Révisions d'algèbre linéaire

1. Notion de K -espace vectoriel	
1.1. Définition d'un K -espace vectoriel	
1.2. Quelques conséquences des axiomes de structure de K -espace vectoriel	
1.3. Intégrité mixte dans un K-espace vectoriel	
1.4. Quelques K-espaces vectoriels usuels	
1.5. Produit d'espaces vectoriels	
2. Sous-espaces vectoriels	5
2.1. Définition d'un sous-espace vectoriel	
2.2. Critère pour être un sous-espace vectoriel	
2.3. Équations linéaires homogènes	
2.4. Un sous-espace vectoriel d'un K-espace vectoriel est naturellement un K-espace vectoriel	
2.5. Intersection d'une famille de sous-espaces vectoriels	
2.6. CNS pour qu'une union de deux sous-espaces vectoriels soit un sous-espace vectoriel	
2.7. Somme de sous-espaces vectoriels : cas de deux	
2.8. Sous-espaces vectoriels en somme directe : cas de deux	
2.9. Somme de sous-espaces vectoriels : cas d'un nombre fini quelconque	8
2.10. Sous-espaces vectoriels en somme directe : cas d'un nombre fini quelconque	8
2.11. Sous-espaces vectoriels supplémentaires	9
2.12. Sous-espace vectoriel engendré par une partie	10
3. Familles remarquables finies	11
3.1. Familles génératrices finies	11
3.2. Familles libres finies	11
3.3. Bases finies	12
4. Familles remarquables	13
4.1. Familles génératrices	13
4.2. Familles libres	
4.3. Bases	14
5. Dimension finie	
5.1. Espace vectoriel de dimension finie et théorème de la base extraite	14
5.2. Théorème de la base incomplète	
5.3. Cardinaux des familles remarquables et notion de dimension	
5.4. Sous-espace vectoriel d'un espace vectoriel de dimension finie	
5.5. Formules de Grassmann	
5.6. Critère pour être supplémentaires dans un espace vectoriel de dimension finie	
5.7. Dimension d'un produit d'espaces vectoriels de dimension finie	
6. Applications linéaires	
6.1. Notion d'application linéaire	
6.2. Structure de K -espace vectoriel sur $\mathcal{L}(E,F)$	
6.3. Image directe et image réciproque d'un sous-espace vectoriel	
6.4. Noyau et image d'une application linéaire	
6.5. Construction d'applications linéaires entre deux K -espaces vectoriels de dimension finie	
6.6. Théorème du rang et formule du rang	
6.7. Injectivité, surjectivité, bijectivité et dimension	
7. Matrices d'applications linéaires	
7.1. Cordonnées d'un vecteur dans une base	
7.2. Matrices d'une application linéaire dans des bases	
7.3. Composée d'applications linéaires versus produit de deux matrices	
7.4. Application linéaire canoniquement associée une matrice	
7.5. Noyau et image d'une matrice	
7.6. Critère d'inversibilité d'une matrice <i>via</i> son noyau	
7.7. Matrices de passage	
7.8. Changement de base pour les vecteurs	
7.9. Changement de base pour les applications linéaires	
7.7. Changement de base pour les applications inicalles	40

8. Matrices	29
8.1. Produit matriciel	29
8.2. Matrices carrées	30
8.3. Matrices carrées inversibles	31
8.4. Trace d'une matrice carrée	31
8.5. Transposée d'une matrice	32
8.6. Rang d'une matrice et matrices $J_{n,p}(r)$	32
9. Hyperplans et formes linéaires	33
10. Déterminant	34
10.1. Formes <i>n</i> -linéaires alternées	34
10.2. Déterminant d'une famille de vecteurs dans une base	35
10.3. Déterminant d'un endomorphisme	36
10.4. Déterminant d'une matrice carrée	36
10.5. Calculs de déterminants de matrices à l'aide d'opérations élémentaires	37
10.6. Calculs de déterminants de matrices par développement	38
10.7. Déterminant d'une matrice triangulaire	39
10.8. Déterminant de Vandermonde	39
10.9. Comatrice	39

Notation. — Dans tout ce chapitre, la lettre K désigne un corps.

1. Notion de K-espace vectoriel

1.1. Définition d'un K-espace vectoriel

Définition 1. — Un K-espace vectoriel est la donnée d'un triplet $(E, +, \cdot)$ où :

- E est un ensemble
- + est une loi de composition interne sur E, i.e. une application :

$$+ \left| \begin{array}{ccc} E \times E & \longrightarrow & E \\ (u, v) & \longmapsto & u + v \end{array} \right|$$

• · est une loi de composition externe sur E à opérateurs dans K, i.e. :

$$\cdot \left| \begin{array}{ccc} \mathbf{K} \times E & \longrightarrow & E \\ (\lambda, u) & \longmapsto & \lambda. u \end{array} \right|$$

vérifiants les propriétés suivantes.

- (A1) $\forall (u, v, w) \in E^3$ (u+v)+w=u+(v+w)=: u+v+w (+ est associative)
- (A2) $\exists 0_E \in E \quad \forall u \in E \quad 0_E + u = u + 0_E = u \quad (+ possède un élément neutre)$
- (A3) $\forall u \in E \quad \exists v \in E \quad u + v = v + u = 0_E$ (tout élément de E possède un opposé)
- (A4) $\forall (u, v) \in E^2$ u + v = v + u (+ est commutative)
- (A5) $\forall u \in E \quad 1_K \cdot u = u \quad (1_K \text{ est neutre pour }.)$
- (A6) $\forall (\lambda, \mu) \in \mathbf{K}^2 \quad \forall u \in E \quad \lambda \cdot (\mu \cdot u) = (\lambda \times_{\mathbf{K}} \mu) \cdot u$ (associativité mixte)
- (A7) $\forall \lambda \in \mathbf{K} \quad \forall (u, v) \in E^2 \quad \lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$ (distributivité à droite)
- (A8) $\forall (\lambda, \mu) \in \mathbb{K}^2 \quad \forall u \in E \quad (\lambda +_{\mathbb{K}} \mu) \cdot u = \lambda \cdot u + \mu \cdot u \quad (distributivité à gauche)$

Remarque 2. — Soit $(E, +, \cdot)$ un **K**-espace vectoriel. En vertu des propriétés (A1)–(A4) de la définition 1, (E, +) est un groupe abélien (ou commutatif).

1.2. Quelques conséquences des axiomes de structure de K-espace vectoriel

Proposition 3. — Soit $(E, +, \cdot)$ un **K**-espace vectoriel.

1. L'élément O_E est unique. Il est appelé vecteur nul de E.

- 2. Soit $u \in E$. L'élément v de E tel que $v + u = u + v = 0_E$ est unique. Il est appelé opposé de u et est noté -u.
- 3. $\forall \lambda \in \mathbf{K} \quad \lambda \cdot 0_E = 0_E$
- 4. $\forall u \in E \quad 0_{\mathbf{K}} \cdot u = 0_{E}$
- 5. $\forall u \in E \quad (-1_K) \cdot u = -u$

Démonstration.

1. Soient $0_{E,1}$ et $0_{E,2}$ des vecteurs de E tels que, pour tout $u \in E$:

$$u + 0_{E,1} = 0_{E,1} + u = u$$
 et $u + 0_{E,2} = 0_{E,2} + u = u$.

En particulier:

$$0_{E,2} + 0_{E,1} = 0_{E,1} + 0_{E,2} = 0_{E,2}$$
 et $0_{E,1} + 0_{E,2} = 0_{E,2} + 0_{E,1} = 0_{E,1}$.

Nous en déduisons :

$$0_{E,1} = 0_{E,1} + 0_{E,2} = 0_{E,2}$$
.

2. Soient v_1, v_2 des vecteurs de E tels que :

$$v_1+u=u+v_1=0_E \qquad \text{et} \qquad v_2+u=u+v_2=0_E \; .$$

Comme la loi + est associative :

$$v_1 = v_1 + 0_E = v_1 + (u + v_2) = (v_1 + u) + v_2 = 0_E + v_2 = v_2$$
.

3. Soit $\lambda \in \mathbf{K}$. Par distributivité à droite :

$$\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E) = \lambda \cdot 0_E + \lambda \cdot 0_E$$

d'où:

$$\lambda \cdot 0_E = \lambda \cdot 0_E + \lambda \cdot 0_E .$$

En ajoutant à chacun des membres de cette identité l'opposé du vecteur $\lambda \cdot 0_E$ par la gauche il vient :

$$0_E = 0_E + \lambda \cdot 0_E = \lambda \cdot 0_E .$$

4. Soit $u \in E$. Par distributivité à gauche :

$$0_{\mathbf{K}} \cdot u = (0_{\mathbf{K}} + 0_{\mathbf{K}}) \cdot u = 0_{\mathbf{K}} \cdot u + 0_{\mathbf{K}} \cdot u$$

d'où:

$$0_{\mathbf{K}} \cdot u = 0_{\mathbf{K}} \cdot u + 0_{\mathbf{K}} \cdot u .$$

En ajoutant à chacun des membres de cette identité l'opposé du vecteur $0_K \cdot u$ par la gauche il vient :

$$0_E = 0_E + 0_{\mathbf{K}} \cdot u = 0_{\mathbf{K}} \cdot u .$$

5. Soit $u \in E$. Par distributivité à gauche et (A5) :

$$0_E = 0_K \cdot u = (1_K + (-1_K)) \cdot u = 1_K \cdot u + (-1_K) \cdot u = u + (-1_K) \cdot u$$

d'où:

$$0_E = u + (-1_K) \cdot u .$$

En ajoutant à chacun des membres aux extrémités de cette identité l'opposé du vecteur u par la gauche il vient

$$-u = 0_F + (-1_K) \cdot u = (-1_K) \cdot u$$
.

1.3. Intégrité mixte dans un K-espace vectoriel

Proposition 4. — Soient $\lambda \in \mathbf{K}$ et $u \in E$.

$$\lambda \cdot u = 0_E \Longrightarrow (\lambda = 0_K \text{ ou } u = 0_E)$$
.

Démonstration. Supposons que $\lambda \cdot u = 0_E$.

- Si $\lambda = 0_K$ alors $(\lambda = 0_K \text{ ou } u = 0_E)$.
- Sinon, $\lambda \neq 0_K$ et, comme K est un corps, nous pouvons considérer l'inverse $\frac{1}{\lambda}$ de λ pour la multiplication \times_K . D'après (A5), (A6) et la proposition 3:

$$u = 1_{\mathbf{K}} \cdot u = \left(\frac{1}{\lambda} \times_{\mathbf{K}} \lambda\right) \cdot u = \frac{1}{\lambda} \cdot (\lambda \cdot u) = \frac{1}{\lambda} \cdot 0_E = 0_E$$

d'où $u = 0_E$ et a fortiori ($\lambda = 0_K$ ou $u = 0_E$).

1.4. Quelques K-espaces vectoriels usuels

$$+ \left| \begin{array}{ccc} \mathbf{K}^{n} \times \mathbf{K}^{n} & \longrightarrow & \mathbf{K}^{n} \\ ((x_{1}, \dots, x_{n}), (y_{1}, \dots, y_{n})) & \longmapsto & (x_{1} +_{\mathbf{K}} y_{1}, \dots, x_{n} +_{\mathbf{K}} y_{n}) \end{array} \right. \cdot \left| \begin{array}{ccc} \mathbf{K} \times \mathbf{K}^{n} & \longrightarrow & \mathbf{K}^{n} \\ (\lambda, (x_{1}, \dots, x_{n})) & \longmapsto & (\lambda \times_{\mathbf{K}} x_{1}, \dots, \lambda \times_{\mathbf{K}} x_{n}) \end{array} \right.$$

est un K-espace vectoriel. Le vecteur nul de \mathbf{K}^n est $(0_{\mathbf{K}^n} = (0_{\mathbf{K}}, \dots, 0_{\mathbf{K}})$. L'opposé d'un vecteur $(x_1, \dots, x_n) \in \mathbf{K}^n$ est $(-x_1, \dots, -x_n)$.

Exemple 6. — Soit Ω un ensemble non vide. L'ensemble $\mathbf{K}^{\Omega} = f(\Omega, \mathbf{K})$ des applications de Ω dans \mathbf{K} muni de :

$$+ \left| \begin{array}{ccc} \mathbf{K}^{\Omega} \times \mathbf{K}^{\Omega} & \longrightarrow & \mathbf{K}^{\Omega} \\ (f,g) & \longmapsto & f+g \end{array} \right| \left| \begin{array}{ccc} \mathbf{K}^{\Omega} & & & \text{et} \end{array} \right| \left| \begin{array}{ccc} \mathbf{K} \times \mathbf{K}^{\Omega} & \longrightarrow & \mathbf{K}^{\Omega} \\ \omega & \longmapsto & f(\omega) +_{\mathbf{K}} g(\omega) \end{array} \right| = \left| \begin{array}{ccc} \mathbf{K} \times \mathbf{K}^{\Omega} & \longrightarrow & \mathbf{K}^{\Omega} \\ (\lambda,f) & \longmapsto & \lambda \cdot f \end{array} \right| \left| \begin{array}{ccc} \Omega & \longrightarrow & \mathbf{K} \\ \omega & \longmapsto & \lambda \times_{\mathbf{K}} f(\omega) \end{array} \right|$$

est un K-espace vectoriel. Le vecteur nul de K^{Ω} , noté $0_{K^{\Omega}}$, et l'opposé d'un vecteur $f \in K^{\Omega}$, noté -f, sont donnés par :

$$0_{\mathbf{K}^{\Omega}} \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathbf{K} \\ \omega & \longmapsto & 0_{\mathbf{K}} \end{array} \quad \text{et} \quad -f \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathbf{K} \\ \omega & \longmapsto & -f(\omega) \end{array}.$$

Exemple 7. — L'ensemble $K^N = f(N, K)$ des suites d'éléments de K indexées par N muni de :

$$+ \left| \begin{array}{ccc} \mathbf{K}^{\mathbf{N}} \times \mathbf{K}^{\mathbf{N}} & \longrightarrow & \mathbf{K}^{\mathbf{N}} \\ \left((u_n)_{n \in \mathbf{N}}, (v_n)_{n \in \mathbf{N}} \right) & \longmapsto & (u_n +_{\mathbf{K}} v_n)_{n \in \mathbf{N}} \end{array} \right| \text{ et } \cdot \left| \begin{array}{ccc} \mathbf{K} \times \mathbf{K}^{\mathbf{N}} & \longrightarrow & \mathbf{K}^{\mathbf{N}} \\ \left(\lambda, (u_n)_{n \in \mathbf{N}} \right) & \longmapsto & (\lambda \times_{\mathbf{K}} u_n)_{n \in \mathbf{N}} \end{array} \right|$$

est un K-espace vectoriel. Le vecteur nul de K^N est $0_{K^n} = (0_K, 0_K, \dots, 0_K, \dots)$. L'opposé d'un vecteur $(u_n)_{n \in \mathbb{N}} \in K^N$ est $(-u_n)_{n \in \mathbb{N}}$.

Exemple 8. — Soient n et p des entiers naturels non nuls. L'ensemble $\mathcal{M}_{n,p}(K)$ des matrices de format $n \times p$ à coefficients dans K muni de

$$+ \left| \begin{array}{ccc} \mathcal{M}_{n,p}(\mathbf{K}) \times \mathcal{M}_{n,p}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{n,p}(\mathbf{K}) \\ + \left| \begin{pmatrix} (a_{i,j}), (b_{i,j}) \end{pmatrix} & \longmapsto & (a_{i,j} +_{\mathbf{K}} b_{i,j}) \end{array} \right| \text{ et } \cdot \left| \begin{array}{ccc} \mathbf{K} \times \mathcal{M}_{n,p}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{n,p}(\mathbf{K}) \\ (\lambda, (a_{i,j})) & \longmapsto & (\lambda \times_{\mathbf{K}} a_{i,j}) \end{array} \right|$$
 est un **K**-espace vectoriel. Le vecteur nul de $\mathcal{M}_{n,p}(\mathbf{K})$ est la matrice de format $n \times p$ dont tous les coefficients valent $0_{\mathbf{K}}$. L'opposé

d'un vecteur $(a_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$ est $(-a_{i,j})$.

Exemple 9. — L'ensemble K[X] des polynômes à coefficients dans K muni de :

$$+ \left| \begin{array}{ccc} \mathbf{K}[X] \times \mathbf{K}[X] & \longrightarrow & \mathbf{K}[X] \\ \left(\sum_{k=0}^{+\infty} a_k X^k, \sum_{k=0}^{+\infty} b_k X^k \right) & \longmapsto & \sum_{k=0}^{+\infty} (a_k +_{\mathbf{K}} b_k) X^k \end{array} \right| \quad \text{et} \quad \cdot \left| \begin{array}{ccc} \mathbf{K} \times \mathbf{K}[X] & \longrightarrow & \mathbf{K}[X] \\ \left(\lambda, \sum_{k=0}^{+\infty} a_k X^k \right) & \longmapsto & \sum_{k=0}^{+\infty} (\lambda \times_{\mathbf{K}} a_k) X^k \end{array} \right|$$

est un K-espace vectoriel. Le vecteur nul de K[X] est le polynôme dont tous les coefficients valent 0_K . L'opposé d'un vecteur $\sum_{k=0}^{+\infty} a_k X^k \in \mathbf{K}[X] \text{ est } \sum_{k=0}^{+\infty} (-a_k) X^k.$

Toute propriété établie pour un K-espace vectoriel quelconque se déclinera pour chacun des K-espaces vectoriels \mathbf{K}^n , \mathbf{K}^n , \mathbf{K}^n , $\mathcal{M}_{n,p}(\mathbf{K})$ et $\mathbf{K}[X]$. Ainsi pourrons-nous obtenir, en une seule étude, des résultats qui s'incarneront dans les contextes des fonctions, des suites, des matrices et des polynômes.

1.5. Produit d'espaces vectoriels

Proposition 10. — Soient un entier $n \ge 2$ et $(E_1, +_1, \cdot_1), \dots, (E_n, +_n, \cdot_n)$ des **K**-espaces vectoriels. Les applications :

$$+ \left| \left(\prod_{i=1}^{n} E_{i} \right) \times \left(\prod_{i=1}^{n} E_{i} \right) \right| \longrightarrow \left(\prod_{i=1}^{n} E_{i} \right) \longrightarrow \left(\prod_{i=$$

sont bien définies et $\left(\prod_{i=1}^n E_i, +, \cdot\right)$ est un **K**-espace vectoriel, appelé espace vectoriel produit des espaces vectoriels E_1, \dots, E_n .

Notation. — Si n est un entier supérieur ou égal à 2 et E est un K-espace vectoriel, on note E^n l'espace vectoriel produit $E \times ... \times E$ (n facteurs).

Remarque 11. — L'espace K^n défini dans l'exemple 5 est un exemple d'espace vectoriel produit.

2. Sous-espaces vectoriels

Notation. — Dans toute cette partie, on fixe un **K**-espace vectoriel $(E, +, \cdot)$.

2.1. Définition d'un sous-espace vectoriel

Définition 12. — Soit F une partie de E. On dit que F est un sous-espace vectoriel de E si trois propriétés suivantes sont vérifiées.

- 1. $0_E \in F$ (F contient le vecteur nul de E)
- 2. $\forall (u_1, u_2) \in F^2$ $u_1 + u_2 \in F$ (F est stable par addition)
- 3. $\forall \lambda \in \mathbf{K} \quad \forall u \in F \quad \lambda \cdot u \in F \quad (F \text{ est stable par multiplication par un scalaire})$

Exemple 13. Les parties $\{0_E\}$ et E de E sont des sous-espaces vectoriels de E, appelés sous-espaces vectoriels triviaux de E.

Remarque 14. — Grâce à la théorie de la dimension, nous savons que les sous-espaces vectoriels de \mathbb{R}^2 (identifié au plan usuel) sont :

- $\{(0,0)\};$
- les droites passant par l'origine;
- R² lui-même

et que les sous-espaces vectoriels de \mathbb{R}^3 (identifié à l'espace usuel) sont :

- {(0,0,0)};
- les droites passant par l'origine;
- les plans passant par l'origine;
- R³ lui-même.

La notion de sous-espace vectoriel renferme donc une saveur géométrique, qui peut aider à conduire des raisonnements.

2.2. Critère pour être un sous-espace vectoriel

Proposition 15. — Soit F une partie de E. Alors F est un sous-espace vectoriel de E si seulement si les deux propriétés suivantes sont vérifiées.

(P1) $F \neq \emptyset$ (F contient au moins un élément)

(P2) $\forall (\lambda_1, \lambda_2) \in \mathbb{K}^2 \quad \forall (u_1, u_2) \in \mathbb{F}^2 \quad \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 \in \mathbb{F} \quad (F \text{ est stable par combinaison linéaire})$

Une démonstration de la proposition 15 est à connaître.

Exercice 16. — Démontrer que $\{(x, y, z) \in \mathbb{K}^3 : x - y + 2z = 0\}$ est un sous-espace vectoriel de \mathbb{K}^3 .

Exercice 17. — Justifier que $\mathscr{C}^0([0,1],\mathbf{R})$ est un sous-espace vectoriel de $\mathbf{R}^{[0,1]}$.

Exercice 18. — Démontrer que :

$$F := \left\{ f \in \mathcal{C}^0([0,1], \mathbf{R}) : \int_0^1 f(t) \, \mathrm{d}t = 0 \right\}$$

est un sous-espace vectoriel de $\mathscr{C}([0,1], \mathbf{R})$.

Exercice 19. — On considère le R-espace vectoriel $\mathscr{C}(R,R)$ des applications de R dans R.

- 1. L'ensemble $A := \{ f \in \mathcal{C}(\mathbf{R}, \mathbf{R}) : f \text{ est bornée sur } \mathbf{R} \}$ est-il un sous-espace vectoriel de $\mathcal{C}(\mathbf{R}, \mathbf{R}) ?$
- 2. L'ensemble $B := \{ f \in \mathcal{C}(\mathbf{R}, \mathbf{R}) : f \text{ est monotone sur } \mathbf{R} \}$ est-il un sous-espace vectoriel de $\mathcal{C}(\mathbf{R}, \mathbf{R}) ?$
- 3. L'ensemble $C := \{ f \in \mathcal{C}(\mathbf{R}, \mathbf{R}) : f \text{ est lipschitzienne sur } \mathbf{R} \}$ est-il un sous-espace vectoriel de $\mathcal{C}(\mathbf{R}, \mathbf{R}) ?$
- 4. L'ensemble $D := \{ f \in \mathcal{C}(\mathbf{R}, \mathbf{R}) : \text{il existe } a \in \mathbf{R} \text{ tel que } f(a) = 0 \}$ est-il un sous-espace vectoriel de $\mathcal{C}(\mathbf{R}, \mathbf{R})$?
- 5. L'ensemble $E := \left\{ f \in \mathscr{C}(\mathbf{R}, \mathbf{R}) : \text{il existe } p \in \mathbf{N} \text{ tel que } f(x) = 0 \text{ o}(x^p) \right\}$ est-il un sous-espace vectoriel de $\mathscr{C}(\mathbf{R}, \mathbf{R})$?
- 6. L'ensemble $F := \{ f \in \mathcal{C}(\mathbf{R}, \mathbf{R}) : f \text{ est somme d'une fonction croissante et d'une fonction décroissante sur } \mathbf{R} \}$ est-il un sous-espace vectoriel de $\mathcal{C}(\mathbf{R}, \mathbf{R})$?

Exercice 20. — Les ensembles :

$$\mathscr{A} := \{ u \in \mathbb{R}^{\mathbb{N}} : u \text{ est une suite arithmétique} \}$$
 et $\mathscr{G} := \{ u \in \mathbb{R}^{\mathbb{N}} : u \text{ est une suite géométrique} \}$

sont-ils des sous-espaces vectoriels de RN?

Exercice 21. — Soit F un sous-espace vectoriel de E tel que $F \neq \{0_E\}$ et $F \neq E$. Démontrer que $A := \overline{F} \cup \{0_E\}$ n'est pas un sous-espace vectoriel de E.

2.3. Équations linéaires homogènes

Proposition 22. — Soit $p \in \mathbb{N}^*$ et soit $a_1, a_2, ..., a_p$ des éléments de **K**. On considère l'équation linéaire homogène (E) définie par :

(E)
$$a_1 \cdot x_1 + a_2 \cdot x_2 + \ldots + a_n \cdot x_n = 0$$

d'inconnue $(x_1, \ldots, x_p) \in \mathbf{K}^p$. Alors l'ensemble solution de (E):

$$Sol(E) := \{(x_1, \dots, x_p) \in \mathbb{K}^p : a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_p \cdot x_p = 0\}$$

est un sous-espace vectoriel de \mathbf{K}^p .

2.4. Un sous-espace vectoriel d'un K-espace vectoriel est naturellement un K-espace vectoriel

Théorème 23. — Soit F un sous-espace vectoriel de E. Alors les applications :

$$+_{F} \mid F \times F \longrightarrow F \\ (u,v) \longmapsto u+v \quad et \cdot_{F} \mid K \times F \longrightarrow F \\ (\lambda,u) \longmapsto \lambda \cdot u$$

induites par les opérations + et \cdot de E, sont bien définies et $(F, +_F, \cdot_F)$ est un K-espace vectoriel.

Le précédent théorème fournit un outil puissant pour construire de nouveaux espaces vectoriels.

2.5. Intersection d'une famille de sous-espaces vectoriels

Proposition 24. — Soit $(F_i)_{i \in I}$ une famille de sous-espaces vectoriels de E. Alors

$$\bigcap_{i \in I} F_i := \{ u \in E : \forall i \in I, u \in F_i \}$$

est un sous-espace vectoriel de E.

Proposition 25. — Soient n et p est entiers naturels non nuls. Soit $(a_{i,j}) \in \operatorname{Mat}_{n,p}(K)$. On considère le système linéaire homogène (S) défini par :

(S)
$$\begin{cases} a_{1,1} \cdot x_1 + a_{1,2} \cdot x_2 + \dots + a_{1,p} \cdot x_p = 0 & (E_1) \\ a_{2,1} \cdot x_1 + a_{2,2} \cdot x_2 + \dots + a_{2,p} \cdot x_p = 0 & (E_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} \cdot x_1 + a_{n,2} \cdot x_2 + \dots + a_{n,p} \cdot x_p = 0 & (E_n) \end{cases}$$

d'inconnue $(x_1, \ldots, x_p) \in \mathbf{K}^p$. Alors l'ensemble solution de (S)

$$Sol(S) := \{(x_1, \dots, x_p) \in \mathbb{K}^p : \forall i \in [1, n], a_{i,1} \cdot x_1 + a_{i,2} \cdot x_2 + \dots + a_{i,p} \cdot x_p = 0\}$$

est un sous-espace vectoriel de \mathbf{K}^p .

Démonstration. Un *p*-uplet de nombres réels est solution du système linéaire homogène (S) si et seulement s'il est solution de chacune des n équations linéaires homogènes (E_1),...,(E_n). Ainsi :

$$Sol(S) = \bigcap_{i=1}^{p} Sol(E_i).$$

D'après la proposition 22, Sol(S) est l'intersection de n sous-espaces vectoriels de E. La proposition 24 nous livre alors que Sol(S) est un sous-espace vectoriel de E.

2.6. CNS pour qu'une union de deux sous-espaces vectoriels soit un sous-espace vectoriel

Une réunion de sous-espaces vectoriels de *E* n'est pas nécessairement un sous-espace vectoriel de *E*. Par exemple

$$F_1 := \{(x, y) \in \mathbb{R}^2 : x - y = 0\}$$
 et $F_2 := \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$

sont des sous-espaces vectoriels de \mathbb{R}^2 , puisque chacun est ensemble solution d'une équation linéaire homogène d'inconnue dans \mathbb{R}^2 . Cependant $F_1 \cup F_2$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 .

En effet, $F_1 \cup F_2$ n'est pas stable par addition : (1,1) et (1,-1) appartiennent à $F_1 \cup F_2$, mais :

$$(1,1)+(1,-1)=(2,0)\notin F_1\cup F_2$$
.

Exercice **26.** — Soient F_1 et F_2 deux sous-espaces vectoriels de E. Alors :

$$(F_1 \cup F_2 \text{ est un sous-espace vectoriel de } E) \iff (F_1 \subset F_2 \text{ ou } F_2 \subset F_1)$$
.

2.7. Somme de sous-espaces vectoriels : cas de deux

Théorème 27. — Soient F_1 et F_2 deux sous-espaces vectoriels de E. Soit $F_1 + F_2$ la partie de E définie par

$$F_1+F_2:=\{u_1+u_2\,:\, (u_1,u_2)\in F_1\times F_2\}\ .$$

Alors:

- 1. $F_1 + F_2$ est un sous-espace vectoriel de E qui contient F_1 et F_2 ;
- 2. $F_1 + F_2$ est le plus petit (au sens de l'inclusion) sous-espace vectoriel de E contenant F_1 et F_2 , i.e., pour tout sous-espace vectoriel G de E contenant F_1 et F_2 :

$$F_1 + F_2 \subset G$$
.

Une démonstration du théorème 27 est à connaître.

Exercice 28. — Soient

$$F_1 := \left\{ (x_1, x_2, x_3) \in \mathbf{R}^3 \ : \ x_1 + x_2 + x_3 = 0 \right\} \qquad \text{et} \qquad F_2 = \left\{ (a, a, a) \in \mathbf{R}^3 \ : \ a \in \mathbf{R} \right\} \ .$$

- 1. Justifier que F_1 et F_2 sont deux sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Démontrer que $F_1 + F_2 = \mathbf{R}^3$.

Exercice 29. — Soient

$$F_1 := \left\{ f \in \mathscr{C}^0(\mathbf{R}, \mathbf{R}) : \int_0^1 f(t) \, \mathrm{d}t = 0 \right\} \qquad \text{et} \qquad F_2 = \left\{ f \in \mathscr{C}^0(\mathbf{R}, \mathbf{R}) : f \text{ est constante sur } \mathbf{R} \right\}.$$

- 1. Justifier que F_1 et F_2 sont deux sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Démontrer que $F_1 + F_2 = \mathscr{C}^0(\mathbf{R}, \mathbf{R})$.

2.8. Sous-espaces vectoriels en somme directe : cas de deux

Définition 30. — Soient F_1 et F_2 deux sous-espaces vectoriels de E.

1. On dit que F_1 et F_2 sont en somme directe si

$$\forall u \in F_1 + F_2 \quad \exists ! (u_1, u_2) \in F_1 \times F_2 \quad u = u_1 + u_2$$

i.e. si tout élément de $F_1 + F_2$ s'écrit de manière unique sous la forme $u_1 + u_2$, où $(u_1, u_2) \in F_1 \times F_2$.

2. Si F_1 et F_2 sont en somme directe, alors on note $F_1 \oplus F_2$ le sous-espace vectoriel $F_1 + F_2$ de E.

Théorème 31. — Soient F_1 et F_2 deux sous-espaces vectoriels de E. Alors :

$$(F_1 \text{ et } F_2 \text{ sont en somme directe}) \iff F_1 \cap F_2 = \{0_E\}.$$

Une démonstration du théorème 31 est à connaître.

Exercice 32. — Démontrer que les sous-espaces vectoriels F_1 et F_2 de l'exercice 28 sont en somme directe.

Exercice 33. — Démontrer que les sous-espaces vectoriels F_1 et F_2 de l'exercice 29 sont en somme directe.

2.9. Somme de sous-espaces vectoriels : cas d'un nombre fini quelconque

Théorème 34. — Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels de E. La partie $F_1 + F_2 + ... + F_p$ de E, notée aussi $\sum_{i=1}^p F_i$, est définie par :

$$F_1 + F_2 + \ldots + F_p = \{x_1 + x_2 + \ldots + x_p : (x_1, x_2, \ldots, x_p) \in F_1 \times F_2 \times \ldots \times F_p\}$$

Alors .

- 1. $F_1 + F_2 + ... + F_p$ est un sous-espace vectoriel de E qui contient $F_1, ..., F_p$;
- 2. $F_1 + F_2 + ... + F_p$ est le plus petit (au sens de l'inclusion) sous-espace vectoriel de E contenant $F_1, ..., F_p$, i.e., pour tout sous-espace vectoriel G de E contenant $F_1, ..., F_p$:

$$F_1 + F_2 + \ldots + F_n \subset G$$
.

Exercice 35. — Soient

$$F_1 := \left\{ (x,y,z) \in \mathbf{R}^3 \ : \ x = 0 \right\} \qquad F_2 := \left\{ (x,y,z) \in \mathbf{R}^3 \ : \ y = 0 \right\} \qquad F_3 := \left\{ (x,y,z) \in \mathbf{R}^3 \ : \ z = 0 \right\} \ .$$

- 1. Justifier que F_1 , F_2 , F_3 sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Démontrer que $F_1 + F_2 + F_3 = \mathbb{R}^3$.

Exercice 36. — Soient

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbf{R}) .$$

- 1. Déterminer, pour tout $\lambda \in \mathbb{R}$, Ker $(A \lambda I_3)$.
- 2. Soient $\lambda_1 < \lambda_2 < \lambda_3$ les trois réels λ tels que $\operatorname{Ker}(A \lambda I_3) \neq \left\{0_{\mathcal{M}_{3,1}(\mathbf{R})}\right\}$. Démontrer que :

$$\mathcal{M}_{3,1}(\mathbf{R}) = \operatorname{Ker}(A - \lambda_1 I_3) + \operatorname{Ker}(A - \lambda_2 I_3) + \operatorname{Ker}(A - \lambda_3 I_3) .$$

2.10. Sous-espaces vectoriels en somme directe : cas d'un nombre fini quelconque

Définition 37. — Soient E un K-espace vectoriel et F_1, F_2, \ldots, F_p des sous-espaces vectoriels de E.

1. La somme $F_1 + \ldots + F_p$ est dite directe si :

$$\forall u \in F_1 + ... + F_p \quad \exists ! (u_1, ..., u_p) \in \prod_{i=1}^p F_i \quad u = \sum_{i=1}^p u_i.$$

i.e. si tout élément de $F_1 + \ldots + F_p$ s'écrit de manière unique sous la forme $u_1 + \ldots + u_p$, où $(u_1, \ldots, u_p) \in F_1 \times \ldots \times F_p$.

2. Si la somme $F_1 + F_2 + \ldots + F_p$ est directe, on la note $F_1 \oplus \ldots \oplus F_p$ ou $\bigoplus_{i=1}^n F_i$.

Théorème 38. — Soient E un K-espace vectoriel. et F_1, F_2, \ldots, F_p des sous-espaces vectoriels de E. La somme $F_1+F_2+\ldots+F_p$ est directe si et seulement si :

$$\forall (x_1, x_2, \dots, x_p) \in F_1 \times F_2 \times \dots \times F_p \qquad x_1 + x_2 + \dots + x_p = 0_E \implies x_1 = x_2 = \dots = x_p = 0_E.$$

Une démonstration du théorème 38 est à connaître.

$$\forall (i,j) \in [1,p]^2 \qquad i \neq j \Longrightarrow F_i \cap F_j = \{0_E\}$$

Il ne suffit pas que : $\forall\, (i,j)\in [\![1,p]\!]^2 \qquad i\neq j \implies F_i\,\cap F_j=\{0_E\}\ .$ pour que la somme $F_1+F_2+\ldots+F_p$ soit directe, comme l'exercice ci-dessous l'illustre.

Exercice 39. — Soient:

$$F_1 = \left\{ (x,y,z) \in \mathbf{R}^3 \ : \ z = 0 \right\} \qquad F_2 = \left\{ (x,y,z) \in \mathbf{R}^3 \ : \ x = y = 0 \right\} \qquad F_3 = \left\{ (x,y,z) \in \mathbf{R}^3 \ : \ x = 0 \text{ et } y = z \right\} \ .$$

- 1. Justifier que F_1 , F_2 , F_3 sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Calculer $F_1 \cap F_2$, $F_2 \cap F_3$ et $F_3 \cap F_1$.
- 3. La somme $F_1 + F_2 + F_3$ est-elle directe?

Exercice 40. — Soient E un K-espace vectoriel et F_1, F_2, \dots, F_p des sous-espaces vectoriels de E. Alors la somme $F_1 + F_2 + \dots + F_p$ est directe si et seulement si :

$$\forall\,i\in \llbracket 1,p\rrbracket \qquad F_i\cap \left(\sum_{\substack{1\leqslant j\leqslant p\\ j\neq i}}F_j\right)=\left\{0_E\right\}.$$

Exercice 41. — Démontrer que les sous-espaces vectoriels F_1 , F_2 , F_3 de l'exercice 35 ne sont pas en somme directe.

Exercice 42. — Démontrer que les sous-espaces vectoriels F_1 , F_2 , F_3 de l'exercice 36 sont en somme directe.

2.11. Sous-espaces vectoriels supplémentaires

Définition 43. — Soient F_1 et F_2 deux sous-espaces vectoriels de E. On dit que F_1 et F_2 sont supplémentaires dans E si :

$$\forall u \in E \quad \exists !(u_1, u_2) \in F_1 \times F_2 \quad u = u_1 + u_2$$

ou, de manière équivalente, si $F_1 \oplus F_2 = E$.

On ne confondra pas les mots « supplémentaire » et « complémentaire ». En effet, si F est un sous-espace vectoriel de E, $O_E \notin \overline{F}$. Ainsi \overline{F} n'est pas un sous-espace vectoriel de E, donc a fortiori pas un supplémentaire de F dans E.

Exemple 44. — Si (d_1) est une droite de \mathbb{R}^2 passant par l'origine, alors toute droite $(d_2) \neq (d_1)$ de \mathbb{R}^2 passant par l'origine est un supplémentaire de (d_1) dans \mathbb{R}^2 . La droite (d_1) admet donc une infinité de supplémentaires dans \mathbb{R}^2 .

Un sous-espace vectoriel *F* de *E* peut admettre plusieurs supplémentaires dans *E* (cf. exemple ci-dessus). Si *G* est un tel, on dira donc que *G* est « un » supplémentaire de *F* dans *E* et non pas que *G* est « le » supplémentaire de *F* dans *E*.

Exercice 45. — Soient un entier $n \ge 2$, \mathcal{S}_n l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbf{R})$ et \mathcal{A}_n l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbf{R})$. Justifier que \mathcal{S}_n et \mathcal{A}_n sont des sous-espaces vectoriels supplémentaires de $\mathcal{M}_n(\mathbf{R})$.

Exercice 46. — Soit $F := \{ P \in \mathbb{R}[X] : P(1) = 0 \}$.

- 1. Démontrer que F est un sous-espace vectoriel de $\mathbf{R}[X]$.
- 2. Donner deux supplémentaires disctints de F dans $\mathbf{R}[X]$.

Exercice 47. — Démontrer que :

$$F := \left\{ f \in \mathscr{C}^{\infty}(\mathbf{R}, \mathbf{R}) : f'' + f = 0 \right\} \qquad \text{et} \qquad G := \left\{ f \in \mathscr{C}^{\infty}(\mathbf{R}, \mathbf{R}) : f(0) = f\left(\frac{\pi}{2}\right) = 0 \right\}$$

sont des sous-espaces vectoriels supplémentaires dans $\mathscr{C}^{\infty}(\mathbf{R},\mathbf{R})$.

Théorème 48. — Tout sous-espace vectoriel de E possède un supplémentaire dans E.

Remarque 49. — Le théorème 48 est admis pour un espace vectoriel *E* quelconque (le lemme de Zorn permet de l'établir). Cependant, lorsque l'espace vectoriel *E* est de dimension finie, nous serons en mesure de le démontrer, grâce au théorème de la base incomplète.

2.12. Sous-espace vectoriel engendré par une partie

Proposition 50. — Soit A une partie de E. On définit la partie Vect(A) de E par :

$$\operatorname{Vect}(A) := \bigcap_{F \in \mathscr{F}} F \ \ où \ \mathscr{F} := \{F \in \mathscr{P}(E) : F \ \ \text{est un sous-espace vectoriel de } E \ \ \text{contenant } A\}$$
.

Alors:

- 1. Vect (A) est un sous-espace vectoriel de E contenant A;
- 2. Vect (A) est le plus petit (au sens de l'inclusion) sous-espace vectoriel de E contenant A, i.e., pour tout sous-espace vectoriel G de E contenant A, Vect G.

Le sous-espace vectoriel de E, noté Vect (A), est appelé sous-espace vectoriel de E engendré par A.

Théorème 51. — Soient $u_1, ..., u_n$ des vecteurs de E. Alors $Vect(\{u_1, ..., u_n\})$ est l'ensemble des combinaisons linéaires des vecteurs $u_1, ..., u_n$, i.e. :

$$\operatorname{Vect}(\{u_1,\ldots,u_n\}) = \left\{\sum_{i=1}^n \lambda_i \cdot u_i : (\lambda_1,\lambda_2,\ldots,\lambda_n) \in \mathbb{K}^n\right\}.$$

Une démonstration du théorème 51 est à connaître.

Théorème 52. — Soit A une partie non vide de E. Alors :

$$\operatorname{Vect}(A) = \bigcup_{n \in \mathbb{N}^*} \left\{ \sum_{k=1}^n \lambda_k \cdot a_k : (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \text{ et } (a_1, \dots, a_n) \in A^n \right\}.$$

Un vecteur de E appartient donc à Vect(A) si et seulement s'il est combinaison linéaire d'un nombre fini de vecteurs de A.

Exercice 53. — Comparer les deux sous-espaces vectoriels de R⁴

$$F := \text{Vect}((-1, 1, 2, -2), (1, 2, 3, -6)) \qquad \text{et} \qquad G := \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}.$$

Exercice 54. — Soit $u_1 := (1, 1, 2)$, $u_2 := (2, 2, 1)$, $v_1 = (1, 1, 1)$ et $v_2 := (1, 1, -1)$. Démontrer que les sous-espaces vectoriels $\text{Vect}(\{u_1, u_2\})$ et $\text{Vect}(\{v_1, v_2\})$ de \mathbb{R}^3 sont égaux.

Théorème 55. — Soient u_1, \ldots, u_n et v_1, \ldots, v_m des vecteurs de E. Alors :

$$Vect({u_1, ..., u_n}) + Vect({v_1, ..., v_m}) = Vect({u_1, ..., u_n, v_1, ..., v_m})$$
.

Démonstration.

 \subset

• Le sous-espace vectoriel Vect $(\{u_1,\ldots,u_n,v_1,\ldots,v_m\})$ contient les vecteurs u_1,\ldots,u_n . Par minimalité du sous-espace engendré Vect ($\{u_1, \ldots, u_n\}$), il vient :

$$Vect(\{u_1,...,u_n\}) \subset Vect(\{u_1,...,u_n,v_1,...,v_m\})$$
 (1)

• Le sous-espace vectoriel $Vect(\{u_1, \dots, u_n, v_1, \dots, v_m\})$ contient les vecteurs v_1, \dots, v_m . Par minimalité du sous-espace engendré Vect $(\{v_1, \dots, v_m\})$, il vient :

$$Vect(\{v_1, ..., v_m\}) \subset Vect(\{u_1, ..., u_n, v_1, ..., v_m\}).$$
(2)

• D'après 1 et 2, le sous-espace $\text{Vect}(\{u_1,\ldots,u_n,v_1,\ldots,v_m\})$ contient les sous-espaces $\text{Vect}(\{u_1,\ldots,u_n\})$ et $\text{Vect}(\{v_1,\ldots,v_m\})$. Par minimalité de la somme $Vect(\{u_1, ..., u_n\}) + Vect(\{v_1, ..., v_m\})$, nous savons :

$$\operatorname{Vect}(\{u_1,\ldots,u_n\}) + \operatorname{Vect}(\{v_1,\ldots,v_m\}) \subset \operatorname{Vect}(\{u_1,\ldots,u_n,v_1,\ldots,v_m\}) .$$

 \supset Le sous-espace Vect $(\{u_1,\ldots,u_n\})$ + Vect $(\{v_1,\ldots,v_m\})$ contient Vect $(\{u_1,\ldots,u_n\})$ et Vect $(\{v_1,\ldots,v_m\})$, donc les vecteurs u_1, \ldots, u_n et v_1, \ldots, v_m . Par minimalité du sous-espace engendré $\text{Vect}(\{u_1, \ldots, u_n, v_1, \ldots, v_m\})$, nous obtenons :

$$Vect(\{u_1,...,u_n,v_1,...,v_m\}) \subset Vect(\{u_1,...,u_n\}) + Vect(\{v_1,...,v_m\})$$
.

3. Familles remarquables finies

Notation. — Dans cette partie, on fixe $(E, +, \cdot)$ un **K**-espace vectoriel.

3.1. Familles génératrices finies

Définition 56. — Soit u_1, \ldots, u_n des vecteurs de E. La famille (u_1, \ldots, u_n) est génératrice de E si :

$$Vect(\{u_1,\ldots,u_n\})=E$$

ou, de manière équivalente, si tout vecteur de E peut s'écrire comme combinaison linéaire de u_1, \ldots, u_n

Exercice 57. — Justifier que $\{(x, y, z, t) \in \mathbb{K}^4 : x - y + z = 0, x + y - 2t = 0, x + z - 2t = 0\}$ est un sous-espace de \mathbb{K}^4 et en donner une famille génératrice.

Exercice 58. — Pour tout $n \in \mathbb{N}$, on pose $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X] : \deg P \leq n\}$. Démontrer que $\mathbb{K}_n[X]$ est un sous-espace vectoriel de K[X] et en donner une famille génératrice.

Exercice 59. — Démontrer que $\{P \in \mathbb{R}_5[X] : P(-1) = P(1) = 0\}$ est un sous-espace vectoriel de $\mathbb{R}_5[X]$ et en donner une famille génératrice.

Exercice 60. — Soit $\alpha \in \mathbb{R}$ un nombre algébrique (α est racine d'un polynôme non nul $P \in \mathbb{Q}[X]$). Donner une famille génératrice finie du sous-espace vectoriel :

$$A := \operatorname{Vect}_{\mathbf{O}} \left(\left\{ \alpha^{k} : k \in \mathbf{N} \right\} \right)$$

du Q-espace vectoriel R.

Proposition 61. — Toute sur-famille d'une famille génératrice de E est génératrice de E.

3.2. Familles libres finies

Définition 62. — Soit u_1, \ldots, u_n des vecteurs de E. La famille (u_1, \ldots, u_n) est dite libre si et seulement si :

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbf{K}^n \qquad \lambda_1 \cdot u_1 + \dots + \lambda_n \cdot u_n = 0_E \implies \lambda_1 = \dots = \lambda_n = 0_{\mathbf{K}}.$$

Si la famille $(u_1, ..., u_n)$ n'est pas libre, elle est dite liée.

Une famille de vecteurs deux à deux non colinéaires n'est pas nécessairement libre. En effet, les vecteurs (1,0), (0,1) et (1,1) sont deux à deux non colinéaires, mais la famille ((1,0),(0,1),(1,1)) est liée car :

$$1 \cdot (1,0) + 1 \cdot (0,1) + (-1) \cdot (1,1) = (0,0)$$
.

Exercice 63. — Soit $a \in \mathbb{C}$. Donner une condition nécessaire et suffisante sur a pour que la famille :

$$((1,a,a^2),(a,a^2,1),(a^2,1,a))$$

soit une famille libre de \mathbb{C}^3 .

Proposition 64. — Toute sous-famille d'une famille libre est libre.

Proposition 65. — Soient $u_1, ..., u_n$ des vecteurs de E. La famille $(u_1, ..., u_n)$ est liée si et seulement s'il existe $i \in [1, n]$ telle que :

$$u_i \in \text{Vect}(\{u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_n\})$$
.

Théorème 66. — Une famille $(P_1, ..., P_n)$ de polynômes de K[X] telle que :

$$0 \le \deg P_1 < \deg P_2 < \ldots < \deg P_n$$

est libre.

Une démonstration du théorème 66, appelé théorème des degrés échelonnés, est à connaître.

3.3. Bases finies

Définition 67. — Une base de E est une famille de vecteurs de E qui est à la fois libre et génératrice de E.

Exemple 68. — Soient n et p des nombres entiers naturels non nuls.

- 1. Pour tout $i \in [1, n]$, notons e_i le vecteur de \mathbf{K}^n dont toutes les composantes sont nulles, sauf la i-ième qui vaut 1. La famille (e_1, \dots, e_n) est une base de \mathbf{K}^n , appelée base canonique de \mathbf{K}^n .
- 2. La famille $(1, X, ..., X^n)$ est une base de $\mathbf{K}_n[X]$, appelée base canonique de $\mathbf{K}_n[X]$.
- 3. Pour tout $(i, j) \in [1, n] \times [1, p]$, notons $E_{i, j}$ la matrice de $\mathcal{M}_{n, p}(\mathbf{K})$ dont tous les coefficients sont nuls, sauf celui d'adresse (i, j) qui vaut 1, i.e.:

$$E_{i,j} := \left(\delta_{k,i} \, \delta_{\ell,j}\right)_{(k,\ell) \in [\![1,n]\!] \times [\![1,p]\!]} \, .$$

La famille $(E_{i,j})_{(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket}$ est une base de $\mathcal{M}_{n,p}(\mathbf{K})$, appelée base canonique de $\mathcal{M}_{n,p}(\mathbf{K})$.

Exercice 69. — Donner une base du sous-espace vectoriel :

$$F = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 + 3x_3 + 5x_5 = 0, 2x_1 + x_2 - x_3 + x_4 = 0, -x_1 + x_2 + x_3 + x_4 + x_5 = 0\}$$

de \mathbf{R}^5 .

Définition 70. — Soient $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base d'un K-espace vectoriel E et $x \in E$. Alors:

$$\exists \,!\, (x_1,\ldots,x_n) \in \mathbf{K}^n \quad x = x_1 \cdot e_1 + x_2 \cdot e_2 + \ldots + x_n \cdot e_n \;. \qquad [\textit{d\'ecomposition du vecteur } x \; \textit{dans la base} \; \mathscr{B}]$$

Le vecteur colonne $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{K}) \text{ est appelé vecteur des coordonnées de } x \text{ dans la base } \mathcal{B}.$

Exercice 71. — Soient n, p des entiers naturels non nuls.

- 1. Soit $x = (x_1, ..., x_n) \in \mathbb{K}^n$. Expliciter les coordonnées de x dans la base canonique de \mathbb{K}^n .
- 2. Soit $P = a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n \in \mathbf{K}_n[X]$. Expliciter les coordonnées de P dans la base canonique de $\mathbf{K}_n[X]$.
- 3. Soit $A = (a_{i,j})_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} \in \mathcal{M}_{n,p}(K)$. Décomposer la matrice A dans la base canonique de $\mathcal{M}_{n,p}(K)$.

Exercice 72. — Donner une base du sous-espace vectoriel $\mathcal{S}_n = \{ M \in \mathcal{M}_n(\mathbf{R}) : M^\top = M \}$ de $\mathcal{M}_n(\mathbf{R})$.

Exercice 73. — Démontrer que la famille $\mathcal{B} := ((1,0,-1),(0,1,-1))$ est une base du sous-espace vectoriel :

$$F := \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$$

de \mathbb{R}^3 et donner les coordonnées d'un vecteur u = (x, y, z) de F dans la base \mathscr{B} .

Exercice 74. — Donner une base du sous-espace vectoriel :

$$F := \left\{ f \in \mathscr{C}^{\infty}(\mathbf{R}, \mathbf{R}) : f'' = 2f' - f \right\}$$

de $\mathscr{C}^{\infty}(\mathbf{R},\mathbf{R})$.

Exercice 75. — Donner une base du sous-espace vectoriel :

$$F := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^n : \text{ pour tout } n \in \mathbb{N}, u_{n+2} = 2u_{n+1} - 2u_n\}$$

de \mathbf{R}^n .

Théorème 76. — Soient E un K-espace vectoriel et F_1, F_2, \ldots, F_p des sous-espaces vectoriels de E en somme directe. Pour tout $i \in [1, p]$, donnons-nous :

$$\mathcal{B}_i := \left(e_{i,1}, \dots, e_{i,n_i}\right)$$

une base de F_i. Alors :

$$\mathscr{B} := \mathscr{B}_1 \# \dots \# \mathscr{B}_p = \left(e_{1,1}, e_{1,2}, \dots, e_{1,n_1}, \dots, e_{p,1}, e_{p,2}, \dots, e_{p,n_p}\right)$$

est une base de $F_1 \oplus F_2 \oplus \ldots \oplus F_p$, que l'on appelle base adaptée à $F_1 \oplus F_2 \oplus \ldots \oplus F_p$.

Théorème 77. — Soient $n \in \mathbb{N}$, (P_0, \dots, P_n) une famille de (n+1)-polynômes de $\mathbb{K}_n[X]$ telle que :

$$\forall k \in \llbracket 0, n \rrbracket \quad \deg P_k = k$$
.

Alors la famille (P_0, \ldots, P_n) est une base de $\mathbf{K}_n[X]$.

Une démonstration du théorème 77, appelé théorème des degrés échelonnés, doit être connue

4. Familles remarquables

Notation. — Dans cette partie, on fixe $(E, +, \cdot)$ un **K**-espace vectoriel et I désigne un ensemble non vide.

4.1. Familles génératrices

Définition 78. — Soit $(u_i)_{i \in I}$ une famille de vecteurs de E indexée par I. La famille $(u_i)_{i \in I}$ est dite génératrice de E si :

$$Vect(\{u_i : i \in I\}) = E$$

ou de manière équivalente, si tout vecteur de E s'écrit comme une combinaison linéaire d'un nombre fini de vecteurs de la famille $(u_i)_{i \in I}$.

Exemple 79. — La famille $(X^n)_{n \in \mathbb{N}}$ est génératrice de K[X].

4.2. Familles libres

Définition 80. — Soit E un K-espace vectoriel. Soit $(u_i)_{i \in I}$ une famille de vecteurs de E indexée par I.

1. La famille $(u_i)_{i\in I}$ est dite libre si toute sous-famille finie de $(u_i)_{i\in I}$ est libre, i.e. si :

$$\forall J \text{ finie } \subset I \quad (u_j)_{j \in J} \text{ est libre }.$$

2. Si la famille $(u_i)_{i \in I}$ n'est pas libre, elle est dite liée.

Exemple 81. — La famille $(X^n)_{n\in\mathbb{N}}$ d'éléments de K[X] est libre.

Exercice 82. — Pour tout $a \in \mathbb{R}$, on pose :

$$f_a \mid \mathbf{R} \longrightarrow \mathbf{R} \\ x \longmapsto e^{ax}.$$

La famille $(f_a)_{a \in \mathbb{R}}$ est-elle libre dans $\mathbb{R}^{\mathbb{R}}$?

Exercice 83. — Pour tout $a \in \mathbb{R}$, on pose :

$$g_a \mid \mathbf{R} \longrightarrow \mathbf{R}$$
 $x \longmapsto |x-a|$.

La famille $(g_a)_{a \in \mathbb{R}}$ est-elle libre dans $\mathbb{R}^{\mathbb{R}}$?

Exercice 84. — La famille $((a^n)_{n\in\mathbb{N}})_{a\in\mathbb{R}}$ est-elle libre dans $\mathbb{R}^{\mathbb{N}}$?

4.3. Bases

Définition 85. — Une famille $(u_i)_{i \in I}$ une famille de vecteurs de E est appelée base de E si et seulement si elle est libre et génératrice de E.

Exemple 86. — La famille $(X^n)_{n \in \mathbb{N}}$ est une base de K[X].

5. Dimension finie

Notation. — Dans cette partie, on fixe $(E, +, \cdot)$ un **K**-espace vectoriel. Si (u_1, \dots, u_n) est une famille de vecteurs de E, la famille :

$$(u_1,\ldots,\widehat{u_i},\ldots,u_n)$$

désigne la famille $(u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n)$, i.e. la famille obtenue en ôtant le vecteur u_i de la famille (u_1, \ldots, u_n) .

5.1. Espace vectoriel de dimension finie et théorème de la base extraite

Définition 87. — On dit que E est de dimension finie s'il possède une famille génératrice finie.

Lemme 88. — Soit (u_1, \ldots, u_n) une famille de vecteurs de E, qui est génératrice de E. On suppose qu'il existe $i \in [[1, n]]$,

tel que

$$u_i \in \text{Vect}(\{u_1, \dots, \widehat{u_i}, \dots, u_n\})$$

i.e. tel que u_i est combinaison linéaire des autres vecteurs de la famille (u_1, \ldots, u_n) . Alors la famille $(u_1, \ldots, u_i, \ldots, u_n)$ est génératrice de E.

Démonstration. Soit $x \in E$. Puisque la famille (u_1, \ldots, u_n) engendre E, il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbf{K}^n$ tel que

$$x = \sum_{j=1}^{n} \lambda_j u_j = \left(\sum_{\substack{1 \le j \le n \\ j \ne i}} \lambda_j u_j\right) + \lambda_i u_i.$$

D'une part $\sum_{\substack{1 \leq j \leq n \\ j \neq i}} \lambda_j u_j \in \text{Vect}(\{u_1, \dots, \widehat{u_i}, \dots, u_n\}).$

D'autre part, comme $u_i \in \text{Vect}(\{u_1, \dots, \widehat{u_i}, \dots, u_n\}), \lambda_i u_i \in \text{Vect}(\{u_1, \dots, \widehat{u_i}, \dots, u_n\}).$

Ainsi $x \in \text{Vect}(\{u_1, \dots, \widehat{u_i}, \dots, u_n\})$, comme somme de deux éléments de ce sous-espace vectoriel de E.

Ceci étant vrai pour un $x \in E$ quelconque, il vient :

$$E \subset \text{Vect}(\{u_1,\ldots,\widehat{u_i},\ldots,u_n\})$$
.

L'inclusion réciproque est triviale.

Théorème 89. — Supposons que E est non réduit à $\{0_E\}$ et de dimension finie. Soit (u_1, \ldots, u_n) une famille génératrice de E.

- 1. On peut extraire de la famille (u_1, \ldots, u_n) une sous-famille qui est une base de E.
- 2. En particulier E possède une base (finie).

Démonstration. Seule la première assertion requiert une preuve. Nous raisonnons par récurrence sur le nombre n d'éléments que possède la famille génératrice donnée. Pour tout $n \in \mathbb{N}^*$, notons $\mathscr{P}(n)$ le prédicat suivant :

« De toute famille génératrice de *n* vecteurs de *E*, on peut extraire une base de *E*. »

(a) Initialisation à n = 1

Soit (u_1) une famille génératrice de E. Alors $u_1 \neq 0_E$, sinon $E = \text{Vect}(\{0_E\}) = \{0_E\}$, ce qui est contraire à une des hypothèses. Par suite (u_1) est libre. C'est donc une base de E.

(b) Hérédité

Supposons que $\mathcal{P}(n)$ soit vraie pour un entier $n \in \mathbb{N}^*$ fixé. Soit (u_1, \dots, u_{n+1}) une famille génératrice de E, formée de n+1 vecteurs.

- Si $(u_1, ..., u_{n+1})$ est libre, alors c'est une base de E et la propriété $\mathcal{P}(n+1)$ est établie.
- Sinon (u_1, \ldots, u_{n+1}) est liée et donc un des vecteurs de cette famille est combinaison linéaire des autres. Formellement, il existe $i \in [\![1,n+1]\!]$, tel que $u_i \in \text{Vect}(\{u_1,\ldots,\widehat{u_i},\ldots,u_{n+1}\})$. D'après le lemme 88, la famille $(u_1,\ldots,\widehat{u_i},\ldots,u_{n+1})$, extraite de (u_1,\ldots,u_{n+1}) , est génératrice de E. Comme elle possède n vecteurs, on peut lui appliquer l'hypothèse de récurrence $\mathscr{P}(n)$ pour conclure.

5.2. Théorème de la base incomplète

Lemme 90. — Soit $(u_1, ..., u_n)$ une famille de vecteurs de E, qui est libre. Soit $v \in E$ tel que $v \notin \text{Vect}(\{u_1, ..., u_n\})$. Alors la famille $(u_1, ..., u_n, v)$ est libre.

Démonstration. Soit $(\lambda_1, \ldots, \lambda_n, \mu) \in \mathbf{K}^{n+1}$ tel que

$$(\star) \qquad \left(\sum_{i=1}^n \lambda_i u_i\right) + \mu \nu = 0_E.$$

• Démontrons que $\mu = 0$, en raisonnant par l'absurde. Si $\mu \neq 0$, alors $\nu = \sum_{i=1}^{n} \left(-\frac{\lambda_i}{\mu} \right) u_i \in \text{Vect}(\{u_1, \dots, u_n\})$, ce qui contredit une des hypothèses.

David Blottière 15 version du 14 septembre 2025

• Comme $\mu=0$, l'identité (\star) se réécrit $\sum_{i=1}^n \lambda_i u_i=0_E$. La famille (u_1,\ldots,u_n) étant libre, il vient :

$$\lambda_1 = \ldots = \lambda_n = 0$$
.

Théorème 91. — Supposons que E possède une base (e_1, \ldots, e_n) . Soit (u_1, \ldots, u_p) une famille libre de vecteurs de E. On peut adjoindre à la famille (u_1, \ldots, u_p) un certain nombre des vecteurs e_1, \ldots, e_n (éventuellement aucun) de manière à ce que la nouvelle famille ainsi obtenue soit une base de E.

Démonstration. On raisonne par récurrence généralisée finie sur le nombre q de vecteurs de la base (e_1, \ldots, e_n) qui n'appartiennent pas au sous-espace vectoriel engendré par la famille libre donnée. Pour tout $q \in [0, n]$, notons $\mathcal{P}(q)$ le prédicat suivant :

si q des vecteurs de la base (e_1,\ldots,e_n) n'appartiennent pas au sous-espace vectoriel engendré une famille libre donnée, alors on peut adjoindre à cette famille libre donnée un certain nombre des vecteurs e_1,\ldots,e_n (éventuellement aucun) de manière à ce que la nouvelle famille ainsi obtenue soit une base de E.

(a) Initialisation à q = 0

Soit $(u_1, ..., u_p)$ une famille libre de vecteurs de E telle que tous les vecteurs $e_1, ..., e_n$ appartiennent à $\text{Vect}(\{u_1, ..., u_p\})$ (i.e. telle que q = 0). Par minimalité du sous-espace engendré $\text{Vect}(\{u_1, ..., u_p\})$, il vient

$$E = \text{Vect}(\lbrace e_1, \dots, e_n \rbrace) \subset \text{Vect}(\lbrace u_1, \dots, u_p \rbrace) \subset E.$$

Par suite, (u_1, \ldots, u_p) est génératrice de E. C'est donc une base de E, puisque cette famille est supposée libre par hypothèse.

(b) Hérédité

Supposons que $\mathscr{P}(q')$ soit vraie pour tous les entiers $q' \in \llbracket 0, q \rrbracket$, où $q \in \llbracket 0, n-1 \rrbracket$ est fixé. Soit (u_1, \ldots, u_p) une famille libre de vecteurs de E telle que q+1 vecteurs de la base (e_1, \ldots, e_n) n'appartiennent pas à $\mathrm{Vect}(\{u_1, \ldots, u_p\})$. Quitte à réindexer les vecteurs de la base (e_1, \ldots, e_n) , on peut supposer que

$$e_1,\dots,e_q,e_{q+1}\notin \mathrm{Vect}\left(\left\{u_1,\dots,u_p\right\}\right) \qquad \text{et} \qquad e_{q+2},\dots,e_n\in \mathrm{Vect}\left(\left\{u_1,\dots,u_p\right\}\right).$$

Comme $e_{q+1} \notin \text{Vect}(\{u_1, \dots, u_p\})$, le lemme 90 nous livre la liberté de la famille $(u_1, \dots, u_p, e_{q+1})$. Nous observons que :

$$e_{q+1} \in \operatorname{Vect}\left(\left\{u_1, \dots, u_p, e_{q+1}\right\}\right) \quad \text{et} \quad e_{q+2}, \dots, e_n \in \operatorname{Vect}\left(\left\{u_1, \dots, u_p\right\}\right) \subset \operatorname{Vect}\left(\left\{u_1, \dots, u_p, e_{q+1}\right\}\right)$$

Par suite le nombre q' de vecteurs de la base (e_1, \ldots, e_n) qui n'appartiennent pas à $\text{Vect}(\{u_1, \ldots, u_p, e_{q+1}\})$ est inférieur ou égal à q. On applique alors l'hypothèse de récurrence $\mathscr{P}(q')$ à la famille libre $(u_1, \ldots, u_p, e_{q+1})$, obtenue en adjoignant à (u_1, \ldots, u_p) un des vecteurs de la base (e_1, \ldots, e_n) , pour conclure.

Remarque 92. — Dans la preuve du théorème de la base incomplète, seul le caractère générateur de E de la famille (e_1, \ldots, e_n) nous a été utile. Le résultat est donc encore valide si l'on suppose la famille (e_1, \ldots, e_n) seulement génératrice de E.

5.3. Cardinaux des familles remarquables et notion de dimension

Lemme 93. — Soit (e_1, \ldots, e_n) une famille libre de E et soit (f_1, \ldots, f_m) une famille génératrice de E. Alors $n \le m$.

Démonstration. Pour tout $m \in \mathbb{N}^*$, on définit $\mathscr{P}(m)$ comme étant l'assertion :

$$\forall (f_1, \dots, f_m) \in E^m, \forall n \in \mathbb{N}^*, \forall (e_1, \dots, e_n) \in \text{Vect}(\{f_1, \dots, f_m\})^n, (e_1, \dots, e_n) \text{ libre} \implies n \leq m \text{ }$$

On démontre que $\mathscr{P}(m)$ est vraie pour tout $m \in \mathbb{N}^*$. L'assertion du lemme 93 en découle, puisque si (f_1, \ldots, f_m) est une famille génératrice de E, alors $\text{Vect}(\{f_1, \ldots, f_m\}) = E$ par définition même. Remarquons que pour tout $m \in \mathbb{N}^*$, $\mathscr{P}(m)$ est équivalente à :

$$\forall (f_1, \dots, f_m) \in E^m, \quad \forall n \in \mathbf{N}^*, \quad \forall (e_1, \dots, e_n) \in \operatorname{Vect}(\{f_1, \dots, f_m\})^n, \qquad n > m \implies (e_1, \dots, e_n) \text{ liée}$$

par contraposition.

David Blottière 16 version du 14 septembre 2025

e

(a) Initialisation à m = 1

Soit f_1 un vecteur de E, soit $n \in \mathbb{N}^*$, soit $(e_1, \dots, e_n) \in \text{Vect}(\{f_1\})^n$. On suppose $n \geq 2$. Démontrons que la famille (e_1, \dots, e_n) est liée. Pour cela, il suffit d'établir que la famille (e_1, e_2) est liée. Il existe $(\lambda_1, \lambda_2) \in \mathbb{K}^2$ tel que $e_1 = \lambda_1 f_1$ et $e_2 = \lambda_2 f_1$.

• Si $\lambda_1 = 0$, alors $e_1 = 0_E$ et :

$$1.e_1 + 0.e_2 = 0_E$$
.

• Si $\lambda_1 \neq 0$, alors $e_2 = \frac{\lambda_2}{\lambda_1} e_1$ et :

$$-\lambda_2 e_1 + \underbrace{\lambda_1}_{\neq 0} e_2 = 0_E .$$

Dans les deux cas, la famille (e_1, e_2) est liée.

(b) Hérédité

Supposons $\mathscr{P}(m)$ vraie pour un $m \in \mathbb{N}^*$ fixé. Soit $(f_1, \ldots, f_m, f_{m+1}) \in E^{m+1}$, soit $n \in \mathbb{N}^*$ soit $(e_1, \ldots, e_n) \in \text{Vect}(\{f_1, \ldots, f_m, f_{m+1}\})^n$. On suppose n > m+1. Démontrons que la famille (e_1, \ldots, e_n) est liée. Pour tout $i \in [1, n]$, il existe $(\lambda_{i,1}, \ldots, \lambda_{i,m}, \lambda_{i,m+1}) \in \mathbb{K}^{m+1}$ tel que :

$$e_i = \sum_{j=1}^{m+1} \lambda_{i,j} f_j = \sum_{j=1}^{m} \lambda_{i,j} f_j + \lambda_{i,m+1} f_{m+1}.$$

- Si $\lambda_{1,m+1} = \ldots = \lambda_{n,m+1} = 0$, alors $(e_1,\ldots,e_n) \in \text{Vect}(\{f_1,\ldots,f_m\})^n$. De n > m+1 > m et de $\mathcal{P}(m)$, on déduit que la famille (e_1,\ldots,e_n) est liée.
- Si au moins un des scalaires $\lambda_{1,m+1}, \ldots, \lambda_{n,m+1}$ est non nul, alors quitte à renuméroter les vecteurs e_1, \ldots, e_n on peut supposer $\lambda_{n,m+1} \neq 0$.

Pour tout $i \in [1, n-1]$, on pose :

$$e'_i = e_i - \frac{\lambda_{i,m+1}}{\lambda_{n,m+1}} e_n = \sum_{j=1}^m \lambda_{i,j} f_j - \sum_{j=1}^m \lambda_{n,j} \frac{\lambda_{i,m+1}}{\lambda_{n,m+1}} f_j \in \text{Vect}(\{f_1,\ldots,f_m\})$$
.

Alors $(e'_1,\ldots,e'_{n-1}) \in \text{Vect}(\{f_1,\ldots,f_m\})^{n-1}$. De n-1>m (qui découle de n>m+1) et de $\mathcal{P}(m)$, on déduit que la famille (e'_1,\ldots,e'_{n-1}) est liée.

Donc il existe des scalaires μ_1, \dots, μ_{n-1} non tous nuls tels que :

$$0_E = \sum_{i=1}^{n-1} \mu_i e_i' = \sum_{i=1}^{n-1} \mu_i e_i - \left(\sum_{i=1}^{n-1} \mu_i \frac{\lambda_{i,m+1}}{\lambda_{n,m+1}}\right) e_n.$$

La famille (e_1, \ldots, e_n) est donc également liée.

Théorème 94. — Supposons que E est de dimension finie. Alors toutes les bases de E ont le même cardinal.

Démonstration. C'est une conséquence directe du lemme 93.

Définition 95. — Supposons que E est de dimension finie. Le cardinal commun de toutes les bases de E est appelé dimension de E. On le note dim E.

Exemple 96. — Soient n et p des entiers naturels non nuls.

- 1. $\dim \mathbf{K}^n = n$
- 2. $\dim \mathbf{K}_n[X] = n + 1$
- 3. dim $\mathcal{M}_{n,p}(\mathbf{K}) = np$
- 4. La dimension de l'espace vectoriel des matrices symétriques $n \times n$ à coefficients dans K est $\frac{n(n+1)}{2}$.

David Blottière 17 version du 14 septembre 2025

Théorème 97. — Supposons que E est de dimension finie. Soit (u_1, \ldots, u_n) une famille de vecteurs de E.

- 1. Supposons (u_1, \ldots, u_n) génératrice de E.
 - (a) Alors dim $E \leq n$.
 - (b) Si $n = \dim E$, alors (u_1, \dots, u_n) est de plus libre. C'est donc une base de E.
- 2. Supposons (u_1, \ldots, u_n) libre.
 - (a) Alors $n \leq \dim E$.
 - (b) Si $n = \dim E$, alors $(u_1, ..., u_n)$ est de plus génératrice de E. C'est donc une base de E.

Démonstration.

- 1. Supposons (u_1, \ldots, u_n) génératrice de E.
 - (a) C'est une conséquence du lemme 93.
 - (b) Supposons que $n = \dim E$. En appliquant le théorème de la base extraite à la famille (u_1, \dots, u_n) génératrice de E, il vient qu'il existe une sous-famille de (u_1, \dots, u_n) qui est une base de E.

Si cette sous-famille n'est pas la famille $(u_1, ..., u_n)$ elle-même, alors on trouve une base de E qui a un cardinal strictement plus petit que la dimension de E, ce qui contredit l'égalité des cardinaux de toutes les bases de E (théorème 94).

Donc la sous-famille qui est une base de E, obtenue par application du théorème de la base extraite, est la famille (u_1, \ldots, u_n) elle-même. La famille (u_1, \ldots, u_n) est donc une base de E.

- 2. Supposons (u_1, \ldots, u_n) libre.
 - (a) C'est une conséquence du lemme 93.
 - (b) Supposons que $n = \dim E$. En appliquant le théorème de la base incomplète à (u_1, \dots, u_n) , on obtient une sur-famille de (u_1, \dots, u_n) qui est une base de E.

Si cette sur-famille n'est pas la famille $(u_1, ..., u_n)$ elle-même, alors on trouve une base de E qui a un cardinal strictement plus grand que la dimension de E, ce qui contredit l'égalité des cardinaux de toutes les bases de E (théorème 94).

Donc la sur-famille qui est une base de E, obtenue par le théorème de la base incomplète, est la famille (u_1, \ldots, u_n) elle-même. La famille (u_1, \ldots, u_n) est donc une base de E.

5.4. Sous-espace vectoriel d'un espace vectoriel de dimension finie

Théorème 98. — Supposons que E est de dimension finie. Soit F un sous-espace vectoriel de E. Alors

- 1. F est de dimension finie;
- 2. $\dim F \leq \dim E$.

Démonstration.

- 1. Raisonnons par l'absurde. Supposons *F* n'est pas de dimension finie, i.e. qu'aucune famille finie de vecteurs de *F* n'engendre *F*. On va montrer qu'on peut, sous cette hypothèse, construire des familles libres de vecteurs de *F*, arbitrairement grandes.
 - F n'étant pas de dimension finie, il n'est pas réduit à $\{0_E\}$ (en effet (0_E) est une famille génératrice de $\{0_E\}$). Soit donc u_1 un vecteur non nul de F. La famille (u_1) est une famille libre de vecteur(s) de F.
 - Soit $p \in \mathbb{N}^*$. Supposons construit des vecteurs (u_1, \dots, u_p) de F, qui forment une famille libre. Puisque (u_1, \dots, u_p) n'est pas génératrice de F, il existe $u_{p+1} \in F \setminus \text{Vect}(\{u_1, \dots, u_p\})$. Par le lemme 90, la famille $(u_1, \dots, u_p, u_{p+1})$ est une famille libre de vecteurs de F.

Ainsi construit donc, par récurrence, des familles libres de vecteurs de F de cardinaux $p \ge 1$ quelconque. En particulier pour $p = \dim E + 1$. L'espace vectoriel E, de dimension finie dim E, contient donc une famille libre de cardinal dim E + 1, ce qui contredit l'assertion 2.(a) du théorème 97.

2. Une base de F est en particulier une famille libre de E. Par le théorème 97, il vient donc dim $F \leq \dim E$.

Exercice **99.** — Soit $\lambda \in K$. Justifier que

$$F_{\lambda} := \{(x, y, z) \in \mathbb{K}^3 : \lambda x + y + z = 0, x + \lambda y + z = 0, x + y + \lambda z = 0\}$$

est un sous-espace vectoriel de K³, puis déterminer sa dimension.

DAVID BLOTTIÈRE 18 VERSION DU 14 SEPTEMBRE 2025

П

Exercice 100. — Justifier que

$$F := \{ P \in \mathbf{C}_3[X] : P(1) = P(-1) = 0 \}$$

est un sous-espace vectoriel de $C_3[X]$, puis déterminer sa dimension.

Théorème 101. — Supposons que E est de dimension finie. Soient F et G deux sous-espaces vectoriels de E tels que $F \subset G$.

- 1. $\dim F \leq \dim G$
- 2. $Si \dim F = \dim G$, alors F = G.

Démonstration.

- 1. D'après les hypothèses, F peut-être vu comme un sous-espace vectoriel de G. Alors l'inégalité $\dim F \leq \dim G$ résulte du théorème 98.
- 2. Supposons dim $F = \dim G =: d$. Soit (e_1, \dots, e_d) une base de F. On peut considérer cette famille comme une famille libre de G. Puisqu'elle a le même cardinal que dim G c'est une famille génératrice de G (cf. 2.(b) du théorème 97). Or c'est aussi une famille génératrice de F. D'où $F = \text{Vect}(\{e_1, \dots, e_d\}) = G$.

5.5. Formules de Grassmann

Théorème 102. — Supposons que E est de dimension finie. Soient F et G deux sous-espaces vectoriels de E.

1. Si F et G sont en somme directe, alors :

$$\dim F \oplus G = \dim F + \dim G$$
.

2. Plus généralement :

$$\dim F + G = \dim F + \dim G - \dim F \cap G$$
.

Hermann Günther Grassmann (1809-1877)

Démonstration.

- 1. L'assertion résulte du théorème 76.
- 2. Soit F' un supplémentaire de $F \cap G$ dans F. On a ainsi :

$$F = (F \cap G) \oplus F' . \tag{3}$$

Prouvons:

$$F' \oplus G = F + G . \tag{4}$$

- (a) Caractère direct de la somme F'+GSoit $x \in F' \cap G$. Alors $x \in F' \subset F$ et $x \in G$. Donc $x \in F \cap G$. De $x \in F \cap G$, $x \in F'$ et (3), on déduit $x = 0_E$. Ainsi $F' \cap G \subset \{0_E\}$. L'inclusion réciproque est claire.
- (b) *L'inclusion* $F' \oplus G \subset F + G$ Comme $F' \subset F$, $F' \oplus G \subset F + G$.
- (c) *L'inclusion* $F + G \subset F' \oplus G$ Soit $x \in F + G$. Alors il existe $y \in F$ et $z \in G$ tels que x = y + z. Comme $y \in F = (F \cap G) \oplus F'$, il existe $y' \in F \cap G$ et $y'' \in F'$ tels que y = y' + y''. Ainsi:

$$x = y'' + (y' + z) \tag{5}$$

Comme $y' \in F \cap G \subset G$ et $z \in G$, $y' + z \in G$. Donc (5) est une écriture de x comme somme d'un élément de F' et d'un élément de G. D'où $x \in F' \oplus G$.

L'identité (4), à présent démontrée, nous livre :

$$\dim F + G = \dim F' \oplus G = \dim F' + \dim G$$

en appliquant 1. Toujours en appliquant 1, nous déduisons de (3):

$$\dim F' = \dim F - \dim F \cap G.$$

En combinant les deux dernières identités sur les dimensions, le résultat tombe.

DAVID BLOTTIÈRE 19 VERSION DU 14 SEPTEMBRE 2025

П

Théorème 103. — Soit E un K-espace vectoriel. Soient F_1, F_2, \ldots, F_p des sous-espaces vectoriels de E en somme directe. Alors:

$$\dim F_1 \oplus F_2 \oplus \ldots \oplus F_p = \dim F_1 + \dim F_2 + \ldots + \dim F_p.$$

Démonstration. Il s'agit d'une conséquence du théorème 76.

Exercice 104. — Soit E un K-espace vectoriel de dimension finie n tel que $n := \dim E \ge 3$. Soient H_1, H_2, H_3 trois hyperplans de E deux-à-deux distincts.

П

П

- 1. Démontrer que $\dim H_1 \cap H_2 = n 2$.
- 2. Démontrer que $\dim H_1 \cap H_2 \cap H_3 \ge n-3$.
- 3. A-t-on nécessairement $\dim H_1 \cap H_2 \cap H_3 = n-3$?

5.6. Critère pour être supplémentaires dans un espace vectoriel de dimension finie

Théorème 105. — Supposons que E est de dimension finie. Soient F et G deux sous-espaces vectoriels de E. Alors F et G sont supplémentaires dans E si et seulement si :

$$F \cap G = \{0_E\}$$
 et $\dim F + \dim G = \dim E$.

Démonstration.

Supposons que F et G sont supplémentaires dans E, i.e. que $E = F \oplus G$.

Puisque la somme est directe, $F \cap G = \{0_E\}$. Ensuite par la première formule de Grassmann :

$$\dim F + \dim G = \dim F \oplus G = \dim E.$$

 \iff Supposons $F \cap G = \{0_E\}$ et $\dim F + \dim G = \dim E$.

Puisque $F \cap G = \{0_E\}$, la somme F + G est directe. Il reste à vérifier que cette somme égale E.

 $F \oplus G$ est un sous-espace vectoriel de E. Ensuite par la première formule de Grassmann :

$$\dim F \oplus G = \dim F + \dim G$$

et cette dernière somme de nombres entiers vaut dim E par hypothèse. Donc $F \oplus G$ est un sous-espace vectoriel de E de même dimension finie que E. Par le théorème 101, $E = F \oplus G$.

5.7. Dimension d'un produit d'espaces vectoriels de dimension finie

Proposition 106. — Soient un entier $n \ge 2$ et E_1, \ldots, E_n des **K**-espaces vectoriels de dimension finie. Alors l'espace vectoriel produit $E_1 \times \ldots \times E_n$ est de dimension finie et :

$$\dim \prod_{i=1}^n E_i = \sum_{i=1}^n \dim E_i .$$

Éléments de démonstration. Soient E, F des K-espaces vectoriels de dimension finie, (e_1, \ldots, e_n) une base de E et (f_1, \ldots, f_m) une base de E. On vérifie que la famille :

$$((e_1, 0_E), \dots, (e_n, 0_E), (0_E, f_1), \dots, (0_E, f_m))$$

est une base de $E \times F$, ce qui livre le résultat dans le cas où n = 2. La propriété pour un entier $n \ge 2$ quelconque peut alors être obtenue en raisonnant par récurrence.

6. Applications linéaires

Notation. — Dans cette partie, *E* et *F* désignent deux **K**-espaces vectoriels.

6.1. Notion d'application linéaire

Définition 107. — application linéaire Une application $f: E \longrightarrow F$ est dite linéaire si

$$\forall (u, v) \in E^2 \quad \forall (\lambda, \mu) \in \mathbf{K}^2 \qquad f(\lambda \cdot u + \mu \cdot v) = \lambda \cdot f(u) + \mu \cdot f(v)$$

Proposition 108. — Si $f: E \longrightarrow F$ est linéaire alors $f(0_E) = 0_F$.

6.2. Structure de K-espace vectoriel sur $\mathcal{L}(E, F)$

Définition 109. — L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E, F)$.

Théorème 110. — Les applications :

$$+ \left| \begin{array}{cccc} \mathcal{L}(E,F) \times \mathcal{L}(E,F) & \longrightarrow & \mathcal{L}(E,F) \\ (f,g) & \longmapsto & f+g \end{array} \right| \left| \begin{array}{cccc} E & \longrightarrow & F \\ u & \longmapsto & f(u)+g(u) \end{array} \right| \cdot \left| \begin{array}{cccc} \mathbf{K} \times \mathcal{L}(E,F) & \longrightarrow & \mathcal{L}(E,F) \\ (\lambda,f) & \longmapsto & \lambda \cdot f \end{array} \right| \left| \begin{array}{cccc} E & \longrightarrow & F \\ u & \longmapsto & \lambda \cdot f(u) \end{array} \right|$$

sont bien définies et $(\mathcal{L}(E,F),+,\cdot)$ est un **K**-espace vectoriel. Le vecteur nul de $\mathcal{L}(E,F)$ est :

$$0_{\mathscr{L}(E,F)} \quad \left| \begin{array}{ccc} E & \longrightarrow & F \\ u & \longmapsto & 0_F \end{array} \right.$$

et l'opposé d'un vecteur f de $\mathcal{L}(E,F)$ est donné par :

$$-f \quad \left| \begin{array}{ccc} E & \longrightarrow & F \\ u & \longmapsto & -f(u) \, . \end{array} \right.$$

Définition 111. —

- 1. Une application linéaire de E dans E est nommée endomorphisme de E.
- 2. Une application linéaire et bijective de E dans F est nommée isomorphisme de E vers F.
- 3. Une application qui est à la fois un endormorphisme et un isomorphisme est nommée automorphisme.

Exercice 112. — Soit $f: E \longrightarrow F$ un isomorphisme. Démontrer que l'application $f^{-1}: F \longrightarrow E$ est un isomorphisme.

6.3. Image directe et image réciproque d'un sous-espace vectoriel

Théorème 113. — Soit $f \in \mathcal{L}(E, F)$.

1. Si H est un sous-espace vectoriel de E, alors :

$$f(H) := \{f(u) : u \in H\}$$
 [partie de F formée des images des éléments de H par f]

est un sous-espace vectoriel de F.

2. Si H' est un sous-espace vectoriel de F, alors :

$$f^{-1}(H') := \{u \in E : f(u) \in H'\}$$
 [partie de E formée des antécédents des éléments de H' par f]

est un sous-espace vectoriel de E.

Une démonstration du théorème 113 est à connaître.

6.4. Noyau et image d'une application linéaire

Définition 114. — *Soit*
$$f \in \mathcal{L}(E, F)$$
.

1. Le noyau de f est défini par :

$$\operatorname{Ker}(f) := f^{-1}(\{0_F\}) = \{u \in E : f(u) = 0_F\}$$
 [partie de E formée des antécédents de 0_F par f].

2. L'image de f est définie par :

$$Im(f) := f(E) = \{f(u) : u \in E\}$$
 [partie de F formée des images des éléments de E par f].

Corollaire 115. — Soit $f \in \mathcal{L}(E, F)$.

- 1. Ker(f) est un sous-espace vectoriel de E.
- 2. Im(f) est un sous-espace vectoriel de F.

Démonstration. Comme $\{0_F\}$ est un sous-espace vectoriel de F et E est un sous-espace vectoriel de E, les deux assertions résultent du théorème 113.

Proposition 116. — Supposons le **K**-espace vectoriel E de dimension finie, considérons une famille génératrice (e_1, \ldots, e_n) de E (une base de E par exemple). Soit $f \in \mathcal{L}(E, F)$. Alors :

$$Im(f) = Vect(f(e_1), ..., f(e_n)).$$

Démonstration.

Soit $y \in \text{Im}(f)$. Par définition de l'image de f, il existe $x \in E$ telle que :

$$y = f(x). (6)$$

Comme la famille (e_1, \ldots, e_n) est génératrice de E, il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbf{K}^n$ tel que :

$$x = \sum_{i=1}^{n} \lambda_i e_i \,. \tag{7}$$

Comme l'application f est linéaire, nous déduisons que (6) et (7) que :

$$y = \sum_{i=1}^{n} \lambda_i f(e_i) \in \text{Vect}(f(e_1), \dots, f(e_n)).$$

Le sous-espace $\operatorname{Im}(f)$ de F contient les vecteurs $f(e_1), \ldots, f(e_n)$. Par minimalité du sous-espace engendré $\operatorname{Vect}(f(e_1), \ldots, f(e_n))$, il vient :

$$Vect(f(e_1),...,f(e_n)) \subset Im(f)$$
.

Exercice 117. — Soit $n \in \mathbb{N}^*$. Déterminer l'image de l'application :

$$f \mid \mathbf{K}_n[X] \longrightarrow \mathbf{K}_n[X] \\ P \longmapsto P - P'.$$

Qu'en déduire?

Théorème 118. — Soit $f \in \mathcal{L}(E, F)$.

- 1. f est injective si et seulement si $Ker(f) = \{0_E\}$.
- 2. f est surjective si et seulement si Im(f) = F.
- Une démonstration du théorème 118 est à connaître.
- 6.5. Construction d'applications linéaires entre deux K-espaces vectoriels de dimension finie

Proposition 119. — Supposons le K-espace vectoriel E de dimension finie et considérons une base (e_1, \ldots, e_n) de E. Soit (f_1, \ldots, f_n) une famille quelconque de vecteurs de F. Alors il existe une unique $\varphi \in \mathcal{L}(E, F)$ telle que :

$$\forall i \in [1, n], \quad \varphi(e_i) = f_i$$
.

6.6. Théorème du rang et formule du rang

Définition 120. — *Soit* $f \in \mathcal{L}(E, F)$.

- 1. Si E est de dimension finie, alors Im(f) est de dimension finie.
- 2. La dimension de Im(f) est appelée rang de f et est notée rg(f). On a donc rg(f) := dim Im(f).

Théorème 121. — Soit $f \in \mathcal{L}(E, F)$.

1. Soit A un supplémentaire de Ker(f) dans E. L'application :

$$f_{|A}^{|\operatorname{Im}(f)} \mid A \longrightarrow \operatorname{Im}(f)$$

 $x \longmapsto f(x)$

est un isomorphisme (théorème du rang).

2. Si E est de dimension finie, alors :

$$\dim \operatorname{Ker}(f) + \operatorname{rg}(f) = \dim E$$
 [formule du rang].

Une démonstration du théorème 121 est à connaître.

Exercice 122. — Soit $f \in \mathcal{L}(E, F)$. Supposons que E est de dimension finie. Soit (e_1, \dots, e_n) une base de E.

- 1. Démontrer que f est injective si et seulement si $(f(e_1), \ldots, f(e_n))$ est une famille libre de F.
- 2. Démontrer que f est surjective si et seulement si $(f(e_1), \dots, f(e_n))$ est une famille génératrice de F.
- 3. En déduire un critère d'isomorphisme.

6.7. Injectivité, surjectivité, bijectivité et dimension

Corollaire 123. — Soit $f \in \mathcal{L}(E, F)$. On suppose E et F de dimension finie.

- 1. Si f est injective, alors dim $E \leq \dim F$.
- 2. Si f est surjective, alors dim $E \ge \dim F$.
- 3. Si f est injective et si $\dim E = \dim F$ alors f est un isomorphisme.
- 4. Si f est surjective et si $\dim E = \dim F$ alors f est un isomorphisme.

7. Matrices d'applications linéaires

7.1. Cordonnées d'un vecteur dans une base

Notation. — La lettre:

- *E* désigne un **K**-espace vectoriel de dimension finie, notée *n*, supposée non nulle ;
- $\underline{e} = (e_1, \dots, e_n)$ désigne une base de E;
- *u* désigne un vecteur de *E*.

Définition 124. — Puisque la famille \underline{e} est génératrice de E, il existe : $(x_1, \dots, x_n) \in \mathbf{K}^n$ tel que

$$u = \sum_{j=1}^{n} x_j e_j . \tag{8}$$

Puisque la famille \underline{e} est libre, le n-uplet (x_1,\ldots,x_n) d'éléments de K vérifiant (8) est unique. On définit la matrice des

cordonnées de u dans la base e comme étant :

$$\operatorname{Mat}_{\underline{e}}(u) := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{K}).$$

Exercice 125. — Soit $u = (1, 2, 3) \in \mathbb{R}^3$.

- 1. Déterminer les coordonnées de u dans la base canonique de \mathbb{R}^3 .
- 2. On pose $e_1' := (0,1,1)$, $e_2' = (1,0,1)$ et $e_3' = (1,1,0)$. Démontrer que la famille $\underline{e'} = (e_1',e_2',e_3')$ est une base de \mathbf{R}^3 et déterminer les coordonnées de u dans la base $\underline{e'}$.

7.2. Matrices d'une application linéaire dans des bases

Notation. — La lettre :

- *E* désigne un **K**-espace vectoriel de dimension finie non nulle;
- F désigne un K-espace vectoriel de dimension finie non nulle;
- $e = (e_1, ..., e_n)$ désigne une base de E;
- $f = (f_1, ..., f_p)$ une base de F;
- φ désigne une application linéaire de E dans F.

Définition 126. — La matrice de φ dans les bases \underline{e} et f est la matrice notée

$$\operatorname{Mat}_{e,f}(\varphi) \in \mathscr{M}_{p,n}(\mathbf{K})$$

dont la j-ième $(j \in [1, n])$ colonne est la matrice des cordonnées de $\varphi(e_j) \in F$ dans la base \underline{f} . Schématiquement, nous avons la description suivante de $\mathrm{Mat}_{e,f}(\varphi)$.

$$\varphi(e_1) \ \varphi(e_2) \qquad \varphi(e_n)$$

$$\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) = \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \\ \vdots & \vdots & & \vdots \\ * & * & \dots & * \end{pmatrix} / f_1$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ * & * & \dots & * \end{pmatrix} / f_p$$

Remarque 127. — Par définition même, pour tout $j \in [1, n]$:

$$\varphi(e_j) = \sum_{i=1}^p \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{i,j} f_i.$$

La seule connaissance de $\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi)$ permet de retrouver φ , i.e. de calculer $\varphi(u)$ pour tout $u \in E$. En effet soit $u \in E$ et soit :

$$\operatorname{Mat}_{\underline{e}}(u) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{K}) .$$

la matrice de ses cordonnées dans la base E. Alors :

$$\varphi(u) = \varphi\left(\sum_{j=1}^{n} x_{j} e_{j}\right) = \sum_{j=1}^{n} x_{j} \varphi\left(e_{j}\right) = \sum_{j=1}^{n} x_{j} \sum_{i=1}^{p} \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi)\right]_{i,j} f_{i}$$

et donc :

$$\varphi(u) = \sum_{i=1}^{p} \left(\sum_{j=1}^{n} x_j \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{i,j} \right) f_i . \tag{9}$$

Le terme de droite de (9) se calcule uniquement à l'aide de $Mat_{e,f}$.

Exercice 128. — Soit $n \in \mathbb{N}^*$. Déterminer la matrice de l'application linéaire :

$$f \mid \mathbf{K}_n[X] \longrightarrow \mathbf{K}_n[X]$$

$$P \longmapsto P'$$

dans les bases canoniques de $\mathbf{K}_n[X]$ et $\mathbf{K}_n[X]$.

Proposition 129. — On a:

$$\operatorname{Mat}_f(\varphi(u)) = \operatorname{Mat}_{\underline{e},f}(\varphi) \times \operatorname{Mat}_{\underline{e}}(u)$$
.

Démonstration. L'identité (9) :

$$\varphi(u) = \sum_{i=1}^{p} \left(\sum_{j=1}^{n} x_{j} \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{i,j} \right) f_{i}.$$

livre une autre information. Les cordonnées de $\varphi(u)$ dans la base f sont donc données par :

$$\operatorname{Mat}_{\underline{f}}(\varphi(u)) = \begin{pmatrix} \sum_{j=1}^{n} x_{j} \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{1,j} \\ \sum_{j=1}^{n} x_{j} \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{2,j} \\ \vdots \\ \sum_{j=1}^{n} x_{j} \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{p,j} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{1,j} x_{j} \\ \sum_{j=1}^{n} \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{2,j} x_{j} \\ \vdots \\ \sum_{j=1}^{n} \left[\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \right]_{p,j} x_{j} \end{pmatrix} = \operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \times \operatorname{Mat}_{\underline{e}}(u).$$

La dernière identité repose sur la définition du produit matriciel. Nous avons donc établi :

$$\operatorname{Mat}_{f}(\varphi(u)) = \operatorname{Mat}_{e,f}(\varphi) \times \operatorname{Mat}_{e}(u)$$
.

7.3. Composée d'applications linéaires versus produit de deux matrices

Lemme 130. — Soient $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$, (e_n^1, \dots, e_n^n) la base canonique de \mathbb{K}^n et $A \in \mathcal{M}_{p,n}(\mathbb{K})$. Alors:

$$A \times \left(e_n^j\right)^\top = \begin{pmatrix} [A]_{1,j} \\ [A]_{2,j} \\ \vdots \\ [A]_{p,j} \end{pmatrix} \qquad [j\text{-i\`eme colonne de la matrice } A] \ .$$

Notation. — La lettre :

- E désigne un K-espace vectoriel de dimension finie non nulle;
- F désigne un K-espace vectoriel de dimension finie non nulle;
- G désigne un K-espace vectoriel de dimension finie non nulle;
- $\underline{e} = (e_1, \dots, e_n)$ désigne une base de E;
- $f = (f_1, ..., f_p)$ une base de F;
- $g = (g_1, ..., g_q)$ une base de G;
- φ désigne une application linéaire de E dans F;
- ψ une application linéaire de F dans G.

Remarque 131. — Comme $\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \in \mathscr{M}_{p,n}(K)$, $\operatorname{Mat}_{\underline{f},\underline{g}}(\psi) \in \mathscr{M}_{q,p}(K)$, $\operatorname{Mat}_{\underline{e},\underline{g}}(\psi \circ \varphi) \in \mathscr{M}_{q,n}(K)$, le produit matriciel $\operatorname{Mat}_{\underline{f},\underline{g}}(\psi) \times \operatorname{Mat}_{\underline{e},\underline{f}}(\varphi)$ est bien défini et les matrices $\operatorname{Mat}_{\underline{e},\underline{g}}(\psi \circ \varphi)$ et $\operatorname{Mat}_{\underline{f},\underline{g}}(\psi) \times \operatorname{Mat}_{\underline{e},\underline{f}}(\varphi)$ ont même format (q,n).

David Blottière 25 version du 14 septembre 2025

Théorème 132. —
$$\operatorname{Mat}_{\underline{e},\underline{g}}(\psi \circ \varphi) = \operatorname{Mat}_{\underline{f},\underline{g}}(\psi) \times \operatorname{Mat}_{\underline{e},\underline{f}}(\varphi)$$

 $\label{eq:definition} \textit{D\'{e}monstration}. \ \ \text{Soit} \ j \in \llbracket 1, n \rrbracket. \ \ \text{Calculons la j-i\`{e}me colonne de la matrice } \ \ \text{Mat}_{\underline{f},\underline{g}}(\psi) \times \ \ \text{Mat}_{\underline{e},\underline{f}}(\varphi), \ \ \text{not\'{e}e} \ \ C_j.$

$$C_{j} = \operatorname{Mat}_{\underline{f},\underline{g}}(\psi) \times \operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \times (e_{n}^{j})^{\top} \quad [\operatorname{lemme } 130]$$

$$= \operatorname{Mat}_{\underline{f},\underline{g}}(\psi) \times \operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) \times \operatorname{Mat}_{\underline{e}}(e_{j}) \quad \left[\operatorname{car} \operatorname{Mat}_{\underline{e}}(e_{j}) = (e_{n}^{j})^{\top}\right]$$

$$= \operatorname{Mat}_{\underline{f},\underline{g}}(\psi) \times \operatorname{Mat}_{\underline{f}}(\varphi(e_{j})) \quad [\operatorname{proposition } 129]$$

$$= \operatorname{Mat}_{\underline{g}}(\psi(\varphi(e_{j}))) \quad [\operatorname{proposition } 129]$$

Or par définition même de $\operatorname{Mat}_{\underline{e},\underline{g}}(\psi \circ \varphi)$, sa j-ième colonne est formée des cordonnées de $\psi(\varphi(e_j))$ dans la base \underline{g} , i.e. la j-ième colonne de $\operatorname{Mat}_{\underline{e},\underline{g}}(\psi \circ \varphi)$ est $\operatorname{Mat}_{\underline{g}}(\psi(\varphi(e_j)))$.

Les matrices $\operatorname{Mat}_{\underline{e},\underline{g}}(\psi \circ \overline{\varphi})$ et $\operatorname{Mat}_{\underline{f},\underline{g}}(\psi) \times \operatorname{Mat}_{\underline{e},\underline{f}}(\varphi)$ ont (même format et) mêmes colonnes. Elles sont donc égales, i.e. :

$$\operatorname{Mat}_{\underline{e},g}(\psi \circ \varphi) = \operatorname{Mat}_{f,g}(\psi) \times \operatorname{Mat}_{\underline{e},f}(\varphi)$$
.

7.4. Application linéaire canoniquement associée une matrice

Notation. — La lettre :

- *n* désigne un entier naturel non nul;
- p désignent un entier naturel non nul;
- A désigne une matrice de $\mathcal{M}_{p,n}(\mathbf{K})$;
- $\mathscr{B}_n = (e_n^1, \dots, e_n^n)$ désigne la base canonique de \mathbf{K}^n , de sorte que $\mathscr{B}_n^\top := ((e_n^1)^\top, \dots, (e_n^n)^\top)$ est la base canonique de $\mathscr{M}_{n,1}(\mathbf{K})$;
- $\mathscr{B}_p = \left(e_p^1, \dots, e_p^p\right)$ désigne la base canonique de \mathbf{K}^n , de sorte que $\mathscr{B}_n^\top := \left(\left(e_p^1\right)^\top, \dots, \left(e_p^p\right)^\top\right)$ est la base canonique de $\mathscr{M}_{p,1}(\mathbf{K})$.

Proposition-Définition 133. — L'application linéaire canoniquement associée A est :

$$\varphi_A \mid \mathcal{M}_{n,1}(\mathbf{K}) \longrightarrow \mathcal{M}_{p,1}(\mathbf{K}) \\ X \longmapsto AX.$$

L'application φ_A est bien linéaire et elle est caractérisée par :

$$\operatorname{Mat}_{\mathscr{B}_{n}^{\top},\mathscr{B}_{p}^{\top}}(\varphi_{A}) = A.$$

L'application linéaire canoniquement associée à une matrice va nous permettre d'appliquer la théorie développée pour les applications linéaires pour en déduire des propriétés portant sur les matrices. Un exemple en est donné ci-dessous, cf. théorème 139.

7.5. Noyau et image d'une matrice

Définition 134. — Le noyau de A est par définition de noyau de φ_A , i.e. :

$$\operatorname{Ker}(A) := \left\{ X \in \mathcal{M}_{n,1}(\mathbf{K}) : AX = 0 \right\}.$$

Ker(A) est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{K})$.

Remarque 135. — La détermination de Ker(A) conduit souvent à la résolution d'un système linéaire homogène dont A est la matrice des coefficients.

David Blottière 26 version du 14 septembre 2025

Définition 136. — L'image de A est par définition l'image de φ_A , i.e. :

$$\operatorname{Im}(A) = \left\{ AX : X \in \mathcal{M}_{n,1}(\mathbf{K}) \right\}.$$

 $\operatorname{Im}(A)$ est un sous-espace vectoriel de $\mathcal{M}_{p,1}(\mathbf{K})$.

Définition 137. — Le rang de A est la dimension de Im (A), i.e. :

$$rg(A) = dim Im(A)$$
.

Proposition 138. — Notons C_1, C_2, \ldots, C_n les colonnes de la matrices A. Alors $Im(A) = Vect(\{C_1, C_2, \ldots, C_n\})$ et donc :

$$rg(A) = \dim Vect(\{C_1, C_2, \dots, C_n\}).$$

Démonstration. Comme $\mathscr{B}_n^\top := \left(\left(e_n^1\right)^\top, \dots, \left(e_n^n\right)^\top\right)$ est une famille génératrice de la source de φ_A :

$$\operatorname{Im}(A) := \operatorname{Im}(\varphi_A) = \operatorname{Vect}\left(\left\{\varphi_A\left(\left(e_n^1\right)^{\top}\right), \dots, \varphi_A\left(\left(e_n^n\right)^{\top}\right)\right\}\right) = \operatorname{Vect}\left(\left\{A\left(e_n^1\right)^{\top}, \dots, A\left(e_n^n\right)^{\top}\right\}\right).$$

D'après le lemme 130, $Im(A) = Vect(\{C_1, C_2, ..., C_n\}).$

7.6. Critère d'inversibilité d'une matrice via son noyau

Théorème 139. — Nous supposons ici que n = p, i.e. que A est une matrice carrée. Alors:

$$A \in \mathbf{GL}_n(\mathbf{K}) \iff \mathrm{Ker}(A) = \left\{0_{\mathcal{M}_{n,1}(\mathbf{K})}\right\}.$$

Démonstration.

 \implies Supposons $A \in GL_n(K)$.

- \supset Clairement $0_{\mathcal{M}_{n,1}(\mathbf{K})} \in \text{Ker}(A)$.
- Soit à présent X dans $\operatorname{Ker}(A)$. Alors $AX = 0_{\mathcal{M}_{n,1}(K)}$. En multipliant chaque membre de cette identité à gauche par A^{-1} (qui existe par hypothèse) nous obtenons $X = 0_{\mathcal{M}_{n,1}(K)}$.
- Supposons à présent que $\{0_{\mathcal{M}_{n,1}(\mathbf{K})}\}$ = Ker(A) := Ker (φ_A) . Alors $\varphi_A \in \mathcal{L}(\mathcal{M}_{n,1}(\mathbf{K}))$ est injective. Or un endomorphisme d'un K-espace vectoriel de dimension finie qui est injectif est un automorphisme (conséquence du théorème du rang). Donc φ_A est un automorphisme de $\mathcal{M}_{n,1}(\mathbf{K})$. Nous pouvons donc considérer l'application linéaire φ_A^{-1} . Posons $B := \mathrm{Mat}_{B_A^{\top},B_A^{\top}}(\varphi_A^{-1})$.

Nous calculons:

$$AB = \operatorname{Mat}_{B_n^{\mathsf{T}}, B_n^{\mathsf{T}}}(\varphi_A) \times \operatorname{Mat}_{B_n^{\mathsf{T}}, B_n^{\mathsf{T}}}(\varphi_A^{-1})$$

$$= \operatorname{Mat}_{B_n^{\mathsf{T}}, B_n^{\mathsf{T}}}(\varphi_A \circ \varphi_A^{-1}) \quad \text{[th\'eor\`eme 132]}$$

$$= \operatorname{Mat}_{B_n^{\mathsf{T}}, B_n^{\mathsf{T}}}(\operatorname{id}_{\mathcal{M}_{n,1}(\mathbf{K})})$$

$$= I_n.$$

et de même $BA = I_n$. Donc $A \in GL_n(K)$.

7.7. Matrices de passage

Notation. — La lettre :

- *E* désigne un **K**-espace vectoriel de dimension finie ;
- $\underline{e} = (e_1, \dots, e_n)$ désigne une base de E;
- $\underline{e'} = (e'_1, \dots, e'_n)$ désigne une base de E.

Définition 140. — La matrice de passage de la base \underline{e} à la base $\underline{e'}$ est la matrice $P_{\underline{e} \to \underline{e'}} \in \mathcal{M}_n(\mathbf{K})$ dont la j-ième colonne est formée des cordonnées de e'_j dans la base \underline{e} pour tout $j \in [\![1,n]\!]$. Schématiquement, nous avons la description suivante de $P_{\underline{e} \to \underline{e'}}$.

On a l'identité fondamentale suivante :

$$P_{e \to e'} = \operatorname{Mat}_{e',e} (\operatorname{id}_E) .$$

Proposition 141. — La matrice $P_{e \rightarrow e'}$ est inversible et :

$$\left(P_{e\to e'}\right)^{-1} = P_{e'\to e} .$$

Démonstration. Nous pouvons aussi considérer la matrice de passage « dans l'autre sens » :

$$P_{e'\to e} = \operatorname{Mat}_{e,e'}(\operatorname{id}_E)$$
.

Le théorème 132 nous livre :

$$P_{e' \to e} \times P_{e \to e'} = \operatorname{Mat}_{e,e'}(\operatorname{id}_E) \times \operatorname{Mat}_{e',e}(\operatorname{id}_E) = \operatorname{Mat}_{e',e'}(\operatorname{id}_E \circ \operatorname{id}_E) = \operatorname{Mat}_{e',e'}(\operatorname{id}_E) = I_n.$$

De même $P_{\underline{e} \to \underline{e'}} \times P_{\underline{e'} \to \underline{e}} = I_n$. Nous en déduisons que $P_{\underline{e} \to \underline{e'}}$ est inversible et que $\left(P_{\underline{e} \to \underline{e'}}\right)^{-1} = P_{\underline{e'} \to \underline{e}}$.

7.8. Changement de base pour les vecteurs

Notation. — La lettre :

- *E* désigne un **K**-espace vectoriel de dimension finie ;
- $\underline{e} = (e_1, \dots, e_n)$ désigne une base de E;
- $\underline{e'} = (e'_1, \dots, e'_n)$ désigne une base de E.

Proposition 142. — Soient $u \in E$. Alors:

$$\operatorname{Mat}_{e}(u) = P_{e \to e'} \times \operatorname{Mat}_{e'}(u)$$
.

Démonstration. Grâce à la proposision 129 :

$$P_{e \to e'} \times \operatorname{Mat}_{e'}(u) = \operatorname{Mat}_{e',e}(\operatorname{id}_E) \times \operatorname{Mat}_{e'}(u) = \operatorname{Mat}_e(\operatorname{id}_E(u)) = \operatorname{Mat}_e(u) .$$

7.9. Changement de base pour les applications linéaires

Notation. — La lettre :

- *E* désigne un **K**-espace vectoriel de dimension finie ;
- *F* désigne un **K**-espace vectoriel de dimension finie;
- $\underline{e} = (e_1, \dots, e_n)$ désigne une base de E;
- $\underline{e'} = (e'_1, \dots, e'_n)$ désigne une base de E;
- $f = (f_1, ..., f_p)$ désigne une base de F;
- $f' = (f'_1, \dots, e'_p)$ désigne une base de F;
- φ désigne une application linéaire de E dans F.

David Blottière 28 version du 14 septembre 2025

Théorème 143. — Nous disposons de l'identité :

$$\operatorname{Mat}_{\underline{e},f}(\varphi) = P_{f \to f'} \times \operatorname{Mat}_{\underline{e'},f'}(\varphi) \times (P_{\underline{e} \to \underline{e'}})^{-1}$$

qui s'écrit également :

$$\operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) = \operatorname{Mat}_{\underline{f}',\underline{f}}(\operatorname{id}_F) \times \operatorname{Mat}_{\underline{e}',\underline{f}'}(\varphi) \times \operatorname{Mat}_{\underline{e},\underline{e}'}(\operatorname{id}_E)$$
.

Démonstration. En appliquant la proposition 142 deux fois, il vient :

$$\operatorname{Mat}_{\underline{f'},\underline{f}}(\operatorname{id}_F) \times \operatorname{Mat}_{\underline{e'},\underline{f'}}(\varphi) \times \operatorname{Mat}_{\underline{e},\underline{e'}}(\operatorname{id}_E) = \operatorname{Mat}_{\underline{e},\underline{f}}(\operatorname{id}_F \circ \varphi \circ \operatorname{id}_E) = \operatorname{Mat}_{\underline{e},\underline{f}}(\varphi) .$$

Exercice 144. — Soit la matrice :

$$A = \left(\begin{array}{rrr} -1 & 4 & 2 \\ -2 & 5 & 1 \\ 1 & -2 & 2 \end{array} \right)$$

et soit φ_A l'endomorphisme canonique de ${\bf R}^3$ associé.

- 1. Déterminer tous les $\lambda \in \mathbf{R}$ tels que $\operatorname{Ker}(\varphi_A \lambda id_{\mathbf{R}^3}) \neq \{0\}$.
- 2. Soient $\lambda_1 < \lambda_2 < \lambda_3$ les réels trouvés à la question précédente. Démontrer

$$\mathbf{R}^3 = \operatorname{Ker}(\varphi_A - \lambda_1 id_{\mathbf{R}^3}) \oplus \operatorname{Ker}(\varphi_A - \lambda_2 id_{\mathbf{R}^3}) \oplus \operatorname{Ker}(\varphi_A - \lambda_3 id_{\mathbf{R}^3}) \ .$$

- 3. Écrire la matrice D de φ_A dans une base adaptée à la décomposition précédente de \mathbb{R}^3 .
- 4. Quel lien existe-t-il entre *A* et *D*?

8. Matrices

8.1. Produit matriciel

Notation. — Les lettres n, p, q, r désignent des entiers naturels non nuls.

Définition 145. — Soient
$$A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$$
 et $B = (b_{i,j}) \in \mathcal{M}_{q,r}(\mathbf{K})$.

- 1. Le produit matriciel de A par B est défini si le nombre de colonnes de A est égal au nombre de lignes de B, i.e. si p = q.
- 2. Si le produit matriciel de A par B est défini (donc si p = q), alors le produit matriciel de A par B, noté AB, est une matrice de format $n \times r$.
- 3. Si le produit matriciel de A par B est défini (donc si p = q), alors le coefficient d'adresse (i, j) de AB est

$$\sum_{k=1}^{p} a_{i,k} b_{k,j} = a_{i,1} b_{1,i} + a_{i,2} b_{2,j} + a_{i,3} b_{3,j} + \ldots + a_{i,p} b_{p,j}.$$

pour tout $(i,j) \in [1,n] \times [1,r]$. Autrement dit, nous avons les identités suivantes.

(a)
$$AB = \left(\sum_{k=1}^{p} a_{i,k} b_{k,j}\right)_{\substack{1 \le i \le n \\ 1 \le j \le r}} a_{i,k} b_{k,j}$$

(b)
$$\forall (i,j) \in [1,n] \times [1,r]$$
 $[AB]_{ij} = \sum_{k=1}^{p} [A]_{i,k} \times [B]_{k,j}$

Théorème 146. — Le produit matriciel possède les propriétés suivantes.

1. Associativité

$$\forall (A, B, C) \in \mathcal{M}_{n,p}(\mathbf{K}) \times \mathcal{M}_{p,q}(\mathbf{K}) \times \mathcal{M}_{q,r}(\mathbf{K}) \quad (AB)C = A(BC)$$

Les parenthèses n'influant pas sur le résultat, on note plus simplement ABC la matrice (AB)C = A(BC).

David Blottière 29 version du 14 septembre 2025

2. Distributivité à gauche

$$\forall (A,B) \in \mathcal{M}_{n,p}(\mathbf{K})^2 \quad \forall C \in \mathcal{M}_{p,q}(\mathbf{K}) \quad (A+B)C = AC + BC$$

3. Distributivité à droite

$$\forall A \in \mathcal{M}_{n,p}(\mathbf{K}), \quad \forall (B,C) \in \mathcal{M}_{p,q}(\mathbf{K})^2 \quad A(B+C) = AB + AC$$

4. Commutativité de la multiplication et de la mutliplication par un scalaire

$$\forall A \in \mathcal{M}_{n,p}(\mathbf{K}) \quad \forall B \in \mathcal{M}_{p,q}(\mathbf{K}) \quad \forall \lambda \in \mathbf{K} \quad (\lambda \cdot A)B = A(\lambda \cdot B) = \lambda \cdot (AB)$$

Exercice 147. — Soit $(E_{i,j})_{1 \le i,j \le n}$ la base canonique de $\mathcal{M}_n(K)$. Soit $(i,j,k,\ell) \in [1,n]^4$.

1. Démontrer :

$$E_{i,j} E_{k,\ell} = \delta_{j,k} \cdot E_{i,\ell}$$

en utilisant uniquement la définition du produit matriciel.

2. Retrouver le résultat de la question 1, en introduisant les endomorphismes canoniquement associés aux matrices $E_{i,j}$ et $E_{k,\ell}$.

8.2. Matrices carrées

Notation. — La lettre *n* désigne un entier naturel non nul.

Définition 148. — On note I_n la matrice de $\mathcal{M}_n(\mathbf{K})$, appelée matrice identité, dont tous les coefficients sont nuls, sauf ses coefficients diagonaux, tous égaux à 1. En d'autres termes :

$$[I_n]_{i,j} = \begin{vmatrix} 1 & si \ i = j \\ 0 & si \ i \neq j \end{vmatrix}$$

pour tout $(i, j) \in [1, n]^2$.

Proposition 149. — Pour tout $A \in \mathcal{M}_{n,p}(\mathbf{K})$:

$$AI_p = A$$
 et $I_n A = A$.

Théorème 150. — $(\mathcal{M}_n(K), +, \times, .)$ est une K-algèbre, i.e. :

- 1. $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ est un **K**-espace vectoriel;
- 2. $(\mathcal{M}_n(\mathbf{K}), +, \times)$ est un anneau;
- 3. $\forall A \in \mathcal{M}_{n,p}(\mathbf{K}) \quad \forall B \in \mathcal{M}_{p,q}(\mathbf{K}) \quad \forall \lambda \in \mathbf{K} \quad (\lambda \cdot A) \times B = A(\lambda \cdot B) = \lambda \cdot (A \times B)$.

Définition 151. — Soit $A \in \mathcal{M}_n(\mathbf{K})$. Si $s \in \mathbf{N}$, alors on définit A^s par :

$$A^{s} = \begin{cases} I_{n} & \text{si } s = 0 \\ \underbrace{A \times A \times A \times \dots \times A}_{s \text{ fois}} & \text{si } s \geqslant 1 . \end{cases}$$

Théorème 152. — Soient A et B deux matrices de $\mathcal{M}_n(K)$ qui commutent, i.e. telles que AB = BA. Alors pour tout $s \in N$:

$$(A+B)^s = \sum_{k=0}^s {s \choose k} A^k B^{s-k} = \sum_{k=0}^s {s \choose k} A^{s-k} B^k.$$

Théorème 153. — Soient A et B deux matrices de $\mathcal{M}_n(\mathbf{K})$ qui commutent, i.e. telles que AB = BA. Alors pour tout $s \in \mathbf{N}^*$:

$$A^{s} - B^{s} = (A - B) \sum_{k=0}^{s-1} A^{k} B^{s-1-k}$$
.

Remarque 154. — Les deux formules sommatoires des théorèmes 152 et 153 sont valables dans tout anneau, pour deux éléments qui commutent.

8.3. Matrices carrées inversibles

Notation. — La lettre *n* désigne un entier naturel non nul.

Définition 155. — Soit $A \in \mathcal{M}_n(K)$. La matrice A est dite inversible s'il existe $B \in \mathcal{M}_n(K)$ tel que :

$$AB = I_n = BA$$
.

L'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbf{K})$ *est noté* $\mathbf{GL}_n(\mathbf{K})$.

Théorème 156. — Si $A \in \mathcal{M}_n(\mathbf{K})$ est inversible, alors la matrice $B \in \mathcal{M}_n(\mathbf{K})$ vérifiant $AB = I_n = BA$ est unique. On la nomme matrice inverse de A et on la note A^{-1} .

Remarque 157. — Si $A \in \mathcal{M}_n(\mathbf{K})$ est inversible alors il découle de la définition de la matrice inverse A^{-1} de A:

$$AA^{-1} = I_n = A^{-1}A$$
.

Théorème 158. —

- 1. Pour tout $(A, B) \in \mathbf{GL}_n(\mathbf{K})^2$, $AB \in \mathbf{GL}_n(\mathbf{K})$ et $(AB)^{-1} = B^{-1}A^{-1}$. En particulier, la multiplication sur $\mathcal{M}_n(\mathbf{K})$ induit une loi de composition interne (notée également \times) sur $\mathbf{GL}_n(\mathbf{K})$.
- 2. $(GL_n(K), \times)$ est un groupe dont le neutre est I_n .

Remarque 159. — $I_n^{-1} = I_n$ et, pour tout $A \in GL_n(K)$, $(A^{-1})^{-1} = A$.

Théorème 160. — Soit $A \in \mathcal{M}_n(K)$.

- 1. S'il existe $B \in \mathcal{M}_n(\mathbf{K})$ telle que $AB = I_n$, alors A est inversible et $A^{-1} = B$.
- 2. S'il existe $B \in \mathcal{M}_n(\mathbf{K})$ telle que $BA = I_n$, alors A est inversible et $A^{-1} = B$.

Exercice 161. — Soient $A \in \mathcal{M}_n(\mathbf{K})$ et E un \mathbf{K} -espace de dimension n, muni d'une base $\underline{e} = (e_1, \dots, e_n)$. Démontrer que $A \in \mathbf{GL}_n(\mathbf{K})$ si et seulement s'il existe une base $\underline{e'} = (e'_1, \dots, e'_n)$ de E telle que : $A = P_{\underline{e} \to \underline{e'}}$.

Une démonstration du théorème 160 est à connaître.

8.4. Trace d'une matrice carrée

Notation. — La lettre *n* désigne un entier naturel non nul.

Définition 162. — Soit $A \in \mathcal{M}_n(K)$. La trace de A est le scalaire :

$$tr(A) = \sum_{k=1}^{n} [A]_{k,k}$$

i.e. tr(A) est la somme des coefficients diagonaux de A.

Théorème 163. —

1. Linéarité

$$\forall (\lambda_1, \lambda_2) \in \mathbf{K}^2 \quad \forall (A_1, A_2) \in \mathcal{M}_n(\mathbf{K})^2 \quad \operatorname{tr}(\lambda_1 A_1 + \lambda_2 A_2) = \lambda_1 \operatorname{tr}(A_1) + \lambda_2 \operatorname{tr}(A_2)$$

2. Trace d'un produit

$$\forall A \in \mathcal{M}_n(\mathbf{K}) \quad \forall B \in \mathcal{M}_n(\mathbf{K}) \quad \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

Si A, B, C sont des matrices de $\mathcal{M}_n(\mathbf{K})$, alors l'identité $\operatorname{tr}(ABC) = \operatorname{tr}(BAC)$ n'est pas nécessairement vraie. En effet :

$$\operatorname{tr}(E_{1,1}E_{1,2}E_{2,1}) = 1 \neq 0 = \operatorname{tr}(E_{1,2}E_{1,1}E_{2,1})$$
.

Proposition 164. — Deux matrices semblables dans $\mathcal{M}_n(\mathbf{K})$ ont même trace.

Proposition 165. — Soit E un K-espace vectoriel de dimension finie. Soit $f \in \mathcal{L}(E)$. Le scalaire

$$tr(f) := tr(Mat_{\mathcal{B}}(f))$$

est indépendant de la base \mathcal{B} de E. On le nomme trace de f.

Exercice 166. — Soit *E* un K-espace vectoriel de dimension finie et *p* un projecteur de *E*. Démontrer que tr(p) = rg(p).

8.5. Transposée d'une matrice

Notation. — Les lettres n et p désignent des entiers naturels non nuls.

Définition 167. — Soient $A = (a_{i,j})_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} \in \mathcal{M}_{n,p}(\mathbf{K})$. La matrice transposée de A est la matrice, notée A^{\top} , de format (p,n), à coefficients dans \mathbf{K} , définie par :

$$A^{\top} := (a_{\ell,k})_{(k,\ell) \in \llbracket 1,p \rrbracket \times \llbracket 1,n \rrbracket}.$$

En d'autres termes :

$$\forall (k,\ell) \in \llbracket 1,p \rrbracket \times \llbracket 1,n \rrbracket \quad \left[A^\top \right]_{k,\ell} = [A]_{\ell,k} \ .$$

Théorème 168. —

1. Caractère involutif

$$\forall A \in \mathcal{M}_{n,p}(\mathbf{K}) \quad \left(A^{\top}\right)^{\top} = A$$

2. Linéarité

$$\forall (\lambda_1, \lambda_2) \in \mathbf{K}^2 \quad \forall (A_1, A_2) \in \mathcal{M}_{n,p}(\mathbf{K})^2 \quad (\lambda_1 \cdot A_1 + \lambda_2 \cdot A_2)^\top = \lambda_1 \cdot A_1^\top + \lambda_2 \cdot A_2^\top$$

3. Transposition et produit

$$\forall A \in \mathcal{M}_{n,p}(\mathbf{K}) \quad \forall B \in \mathcal{M}_{p,q}(\mathbf{K}) \quad (AB)^{\top} = B^{\top} \times A^{\top}$$

4. Transposition, inversibilité et inverse éventuelle

$$\forall A \in \mathbf{GL}_n(\mathbf{K}) \quad A^{\top} \in \mathbf{GL}_n(\mathbf{K}) \quad et \quad (A^{\top})^{-1} = (A^{-1})^{\top}$$

8.6. Rang d'une matrice et matrices $J_{n,p}(r)$

Notation. —

- *E* désigne un K-espace vectoriel de dimension finie $p \in \mathbb{N}^*$.
- *F* désigne un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$.
- L'entier *r* désigne un entier naturel.

Lemme 169. — Soient E et F des K-espaces vectoriels de dimension finie. Soit $\varphi \in \mathcal{L}(E,F)$.

- 1. Si ψ est un automorphisme de E, alors $\operatorname{rg}(\varphi \circ \psi) = \operatorname{rg}(\varphi)$.
- 2. Si ψ est un automorphisme de F, alors $\operatorname{rg}(\psi \circ \varphi) = \operatorname{rg}(\varphi)$.

Lemme 170. — Soit E et F des K-espaces vectoriels de dimension finie, de dimensions respectives p et n. Soit $\varphi \in \mathcal{L}(E,F)$. Pour tout $r \in [1, \min(n, p)]$, on note $J_{n,p}(r)$ la matrice de format $n \times p$ décrite par blocs comme suit.

$$J_{n,p}(r) := \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Il existe une base \underline{e} de E et une base f de F telle que

$$\operatorname{Mat}(\varphi, \underline{e}, f) = J_{n,p}(\operatorname{rg}(\varphi)).$$

En particulier, $rg(\varphi) \leq min(n, p)$.

Théorème 171. — Soit $A \in \mathcal{M}_{n,p}(K)$. Soit $r \in N$.

$$\operatorname{rg}(A) = r \iff \exists (P,Q) \in \operatorname{GL}_n(K) \times \operatorname{GL}_p(K) \quad A = P J_{n,p}(r) Q.$$

Théorème 172. —

- 1. Pour tout $A \in \mathcal{M}_{n,p}(\mathbf{K})$, $\operatorname{rg}(A) \leq n$ et $\operatorname{rg}(A) \leq p$.
- 2. Pour tout $A \in \mathcal{M}_{n,p}(\mathbf{K})$, $\operatorname{rg}(A) = \operatorname{rg}(A^{\top})$.
- 3. Pour tout $A \in \mathcal{M}_n(K)$, A est inversible si et seulement si rg(A) = n.

9. Hyperplans et formes linéaires

Notation. — La lettre E désigne un K-espace vectoriel non réduit à $\{0_E\}$.

Définition 173. — Un hyperplan de E est le noyau d'une forme linéaire non nulle sur E.

Proposition 174. — Soit H un hyperplan de E.

$$\forall u \in E \setminus H \qquad H \oplus \text{Vect}(u) = E$$
.

Une démonstration du théorème 174 est à connaître.

Proposition 175. — Un sous-espace vectoriel de E est un hyperplan si et seulement s'il admet un supplémentaire qui est une droite.

Démonstration. Le sens direct est donné par la proposition 174. Établissons le sens réciproque.

Soit H un sous-espace vectoriel de E qui possède une droite pour supplémentaire. Considérons une droite vectorielle D telle que $H \oplus D = E$ et un vecteur u non nul de D. Alors l'application :

$$i \mid \begin{matrix} \mathbf{K} & \longrightarrow & D \\ \lambda & \longmapsto & \lambda \cdot u \end{matrix}$$

est un isomorphisme de K-espaces vectoriels. Si p est la projection de E sur D parallèlement à H alors :

$$\varphi \mid E \longrightarrow \mathbf{K}$$

$$x \longmapsto i^{-1}(p(x))$$

est une application bien définie, qui est une forme linéaire sur E de noyau H.

Exercice 176. — Soient φ et ψ deux formes linéaires non nulles sur E telles que $Ker(\varphi) = Ker(\psi)$. Démontrer :

$$\exists \lambda \in \mathbf{K}^*, \quad \psi = \lambda \cdot \varphi.$$

Proposition 177. — Si l'espace vectoriel E est de dimension finie $n \ge 1$, alors un sous-espace vectoriel E est un hyperplan si et seulement si :

$$\dim H = n - 1$$
.

Exercice 178. — Soient un entier $n \ge 2$, F un sous-espace vectoriel strict de \mathbf{R}^n et $p := \dim F$. Démontrer qu'il existe des hyperplans H_1, \ldots, H_{n-p} de \mathbf{R}^n tels que :

$$F = \bigcap_{k=1}^{n-p} H_k .$$

Exercice 179. — Soit F le sous-espace vectoriel de \mathbb{R}^4 défini par :

$$F := Vect((1, 1, 1, 1), (1, 2, 3, 4))$$
.

Déterminer un système linéaire (S) d'inconnue $(x, y, z, t) \in \mathbb{R}^4$ donc F est l'ensemble solution.

Exercice 180. — Soit E un K-espace vectoriel muni d'une base $\underline{e} = (e_1, \dots, e_n)$. Pour tout $i \in [1, n]$, notons e_i^* l'unique forme linéaire sur E définie par :

$$\forall j \in \llbracket 1, n \rrbracket \quad e_i^*(e_i) = \delta_{i,j} .$$

Démontrer que $\underline{e}^* = (e_1^*, \dots, e_n^*)$ est une base de $E^* := \mathcal{L}(E, \mathbf{K})$ et calculer, pour tout $x \in E$, la somme :

$$\sum_{i=1}^n e_i^*(x) \cdot e_i .$$

10. Déterminant

10.1. Formes *n*-linéaires alternées

Notation. — Dans toute cette partie, *E* désigne un **K**-espace vectoriel de dimension finie $n \ge 1$.

Définition 181. — Une application $f: E^n \longrightarrow \mathbf{K}$ est dite n-linéaire antisymétrique si elle vérifie les deux conditions suivantes.

1. Caractère n-linéaire. Pour tout $i \in [1, n]$, pour tout $(x_1, \dots, x_{i-1}, x_i, y_i, x_{i+1}, \dots, x_n) \in E^{n+1}$, pour tout $(\lambda, \mu) \in \mathbf{K}^2$:

$$f(x_1, \dots, x_{i-1}, \lambda \cdot x_i + \mu \cdot y_i, x_{i+1}, \dots, x_n) = \lambda \cdot f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) + \mu \cdot f(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$$

2. Caractère antisymétrique. Pour tout $(x_1, \ldots, x_n) \in E^n$, pour tout $(i, j) \in [1, n]^2$ tel que $i \neq j$:

$$f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n) = -f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n).$$

Notation. — Soient $(x_1, x_2, ..., x_n) \in E^n$ et $\sigma \in \mathfrak{S}_n$. On pose :

$$x_{\sigma} := (x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$$

de sorte que, si $(\sigma_1, \sigma_2) \in \mathfrak{S}_n^2$ alors $x_{\sigma_1 \circ \sigma_2} = (x_{\sigma_2})_{\sigma_2}$.

Proposition 182. — Soit $f: E^n \longrightarrow \mathbf{K}$ une application n-linéaire antisymétrique sur E.

1. Annulation sur une famille avec deux vecteurs identiques ou caractère alterné. Pour tout $(i, j) \in [1, n]$ tel que i < j, pour tout $(x_1, \ldots, x_i, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n) \in E^{n-1}$:

$$f(x_1,...,x_{i-1},x_i,x_{i+1},...,x_{j-1},x_i,x_{j+1},...,x_n)=0$$
.

2. Annulation sur une famille liée. Pour tout $(x_1, x_2, ..., x_n) \in E^n$:

$$(x_1, x_2, \dots, x_n)$$
 est liée $\Longrightarrow f(x_1, x_2, \dots, x_n) = 0$.

3. Effet d'une permutation. Pour tout $(x_1, x_2, ..., x_n) \in E^n$, pour tout $\sigma \in \mathfrak{S}_n$:

$$f(x_{\sigma}) := f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \varepsilon(\sigma) \cdot f(x_1, x_2, \dots, x_n).$$

Exemple 183. — L'application

$$f \mid \mathcal{M}_{2,1}(\mathbf{R}) \times \mathcal{M}_{2,1}(\mathbf{R}) \longrightarrow \mathbf{R}$$
$$\begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \end{pmatrix} \longmapsto x_1 y_2 - y_1 x_2$$

est 2-linéaire alternée.

Exercice 184. — Soient $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de $E, f : E^n \longrightarrow \mathbf{K}$ une application n-linéaire alternée et $(x_1, \dots, x_n) \in E^n$. On pose, pour tout $j \in [\![1, n]\!]$:

$$Mat_{\mathscr{B}}(x_i) = (x_{1,i}, x_{2,i}, \dots, x_{n,i})^{\top}$$
.

Démontrer que :

$$f(x_1, x_2, \dots, x_n) = \left(\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{k=1}^n [\operatorname{Mat}_{\mathscr{B}}(x_k)]_{\sigma(k)}\right) f(e_1, e_2, \dots, e_n) \qquad [\text{identit\'e fondamentale}] \ .$$

Remarque 185. — L'ensemble des formes n linéaires alternées sur E est noté $\bigwedge^n E$, i.e.

$$\bigwedge^n E := \left\{ f \in \mathbf{K}^{E^n} : f \text{ est } n \text{ linéaire alternée} \right\} \subset \mathbf{K}^{E^n}.$$

L'ensemble $\bigwedge^n E$ est un sous-espace vectoriel de \mathbf{K}^{E^n} et est donc muni d'une structure naturelle de \mathbf{K} -espace vectoriel.

10.2. Déterminant d'une famille de vecteurs dans une base

Notation. — Dans toute cette partie, *E* désigne un **K**-espace vectoriel de dimension finie $n \ge 1$.

Théorème 186. — Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E. Il existe une unique application :

$$\det_{\mathscr{B}}: E^n \longrightarrow \mathbf{K}$$

qui est n-linéaire alternée et telle que $\det_{\mathcal{B}}(e_1,e_2,\ldots,e_n)=1$. De plus :

$$\forall (x_1, \dots, x_n) \in E^n \quad \det_{\mathscr{B}}(x_1, x_2, \dots, x_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{k=1}^n [\operatorname{Mat}_{\mathscr{B}}(x_k)]_{\sigma(k)}.$$

Théorème 187. — Soient $\mathscr{B} = (e_1, e_2, \dots, e_n)$ une base de E et $f: E^n \longrightarrow K$ une forme n-linéaire alternée sur E. Alors:

$$\forall (x_1, x_2, \dots, x_n) \in E^n \quad f(x_1, x_2, \dots, x_n) = f(e_1, e_2, \dots, e_n) \det_{\mathscr{B}} (x_1, x_2, \dots, x_n).$$

donc f est proportionnelle à $\det_{\mathcal{B}}$.

Remarque 188. — D'après les théorèmes 186 et 187, $\bigwedge^n E$ est une droite vectorielle. Chaque choix de base \mathscr{B} de E produit une forme $\det_{\mathscr{B}}$, qui en est un vecteur directeur.

Corollaire 189. — Soient $\mathcal{B} = (e_1, e_2, \dots, e_n)$ et $\mathcal{C} = (f_1, f_2, \dots, f_n)$ deux bases de E.

- 1. $\forall (x_1, x_2, ..., x_n) \in E^n \quad \det_{\mathscr{C}}(x_1, x_2, ..., x_n) = \det_{\mathscr{C}}(\mathscr{B}) \det_{\mathscr{B}}(x_1, x_2, ..., x_n)$
- 2. Les scalaires $\det_{\mathscr{C}}(\mathscr{B})$ et $\det_{\mathscr{B}}(\mathscr{C})$ sont non nuls et inverses l'un de l'autre.

Proposition 190. — Soient $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E et $(x_1, \dots, x_n) \in E^n$. Alors:

$$(x_1,...,x_n)$$
 est une base de $E \iff \det_{\mathscr{B}}(x_1,...,x_n) \neq 0$.

Exercice 191. — Déterminer les réels λ tels que la famille :

$$\mathscr{B} := (u_1 = (\lambda, 1, 1, 1), u_2 = (1, \lambda, 1, 1), u_3 = (1, 1, \lambda, 1), u_4 = (1, 1, 1, \lambda))$$

est une base de R4.

10.3. Déterminant d'un endomorphisme

Notation. — Dans toute cette partie, *E* désigne un K-espace vectoriel de dimension finie $n \ge 1$.

Lemme 192. — Soient $\mathcal{B} = (e_1, e_2, \dots, e_n)$, $\mathcal{C} = (f_1, f_2, \dots, f_n)$ deux bases de E et u un automorphisme de E. On pose :

$$u(\mathcal{B}) := (u(e_1), u(e_2), \dots, u(e_n))$$
 et $u(\mathcal{C}) := (u(f_1), u(f_2), \dots, u(f_n))$ [bases de E]

- 1. $\det_{u(\mathscr{B})}(u(\mathscr{C})) = \det_{\mathscr{B}}(\mathscr{C})$
- 2. $\det_{\mathscr{B}}(u(\mathscr{B})) = \det_{\mathscr{C}}(u(\mathscr{C}))$

Définition 193. — Soit $u \in \mathcal{L}(E)$. Le déterminant de u est défini par :

$$det(u) := det_{\mathscr{B}}(u(e_1), u(e_2), \dots, u(e_n))$$
 [scalaire indépendant du choix de la base \mathscr{B}]

où $\mathcal{B} = (e_1, e_2, \dots, e_n)$ est une base de E.

Remarque **194.** — Nous observons que $det(id_E) = 1$.

Proposition 195. — *Soit* $u \in \mathcal{L}(E)$. *Alors* :

u est un automorphisme de $E \iff \det(u) \neq 0$.

Théorème 196. — Soient $(u, v) \in \mathcal{L}(E)^2$. Alors

$$\det(v \circ u) = \det(v) \times_{\mathbf{K}} \det(u)$$
.

Corollaire 197. — Soit u un automorphisme de E. Alors :

$$det(u) \neq 0$$
 et $det(u^{-1}) = det(u)^{-1}$.

Exercice 198. — Soit *s* une symétrie vectorielle de *E*. Calculer det(*s*).

10.4. Déterminant d'une matrice carrée

Notation. — On note \mathcal{B}_c la base canonique de $\mathcal{M}_{n,1}(\mathbf{K})$ et, pour tout $A \in \mathcal{M}_n(\mathbf{K})$ et $(i,j) \in [\![1,n]\!]$, on note $A_{i,\bullet}$ désigne la i-ième ligne de A et $A_{\bullet,j}$ la j-ième colonne de A, i.e. :

$$A_{i,\bullet} := ([A]_{i,1}, [A]_{i,2}, \dots, [A]_{i,n}) \in \mathbf{K}^n \quad \text{ et } \quad A_{\bullet,j} := \begin{pmatrix} [A]_{1,j} \\ [A]_{2,j} \\ \vdots \\ [A]_{n,j} \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{K}).$$

Définition 199. — L'application

$$\det \left| \begin{array}{ccc} \mathcal{M}_n(\mathbf{K}) & \longrightarrow & \mathbf{K} \\ A & \longmapsto & \det(A) := \det_{\mathcal{B}_c} \left(A_{\bullet,1}, A_{\bullet,2}, \dots, A_{\bullet,n} \right) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{k=1}^n [A]_{k,\sigma(k)} \end{array} \right|$$

est l'unique application :

- 1. linéaire par rapport à chacune des colonnes;
- 2. alternée par rapport aux colonnes (l'échange de deux colonnes a pour effet de multiplier le déterminant par -1);
- 3. valant 1 sur la matrice I_n .

Remarque 200. — Le déterminant de $A \in \mathcal{M}_n(K)$ est une expression polynomiale en les coefficients de la matrice A.

Exercice 201. — Calculer les déterminants des matrices suivantes.

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 1 \\ 2 & 2 & -4 \end{pmatrix}$$

Proposition 202. — *Soit* $A \in \mathcal{M}_n(K)$. *On note :*

$$\varphi_A \mid \begin{array}{ccc} \mathcal{M}_{n,1}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{n,1}(\mathbf{K}) \\ X & \longmapsto & AX \end{array}$$

l'application linaire canoniquement associée. Alors :

$$\det(A) = \det(\varphi_A)$$

Proposition 203. — Pour tout $(A, B) \in \mathcal{M}_n(\mathbf{K})^2$:

$$\det\left(A\times_{\mathcal{M}_n(\mathbf{K})}B\right) = \det(A)\times_{\mathbf{K}}\det(B)$$

et, pour tout $(\lambda, A) \in \mathbb{K} \times \mathcal{M}_n(\mathbb{K})$:

$$\det(\lambda \cdot A) = \lambda^n \times_{\mathbf{K}} \det(A)$$
.

Théorème 204. — *Pour tout A* \in $\mathcal{M}_n(\mathbf{K})$:

$$A \in \mathbf{GL}_n(\mathbf{K}) \iff \det(A) \neq 0$$
.

Théorème 205. — Pour tout $A \in \mathcal{M}_n(\mathbf{K})$:

$$det(A) = det(A^{\top})$$
.

Corollaire 206. — *L'application* det: $\mathcal{M}_n(\mathbf{K}) \longrightarrow \mathbf{K}$ *est* :

- 1. linéaire par rapport à chacune des lignes;
- 2. alternée par rapport aux lignes (l'échange de deux lignes a pour effet de multiplier le déterminant par -1).

10.5. Calculs de déterminants de matrices à l'aide d'opérations élémentaires

Théorème 207. — Soit $A \in \mathcal{M}_n(\mathbf{R})$.

1. Transposition. Soit $(i, j) \in [1, n]^2$ tel que $i \neq j$. Alors:

$$\det(A) = (-1) \times_{\mathbf{K}} \det(A \quad [C_i \longleftrightarrow C_i]) \quad et \quad \det(A) = (-1) \times_{\mathbf{K}} \det(A \quad [L_i \longleftrightarrow L_i]).$$

2. Dilatation. Soient $i \in [1, n]$ et $\lambda \in K^*$. Alors:

$$\det(A) = \frac{1}{\lambda} \times_{\mathbf{K}} \det(A \quad [C_i \leftarrow \lambda C_i]) \quad et \quad \det(A) = \frac{1}{\lambda} \times_{\mathbf{K}} \det(A \quad [L_i \leftarrow \lambda L_i]).$$

3. Transvection. Soient $(i, j) \in [1, n]^2$ tel que $i \neq j$ et $\lambda \in K$. Alors:

$$\det(A) = \det(A \quad [C_j \leftarrow C_j + \lambda C_i]) \quad et \quad \det(A) = \det(A \quad [L_j \leftarrow L_j + \lambda L_i]).$$

Exercice 208. — Calculer le déterminant de la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 2 & 4 & 6 \end{pmatrix}$.

Exercice 209. — Exprimer le déterminant de la matrice :

$$A := \begin{pmatrix} 1 & 0 & 1 & 2 \\ 1 & 2 & 3 & 1 \\ 2 & -1 & 2 & 0 \\ 1 & 2 & -3 & 3 \end{pmatrix}$$

en fonction du déterminant d'une matrice triangulaire supérieure, avec des coefficients diagonaux tous égaux à 1.

10.6. Calculs de déterminants de matrices par développement

Définition 210. — Soient $A \in \mathcal{M}_n(K)$ et $(i, j) \in [1, n]^2$.

- 1. La matrice $A_{i,j} \in \mathcal{M}_{n-1}(K)$ est la matrice obtenue en supprimant la i-ème ligne et la j-ième colonne de A
- 2. Le mineur de A associé au couple (i, j) est $det(A_{i,j})$.
- 3. Le cofacteur de A associé au couple (i, j) est :

$$C_{i,j} := (-1)^{i+j} \cdot \det(A_{i,j})$$
.

Lemme 211. — Soient $\mathscr{B}_c = (e_1^\top, \dots, e_n^\top)$ la base canonique de $\mathscr{M}_{n,1}(\mathbf{K})$ et $A \in \mathscr{M}_n(\mathbf{K})$.

- 1. $\det(A_{\bullet,1}, \dots, A_{\bullet,n-1}, e_n^{\top}) = \det(A_{n,n})$
- 2. Pour tout $(i, j) \in [1, n]^2$:

$$\det(A_{\bullet,1},\ldots,A_{\bullet,j-1},e_i^\top,A_{\bullet,j+1},\ldots,A_{\bullet,n}) = (-1)^{i+j} \det(A_{i,j}).$$

Théorème 212. — Soient $A \in \mathcal{M}_n(K)$.

1. Pour tout $i \in [1, n]$:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} [A]_{i,j} \det(A_{i,j}) \qquad [d\'{e}veloppement \ suivant \ la \ i-i\`{e}me \ ligne \ de \ A] \ .$$

2. Pour tout $j \in [1, n]$:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} [A]_{i,j} \det(A_{i,j}) \qquad [\text{développement suivant la j-ième colonne de A}] .$$

Exercice 213. — Calculer le déterminant de $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$.

10.7. Déterminant d'une matrice triangulaire

Proposition 214. — Soit $A \in \mathcal{M}_n(K)$. Si A est triangulaire (inférieure ou supérieure), alors :

$$det(A) = \prod_{k=1}^{n} [A]_{k,k}$$
 [produit des éléments diagonaux].

10.8. Déterminant de Vandermonde

Théorème 215. — Soient $(\alpha_1, \alpha_2, ..., \alpha_n) \in K^n$. On pose :

Alors:

$$\det(V(\alpha_1, \alpha_2, \dots, \alpha_n)) = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)$$
.

10.9. Comatrice

Définition 216. — Soit $A \in \mathcal{M}_n(\mathbf{K})$. La comatrice de A, notée Com(A), est la matrice de $\mathcal{M}_n(\mathbf{K})$ définie par :

$$\forall (i,j) \in [1,n]^2 \quad [\text{Com}(A)]_{i,j} = C_{i,j} = (-1)^{i+j} \cdot \det(A_{i,j}).$$

Théorème 217. — Pour tout $A \in \mathcal{M}_n(\mathbf{K})$:

$$A \times_{\mathcal{M}_{n}(\mathbf{K})} \operatorname{Com}(A)^{\top} = \operatorname{Com}(A)^{\top} \times_{\mathcal{M}_{n}(\mathbf{K})} A = \det(A) \cdot I_{n}$$
.

Théorème 218. — $Si A \in GL_n(K)$ alors :

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{Com}(A)^{\top}.$$

Exercice 219. — Justifier que la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$ est inversible et calculer son inverse.