TD - Révisions sur les fonctions de la variable réelle à valeurs réelles

1.	Exercices sur la continuité		1
2.	Exercices sur la dérivabilité	§	2
3.	Exercices sur la convexité		5

1. Exercices sur la continuité

Exercice $1 \star \star \Leftrightarrow$ — Étudier la continuité de l'application :

$$\begin{array}{cccc}
f & \mathbf{R} & \longrightarrow & \mathbf{R} \\
x & \longmapsto & \begin{cases}
x^2 & si \ x \in \mathbf{Q} \\
x & si \ x \in \mathbf{R} \setminus \mathbf{Q}
\end{cases}.$$

carreSurEnsembleRationnelsIdentiteAilleurs

Exercice 2 $\bigstar \Leftrightarrow \bigstar -$ Soient a, b des réels tels que $a < b, f : [a, b] \longrightarrow \mathbb{R}$, $g : [a, b] \longrightarrow \mathbb{R}$ deux fonctions continues sur [a, b]. On suppose que |f| = |g| et que, pour tout $x \in]a, b[$, $f(x) \neq 0$. Démontrer que f = g ou f = -g.

 ${\tt fonctionsContinuesEgalesEnValeurAbsolue}$

Exercice 3 $\bigstar \Leftrightarrow -$ Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction continue et périodique. Démontrer que la fonction f est bornée.

fonctionContinuePeriodiqueBornee

Exercice 4 $\bigstar \Leftrightarrow \bigstar -$ Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction périodique telle que f possède une limite $\ell \in \mathbb{R}$ en $+\infty$. Démontrer que la fonction f est constante.

fonction Periodique Limite Finie En Plus Infini Constante

Exercice 5 $\bigstar \Leftrightarrow \bigstar -$ *Soit* $f : \mathbf{R} \longrightarrow \mathbf{R}$ *une fonction continue telle que :*

$$f(x) \xrightarrow[x \to -\infty]{} +\infty$$
 et $f(x) \xrightarrow[x \to +\infty]{} +\infty$

Démontrer que f admet un minimum sur R.

fonction Continue Limite Infinie En InfiniMinimum

Exercice 6 $\star\star$ \Leftrightarrow — Soit $p,q \in \mathbb{R}^*_+$ et f:[0,1] — \to \mathbb{R} une fonction continue telle que $f(0) \neq f(1)$. Démontrer que :

$$\exists x_0 \in]0,1[pf(0)+qf(1)=(p+q)f(x_0).$$

fonction Continue Segment Barycentre Images Extremites Image

Exercice 7 $\star\star$ $\dot{\approx}$ — Soit f:[0,1] — [0,1] une application. Démontrer que f possède un point fixe dans les deux cas suivants.

- 1. L'application f est continue sur [0,1].
- 2. L'application f est croissante sur [0,1]. On pourra considérer la borne supérieure de $A = \{x \in [0,1] : x \le f(x)\}$.

 $\verb|conditionsSuffisantesPointFixeApplicationSegmentVersLuiMeme| \\$

Exercice 8 $\star \star \dot{\approx}$ — Soit $f: \mathbf{R}_+ \longrightarrow \mathbf{R}_+$ une fonction continue telle que :

$$\exists \ell \in]0,1[f(x) \xrightarrow[x \to +\infty]{} \ell.$$

Démontrer que la fonction f possède un point fixe.

pointFixeApplicationContinueRplusVersRplusLimiteEntreZeroUnEnPlusInfinial ContinueRplusVersRplusLimiteEntreZeroUnEnPlusInfinial ContinueRplusVersRplusLimiteEntreZeroUnEnPlusInfinial ContinueRplusVersRplusVersRplusLimiteEntreZeroUnEnPlusInfinial ContinueRplusVers

Exercice 9 $\bigstar \Leftrightarrow -$ *Soit* $f : \mathbb{R}_+ \longrightarrow \mathbb{R}$ *une application croissante telle que l'application :*

$$g \mid \mathbf{R}_{+}^{*} \longrightarrow \mathbf{R}$$

$$x \longmapsto \frac{f(x)}{x}$$

soit décroissante. Démontrer que la fonction g est continue. Qu'en est-il de la fonction f?

fonction Croiss ante SurRplus Avec Fonction Pente En Zero Decroiss antered for the property of the property

Exercice 10 $\bigstar \Leftrightarrow \bigstar -$ *Soit* $f: [0,1] \longrightarrow [0,1]$ *une fonction continue telel que* f(0) = f(1). *Démontrer que* :

$$\exists c \in \left[0, \frac{1}{2}\right] \quad f(c) = f\left(c + \frac{1}{2}\right).$$

varianteTheoremeBorsukUlamDimension1

Exercice 11 $\star\star$ $\dot{\Rightarrow}$ — *Démontrer que la fonction :*

$$f \mid \mathbf{R} \longrightarrow \mathbf{R}$$

$$x \longmapsto \sqrt[3]{|x|}$$

est uniformément continue sur R.

uniformeContinuiteRacineCubique

Exercice 12 $\star\star$ \Leftrightarrow — *Soit f* : $\mathbf{R} \longrightarrow \mathbf{R}$ *une fonction continue telle que* :

$$f(x) \xrightarrow[r \to -\infty]{} 0$$
 et $f(x) \xrightarrow[r \to +\infty]{} 0$.

Démontrer que la fonction f est uniformément continue sur R.

 $uniforme Continuite Fonction Continue Limites {\tt NullesEnInfini}$

2. Exercices sur la dérivabilité

Exercice 13 ★☆☆ — *Démontrer que la fonction* :

$$f \mid \begin{array}{ccc} \mathbf{R} & \longrightarrow & \mathbf{R} \\ x & \longmapsto & x e^{-x} \end{array}$$

est de classe \mathscr{C}^{∞} sur **R** et calculer ses dérivées itérées.

calculToutesDeriveesIterees

Exercice 14 $\star\star$ \Leftrightarrow — *Posons, pour tout n* \in **N** :

$$g_n \mid \mathbf{R}^* \longrightarrow \mathbf{R}$$
 $x \longmapsto x^{n-1} e^{1/x}$.

Calculer $g_n^{(n)}$, pour tout $n \in \mathbb{N}$.

calculDeriveeNiemeSuiteFonctions

Exercice 15 $\star\star$ \Leftrightarrow — *Soit la fonction f définie par :*

$$\begin{cases}
R & \longrightarrow & R \\
x & \longmapsto & \begin{cases}
e^{-1/x^2} & \text{si } x \neq 0 \\
0 & \text{si } x = 0
\end{cases}$$

Démontrer que la fonction f de classe \mathscr{C}^{∞} sur \mathbf{R} .

fonctionPlate

Exercice 16 $\bigstar \Leftrightarrow -$ Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction bornée et dérivable sur \mathbb{R} . On suppose qu'il existe $\ell \in \mathbb{R}$ tel que $f'(x) \xrightarrow[x \to +\infty]{} \ell$. Démontrer que $\ell = 0$.

fonctionBorneeDerivableDeriveeLimiteNulleEnPlusInfini

Exercice 17 $\bigstar \Leftrightarrow \bigstar -$ *Soit* $f:[0,1] \longrightarrow \mathbf{R}$ *une fonction dérivable sur* [0,1] *telle que* f(0) = 0 *et* f(1) = 1. *Démontrer que* :

$$\forall n \in \mathbb{N}^* \quad \exists (x_1, \dots, x_n) \in [0, 1]^n \quad x_1 < \dots < x_n \quad et \quad \sum_{k=1}^n f'(x_k) = n.$$

 ${\tt generalisation} Theoreme {\tt Accroissements} Finis$

Exercice 18 \bigstar \leftrightarrows \Longrightarrow \longleftarrow Soient I un intervalle de $\Bbb R$ ouvert non vide de $\Bbb R$ et $f:I\longrightarrow \Bbb R$ une fonction de classe $\mathscr C^1$ sur I. On suppose qu'il existe un point a un de I tel que f'(a)>0. Démontrer qu'il existe r>0 tel que :

- (a) l'intervalle]a-r, a+r[est inclus dans I;
- (b) la fonction f est strictement croissante sur]a-r,a+r[;
- (c) l'image de l'intervalle ouvert]a-r,a+r[est l'intervalle ouvert]f(a-r),f(a+r)[;
- (d) l'application :

$$\widetilde{f} \mid a-r, a+r[\longrightarrow]f(a-r), f(a+r)[$$
 $x \longmapsto f(x)$

est bijective;

(e) l'application \tilde{f}^{-1} : $]f(a-r), f(a+r)[\longrightarrow]a-r, a+r[$ est de classe \mathscr{C}^1 .

theoremeInversionLocaleDimension1

Exercice 19 ★☆☆ — Démontrer que la fonction

$$\begin{cases}
R & \longrightarrow & R \\
x & \longmapsto & \begin{cases}
x^2 \sin(1/x) & \text{si } x \neq 0 \\
0 & \text{si } x = 0.
\end{cases}$$

est dérivable sur R, mais n'est pas de classe \mathscr{C}^1 sur R.

fonctionDerivableNonClasseC1

Exercice 20 $\bigstar \Leftrightarrow \Leftrightarrow$ — *Soit la fonction*

$$\begin{array}{cccc}
f & \mathbf{R}^* & \longrightarrow & \mathbf{R} \\
x & \longmapsto & 1 + \frac{1}{4}\sin\left(\frac{1}{x}\right)
\end{array}$$

- 1. Déterminer $I = f(\mathbf{R}^*)$, puis démontrer que I est stable par f
- 2. Démontrer que la fonction f est $\frac{4}{9}$ -lipschitzienne sur I.
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par la donnée de $u_0\in I$ et la relation de récurrence $u_{n+1}=f(u_n)$, valable pour tout $n\in\mathbb{N}$. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l'unique point fixe α de f sur I et discuter la vitesse de convergence vers 0 de la suite $(u_n-\alpha)_{n\in\mathbb{N}}$.

 $\verb|suiteRecurrenteApplicationSousJacenteContractante|\\$

Exercice 21 $\star\star$ \Leftrightarrow — Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=n}^{2n} \frac{1}{k}$.

- 1. Démontrer que la suite $(S_n)_{n\in\mathbb{N}^*}$ est convergente. On note S sa limite.
- 2. On considère une fonction $f:[0,1] \longrightarrow \mathbf{R}$ telle que f soit dérivable en 0 à droite et f(0)=0. On pose $\delta=f'_d(0)$ et, pour tout $n \in \mathbf{N}^*$, $\Delta_n(f) = \sum_{k=n}^{2n} f\left(\frac{1}{k}\right)$. Démontrer que la suite $(\Delta_n(f))_{n \in \mathbf{N}^*}$ converge vers δ S.
- 3. Déterminer S en utilisant la fonction $x \mapsto \ln(1+x)$.
- 4. Étudier les limites éventuelles de $\sum_{k=n}^{2n} \sin\left(\frac{1}{k}\right)$ et $\sum_{k=n}^{2n} \sin^2\left(\frac{1}{k}\right)$ lorsque n tend vers $+\infty$.

sommeValeursFonctionAuxInversesEntiers

Exercice 22 $\star \star \Leftrightarrow$ — Soit $f: R_+ \longrightarrow R$ une fonction continue sur R_+ , dérivable sur R_+^* , telle que f(0) = 0 et f' est croissante sur R_+^* . Démontrer que la fonction :

$$g \mid \mathbf{R}_{+}^{*} \longrightarrow \mathbf{R}$$

$$x \longmapsto \frac{f(x)}{x}$$

est croissante sur \mathbf{R}_{\perp}^* .

croissanceDeriveeVersusCroissanceFonctionPente

Exercice 23 $\star \star \star = Soit \ f : [0,1] \longrightarrow \mathbb{R}$ une fonction dérivable sur [0,1] telle que f(0) = 0 et, pour tout $x \in [0,1]$, $f'(x) \neq 0$. Démontrer que la fonction f garde un signe constant sur [0,1].

 ${\tt deriveeSansPointAnnulationSigneConstant}$

Exercice 24 $\star \star \dot{\approx}$ — Soit $f: \mathbf{R}_+^* \longrightarrow \mathbf{R}_+^*$ une fonction dérivable sur \mathbf{R}_+^* telle que $x f'(x) \xrightarrow[x \to +\infty]{}$ 1.

- 1. Démontrer que f admet une limite dans $\mathbf{R} \cup \{+\infty\}$.
- 2. Démontrer que $\lim_{x \to +\infty} f(x) = +\infty$.

deriveeEquivalenteInverseEnPlusInfini

Exercice 25 $\star \star \star =$ Soient des réels a, b tels que a < b, une fonction $f : [a, b] \longrightarrow \mathbb{R}$, qui est de classe \mathscr{C}^1 sur [a, b] et deux fois dérivable sur [a, b]. Soit $x \in [a, b]$. Démontrer que :

$$\exists c \in]a, b[f(x) - f(a) - \frac{f(b) - f(a)}{b - a} (x - a) = \frac{(x - a)(x - b)}{2} f''(c).$$

 ${\tt expressionQuadratiqueEcartEntreCourbeFonctionEtTangente}$

Exercice 26 $\bigstar \mathring{a} = Soit un réel \alpha \in [0, 1[$.

1. Démontrer que :

$$\forall n \in \mathbf{N}^* \quad \frac{\alpha}{(n+1)^{1-\alpha}} \leq (n+1)^{\alpha} - n^{\alpha} \leq \frac{\alpha}{n^{1-\alpha}}.$$

2. En déduire que $\sum_{k=1}^{n} \frac{1}{k^{1-\alpha}} \sim \frac{n^{\alpha}}{\alpha}$.

 ${\tt equivalentSommesPartiellesSerieRiemannDivergente}$

Exercice 27 ★☆☆ — Nous confondons polynômes et fonctions polynomiales, ce qui est sans conséquence, car les corps de bases R et C considérés sont infinis.

- 1. Soit un polynôme $P \in \mathbf{R}[X]$ qui est scindé à racines simples sur \mathbf{R} . Démontrer que le polynôme dérivé P' est scindé à racines simples sur \mathbf{R} .
- 2. Donner un exemple de polynôme $P \in \mathbf{C}[X]$ qui est scindé à racines simples sur \mathbf{C} et tel que le polynôme P' n'est pas scindé à racines simples sur \mathbf{C} .
- 3. Soit un polynôme $P \in \mathbf{R}[X]$ qui est scindé sur \mathbf{R} . Démontrer que le polynôme dérivé P' est scindé sur \mathbf{R} .

 $\verb"polynomes" Coefficients Reels Scindes Derivation$

3. Exercices sur la convexité

Exercice 28 $\star \not \approx \not = Soit f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction convexe et concave. Démontrer que f est affine.

fonctionConvexeConcaveSurR

Exercice 29 $\bigstar \Leftrightarrow \bigstar \longrightarrow$ *Soit* $n \in \mathbb{N}_{\geq 2}$. *Démontrer que pour tout* $(x_1, \dots, x_n) \in \mathbb{R}^n$:

$$\left(\sum_{i=1}^n x_i\right)^2 \leqslant n \sum_{i=1}^n x_i^2.$$

sommeCarresVersusCarreSomme

Exercice 30 $\bigstar \not \simeq \not \simeq$ *Soit* $n \in \mathbb{N}_{\geq 2}$. Démontrer que pour tout $(x_1, \ldots, x_n) \in (\mathbb{R}_+^*)^n$:

$$\left(\sum_{i=1}^n \frac{1}{x_i}\right) \left(\sum_{i=1}^n x_i\right) \ge n^2.$$

 $\verb|minorationSommeFoisSommeInverses| \\$

Exercice 31 $\star \star \Leftrightarrow$ — Soit $f:[a,b] \longrightarrow \mathbf{R}$ une fonction convexe continue. Démontrer que l'ensemble des points où f admet son minimum est un segment.

ensembleAntecedentsMinimumFonctionConvexeSegment

Exercice 32 $\star \star \star = Soit f : [a, b] \longrightarrow \mathbb{R}$ une fonction convexe continue. Démontrer que f atteint son maximum en a ou en b.

antecedentsMaximumFonctionConvexeSegment

Exercice 33 $\star\star\star$ — Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction strictement convexe, i.e. telle que, pour tous réels x, y distincts:

$$\forall \lambda \in]0,1[f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y).$$

Démontrer que l'équation f(x) = 0 admet au plus deux solutions.

 ${\tt nombrePointsIntersectionGrapheFonctionStrictementConvexeAxeAbscisse}$

Exercice 34 $\star \star \Leftrightarrow$ — Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction convexe majorée. Démontrer que f est constante.

fonctionConvexeMajoreeSurR

Exercice 35 $\star \star \star \star$ — Soit $f: I \longrightarrow \mathbf{R}$ une fonction convexe admettant un minimum local en un point intérieur de I. Démontrer qu'il s'agit d'un minimum global.

minimumLocalAtteintPointInterieurFonctionConvexe

Exercice 36 $\star\star\star$ — *Soit I un intervalle de* **R**. *Soit f* : $I \longrightarrow \mathbf{R}$ *une fonction convexe.*

- 1. Démontrer que f est dérivable à droite et à gauche en tout point de $\stackrel{\circ}{I}$ (intérieur de l'intervalle I).
- 2. En déduire que f est continue sur I.

 $\tt derivabiliteFonctionConvexeDroiteGauchePointInterieur$

Exercice 37 $\star \star \star \star$ — *Soit f* : $I \longrightarrow \mathbf{R}$ *une fonction convexe dérivable et soit* $x_0 \in I$.

- 1. Démontrer que l'intersection du graphe de f et de sa tangente au point d'abscisse x_0 est un intervalle de \mathbb{R}^2 .
- 2. Que dire de plus si f est strictement convexe, i.e. si pour tous points distincts x, y de I:

$$\forall \lambda \in [0,1]$$
 $f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$.

 ${\tt ensemblePointsIntersectionGrapheFonctionConvexeDerivableAvecUneTangenter}$

Exercice 38 $\star\star$ \Leftrightarrow — *Soit f* : [0,1] \longrightarrow **R** *une fonction continue.*

- 1. Justifier l'existence de réels a et b tels que, pour tout $x \in [0; 1]$, $a \le f(x) \le b$.
- 2. Justifier que $\int_0^1 f(x) dx \in [a, b]$.
- 3. Soit φ : $[a,b] \longrightarrow \mathbf{R}$ une fonction convexe continue. Démontrer que :

$$\varphi\left(\int_0^1 f(x) dx\right) \le \int_0^1 \varphi(f(x)) dx$$
 [inégalité de Jensen].

Johan Jensen (1859-1925)

inegaliteJensenIntegrale

Exercice 39 $\bigstar \not \approx \not \approx$ — Soient $n \in \mathbb{N}_{\geq 2}$ et $(x_1, \dots, x_n) \in (\mathbb{R}_+)^n$. Démontrer que :

$$\sqrt[n]{\prod_{i=1}^n x_i} \leqslant \frac{1}{n} \sum_{i=1}^n x_i \qquad \text{[inégalité arithmético-géométrique]} \ .$$

inegaliteArithmeticoGeometrique

Exercice 40 $\star \star \Leftrightarrow$ — Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice bistochastique, i.e. telle que :

- (a) les coefficients de A sont positifs ou nuls;
- (b) la somme des coefficients de chaque ligne de A vaut 1;
- (c) la somme des coefficients de chaque colonne de A vaut 1.

$$Soit \ X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{R}) \ tel \ que \ x_1 > 0, \dots, x_n > 0 \ et \ Y = AX = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}. \ Démontrer \ que \ \prod_{i=1}^n x_i \leqslant \prod_{i=1}^n y_i.$$

matricesBistochastiques

Exercice 41 $\bigstar \Leftrightarrow \bigstar \longrightarrow$ *Soit g la fonction définie par :*

$$g \mid \begin{bmatrix} 0,1 \end{bmatrix} \longrightarrow \mathbf{R} \\ x \longmapsto x^x \qquad \begin{bmatrix} \text{on rappelle que } 0^0 = 1 \end{bmatrix}.$$

- 1. Justifier que la fonction g est continue sur [0,1].
- 2. Soit un entier $n \ge 2$. Démontrer que :

$$\forall (x_1,\ldots,x_n) \in [0,1]^n \quad \left(\frac{x_1+\ldots+x_n}{n}\right)^{\frac{x_1+\ldots+x_n}{n}} \leq \frac{x_1^{x_1}+\ldots+x_n^{x_n}}{n}.$$

majorationMoyennePuissanceMoyenne

Exercice 42 $\star\star$ $\dot{\approx}$ — Soient des réels p > 0, q > 0 tels que $\frac{1}{p} + \frac{1}{q} = 1$ et un entier $n \ge 2$.

1. Démontrer que, pour tout $(x, y) \in (\mathbf{R}_{\perp}^*)^2$:

$$x y \leq \frac{1}{p} x^p + \frac{1}{q} y^q.$$

Il s'agit de l'inégalité de Young.

William Henry Young (1863-1942)

2. Démontrer que, pour tout $(x_1,...,x_n) \in (\mathbf{R}_+)^n$, pour tout $(y_1,...,y_n) \in (\mathbf{R}_+)^n$:

$$\sum_{i=1}^{n} x_{i} y_{i} \leq \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_{i}^{q}\right)^{\frac{1}{q}}.$$

Il s'agit de l'inégalité de Hölder.

Otto Ludwig Hölder (1859-1937)

2. Démontrer que, pour tout $(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{R}^{2n}$:

$$\left(\sum_{i=1}^{n}|x_{i}+y_{i}|^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n}|y_{i}|^{p}\right)^{\frac{1}{p}}$$

Il s'agit d'une inégalité due à Minkowski.

Hermann Minkowski (1864-1909)

inegalitesYoungHoelderMinkowski

Exercice 43 $\star\star\star$ — Soit une fonction $f \in \mathscr{C}^0(\mathbf{R},\mathbf{R})$ telle que :

$$\forall (x,y) \in \mathbb{R}^2 \quad f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}.$$

Démontrer que la fonction f est convexe.

 ${\tt caracterisation} Fonctions {\tt Convexes} Continues {\tt Milieux} Cordes$