) < d$, d'où $g(P) = a_d g(X^d) + g(R)$ avec $\deg(R) < d-1$, soit $\deg(P) = \deg(g(X^d)) = d-1$.

Q 19. D'après la question 18, g est nilpotent d'indice n. D'après la question 14, il existe donc une base de $\mathbb{C}_{n-1}[X]$ dans laquelle $\operatorname{mat}(g) = N$. D'après la question 17, on a, dans cette même base, $\operatorname{mat}\left(g + \operatorname{id}_{\mathbb{C}_{n-1}[X]}\right) = I_n + N = J_n(1)$. Enfin, la relation $s_1 \circ s_2 = g + \operatorname{id}_{\mathbb{C}_{n-1}[X]}$ et le fait que s_1 et s_2 soient des symétries indique que $I_n + N$ est un produit de deux matrices de symétrie.

V. Une caractérisation des matrices semblables à leur inverse

Q 20. La matrice A est inversible, donc n'admet pas 0 comme valeur propre. D'après la question 16, qui s'applique donc ici, il existe pour tout $i \in [1, r]$ des matrices $P_i \in \mathbf{GL}_{n_i}(\mathbb{C})$ telles que $P_i^{-1}J_{n_i}(\lambda_i)P_i = J_{n_i}\left(\frac{1}{\lambda_i}\right)$. Alors,

$$P := \operatorname{Diag}(P_1, P_2, \dots, P_r), P^{-1} = \operatorname{Diag}\left(P_1^{-1}, P_2^{-1}, \dots, P_r^{-1}\right) & \& \\ P^{-1}A'^{-1}P = \operatorname{Diag}\left(J_{n_1}\left(\frac{1}{\lambda_1}\right), J_{n_2}\left(\frac{1}{\lambda_2}\right), \dots, J_{n_r}\left(\frac{1}{\lambda_r}\right)\right) = B.$$

Ainsi, A'^{-1} , donc, par transitivité, A^{-1} , est semblable à B.

Q 21. D'après la question 11, la propriété d'être un produit de deux symétries est un invariant de similitude. D'après la question 7 et le théorème admis sur la réduction de Jordan, A est semblable à une matrice diagonale par blocs dont les blocs sont des $J_m(\lambda)$ avec $\lambda \in \{-1,1\}$ ou des paires de blocs $(J_m(\lambda), J_m(1/\lambda))$ de même taille.

Quitte à conjuguer par une matrice de permutation, on peut regrouper ces paires. La question 13 montre que les matrices du type $\text{Diag}(J_m(\lambda), J_m(1/\lambda))$ sont des produits de symétries. La question 19 montre que c'est le cas de $J_m(1)$ et l'on a admis que c'était aussi le cas pour $J_m(-1)$. Les calculs de matrices diagonales par blocs montrent enfin que l'on peut ainsi construire deux matrices de symétries dont A soit le produit.

D'après la question 10, c'est une équivalence : une matrice de $\mathbf{GL}_n(\mathbb{C})$ est semblable à son inverse si, et seulement si, elle s'écrit comme un produit de deux matrices de symétrie.