TD - Révisions d'algèbre linéaire

Notation. — La lettre K désigne un corps (commutatif).

Exercice 1 $\star \Leftrightarrow \Leftrightarrow$ — Les ensembles suivants sont-ils des sous-espaces vectoriels de R^N ?

$$F_1 = \left\{u \in \mathbf{R^N} \ : \ u \ converge \ vers \ 1\right\} \qquad F_2 = \left\{u \in \mathbf{R^N} \ : \ u \ est \ born\'ee\right\} \qquad \qquad F_3 = \left\{u \in \mathbf{R^N} \ : \ u^2 \ converge\right\}$$

sevSuites

Exercice 2 $\star \Leftrightarrow \star =$ Les ensembles suivants sont-ils des sous-espaces vectoriels $\mathbb{R}^{\mathbb{R}}$?

$$F_1 = \left\{ f \in \mathbf{R}^{\mathbf{R}} : f \text{ est } 2\pi\text{-p\'eriodique} \right\}$$

$$F_2 = \left\{ f \in \mathbf{R}^{\mathbf{R}} : f \text{ est uniform\'ement continue} \right\}$$

$$F_3 = \left\{ f \in \mathbf{R}^{\mathbf{R}} : f \text{ est major\'ee} \right\}$$

$$F_4 = \left\{ f \in \mathbf{R}^{\mathbf{R}} : f \text{ est lipschitzienne} \right\}$$

sevFonctions

Exercice 3 $\star\star$ \Leftrightarrow — L'assertion suivante est-elle vraie ou fausse? Si F, G, H sont trois sous-espaces vectoriels d'un K-espace vectoriel E tels que F + G = F + H, alors G = H.

nonSimplificationSommeSev

Exercice 4 ★★☆ — Soient F, G, H trois sous-espaces vectoriels d'un K-espace vectoriel E. Démontrer que :

$$(F \cap G) + (F \cap H) \subset F \cap (G + H)$$

A-t-on nécessairement égalité?

nonDistributiviteSommeIntersectionSev

Exercice 5 $\star \Leftrightarrow \star =$ Les familles suivantes de vecteurs de \mathbb{R}^3 sont elles libres? génératrices de \mathbb{R}^3 ?

$$\underline{e} = (e_1 = (1,0,1), e_2 = (1,1,1), e_3 = (1,0,0)) \qquad \underline{f} = (f_1 = (1,1,0), f_2 = (1,0,1), f_3 = (2,0,1))$$

$$g = (g_1 = (-1,0,1), g_2 = (1,-1,1), g_3 = (1,0,0), g_4 = (2,3,4))$$

famillesRemarquablesR3

Exercice 6 $\star\star$ \Leftrightarrow — Soient f_1, f_2, f_3 les trois fonctions définies par

La famille (f_1, f_2, f_3) de vecteurs de $\mathbb{R}^{\mathbb{R}}$ est-elle libre?

 ${\tt familleFinieRemarquableFonctions}$

Exercice 7 $\bigstar \Leftrightarrow -$ Soient n un entier supérieur ou égal à 2 et (e_1, \ldots, e_n) une famille libre de vecteurs d'un K-espace vectoriel E. Posons :

$$f_1 = e_1$$
 , $f_2 = e_1 + e_2$, ... , $f_n = e_1 + ... + e_n$.

La famille (f_1, \ldots, f_n) est-elle libre?

 ${\tt famillesFiniesRemarquablesAbstrait}$

Exercice 8 $\star \star \star \Leftrightarrow$ — Soient E, F deux K-espaces vectoriels, $f \in \mathcal{L}(E,F)$ et (e_1,\ldots,e_n) une famille libre de vecteurs de E.

- 1. Démontrer que si f est injective, alors la famille $(f(e_1), \ldots, f(e_n))$ est libre.
- 2. La réciproque est-elle vraie?

familles Libres Application Lineaire Injective

Exercice 9 $\bigstar \Leftrightarrow -$ Soit $n \in \mathbb{N}^*$. Notons \mathcal{D}_n l'ensemble des matrices diagonales de $\mathcal{M}_n(K)$.

- 1. Démontrer que \mathcal{D}_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{K})$.
- 2. Soit $D \in \mathcal{D}_n$ une matrice dont les coefficients diagonaux sont deux à deux distincts. Démontrer que la famille $(I_n, D, D^2, \dots, D^{n-1})$ est une base de \mathcal{D}_n .

ccinpBasesMatricesDiagonales

Exercice 10 $\star \star \dot{\approx}$ — Soit a_1, \ldots, a_n des nombres réels deux à deux distincts. Nous définissons, pour tout $k \in [1, n]$, la fonction e_k par :

$$e_k \mid 0, +\infty[\longrightarrow \mathbf{R} \\ x \longmapsto x^{a_k}.$$

La famille (e_1, \ldots, e_n) est-elle libre?

liberteFamilleFinieFonctionsPuissance

Exercice 11 $\star \Leftrightarrow \star$ — Déterminer une base et un supplémentaire des sous-espaces vectoriels de \mathbb{R}^4 suivants.

$$F_{1} = \left\{ (x, y, z, t) \in \mathbb{R}^{4} : x + y + z + t = 0 \right\}$$

$$F_{2} = \left\{ (x, y, z, t) \in \mathbb{R}^{4} : \begin{cases} x + y + z + t = 0 \\ x - y + z - t = 0 \end{cases} \right\}$$

$$F_{3} = \left\{ (x, y, z, t) \in \mathbb{R}^{4} : \begin{cases} x + y + z + t = 0 \\ x - y + z - t = 0 \end{cases} \right\}$$

$$x + t = 0$$

baseSupplementaireSevR4

Exercice 12 $\bigstar \Leftrightarrow \bigstar -$ Soient $E_1 = \text{Vect}(v_1 = (1, -1, 0, 1), v_2 = (0, 2, 1, 0))$ et $E_2 = \text{Vect}(w_1 = (0, 6, -1, 4), w_2 = (3, 3, 1, 5))$.

- 1. Caractériser $E_1 \cap E_2$.
- 2. Donner une base de $E_1 + E_2$.
- 3. Déterminer un supplémentaire de $E_1 + E_2$ dans \mathbb{R}^4 .

 $\verb|intersectionSommeSupplementaireSevR4|$

Exercice 13 $\bigstar \Leftrightarrow \Leftrightarrow$ — Notons P (respectivement I) l'ensemble des fonctions de R dans R paires (respectivement impaires). Démontrer que $R^R = P \oplus I$.

fonctions Paries Impaires Supplementaires

Exercice 14 $\star \star \Leftrightarrow$ — *Soit* $n \in \mathbb{N}^*$. *Pour tout* $k \in [0, n]$ *notons :*

$$F_k := \{ P \in \mathbf{R}_n[X] : \forall \ell \in [0, n] \setminus \{k\}, P(\ell) = 0 \}.$$

Démontrer que $\mathbf{R}_n[X] = \bigoplus_{k=0}^n F_k$.

decompositionRnXSommeDirecteDroites

Exercice 15 $\bigstar \not \simeq \bot = Soient(E_i)_{i \in [\![1,n]\!]}(F_i)_{i \in [\![1,n]\!]}$ deux familles de sous-espaces vectoriels d'un K-espace vectoriel E tels que :

$$\forall \ i \in \llbracket 1, n \rrbracket \qquad E_i \subset F_i \qquad et \qquad \bigoplus_{i=1}^n E_i = \bigoplus_{i=1}^n F_i.$$

Démontrer que pour tout $i \in [1, n]$, $E_i = F_i$.

sommeDirecteAbstraitEgaliteSev

Exercice 16 $\bigstar \Leftrightarrow \bigstar -$ Soient E, F deux K-espaces vectoriels, $f \in \mathcal{L}(E,F)$ une application linéaire et $(E_i)_{i \in [\![1,n]\!]}$ une famille de sous-espaces vectoriels de E.

- 1. Démontrer que $f\left(\sum_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} f(E_i)$.
- 2. Supposons que f est injective et que $\sum_{i=1}^n E_i = \bigoplus_{i=1}^n E_i$. Démontrer que $\sum_{i=1}^n f(E_i) = \bigoplus_{i=1}^n f(E_i)$.

 ${\tt sommeDirecteAbstraitInjectiviteApplicationLineaire}$

Exercice 17 $\star \Leftrightarrow \star$ — Soient F, G, F', G' des sous-espaces vectoriels d'un K-espace vectoriel E tels que :

$$F \oplus G = F' \oplus G' = E$$
 et $F' \subset G$.

Démontrer que $F \oplus F' \oplus (G \cap G') = E$.

 $\verb|ccinpSommeDirecte2SommeDirecte3Abstrait| \\$

Exercice 18 $\star \Leftrightarrow \Leftrightarrow$ — Caractériser les sous-espaces vectoriels de \mathbb{R}^4 suivants à l'aide d'une équation cartésienne.

$$F_1 = \text{Vect}\left((1,1,1,1)\right) \qquad F_2 = \text{Vect}\left((1,1,1,1),(1,1,1,-1)\right) \qquad F_3 = \text{Vect}\left((1,1,1,1),(1,-1,1,-1),(1,0,0,1)\right) \; .$$

On pourra munir \mathbf{R}^4 de son produit scalaire usuel et prendre appui sur l'identité $F = (F^{\perp})^{\perp}$, valide pour tout sous-espace vectoriel F de \mathbf{R}^4 .

equationCartesienneSevR4

Exercice 19 ★☆☆ — Soient A et B deux parties d'un K-espace vectoriel E. Démontrer que :

$$Vect(A) + Vect(B) = Vect(A \cup B)$$
.

et en déduire une nouvelle démonstration d'un résultat du cours.

sommeSevEngendreAbstrait

Exercice 20 $\bigstar \Leftrightarrow \Leftrightarrow$ — Déterminer une base et la dimension des sous-espaces vectoriels de \mathbb{R}^4 suivants :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$$

$$G = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = x - y + 2z - 3t = 0\}.$$

baseDimensionSevR4

Exercice 21 $\bigstar \Leftrightarrow \bigstar \longrightarrow$ *Justifier que* **C** *est un* **R**-espace vectoriel de dimension 2.

evReelVersusEvComplexeCasC

Exercice 22 $\star \Leftrightarrow -$ Soit E un C-espace vectoriel de dimension finie $n \ge 1$. Démontrer que E est un C-espace vectoriel de dimension finie E finie E in E contract E contract E in E contract E contract

evReelVersusEvComplexeCasGeneral

Exercice 23 $\bigstar \Leftrightarrow \bigstar \longrightarrow$ *Démontrer que le* **K**-espace vectoriel **K**[X] n'est pas de dimension finie.

espacePolynomesDimensionInfinie

Exercice 24 $\star\star$ \Leftrightarrow — Soient E un K-espace vectoriel de dimension finie n et (e_1,\ldots,e_n) une base de E.

- 1. Démontrer que, pour tout $i \in [2, n]$, la famille $(e_1 + e_i, e_2, e_3, \dots, e_n)$ est une base de E.
- 2. Déterminer les endomorphismes de E dont la matrice est diagonale dans toute base de E.

 $\verb|ccinpEndomorphismeMatriceTouteBaseDiagonale| \\$

Exercice 25 $\star \star \star \Leftrightarrow$ — Soient E, F deux K-espaces vectoriels de dimensions finies respectives n et m, (e_1, \ldots, e_n) une base de E et (f_1, \ldots, f_m) une base de F.

1. Soit $(i,j) \in [1,n] \times [1,m]$. Justifier qu'il existe une unique application linéaire $u_{i,j} \in \mathcal{L}(E,F)$ telle que :

$$\forall k \in [1, n] \qquad u_{i,j}(e_k) = \delta_{i,k} f_j.$$

2. Démontrer que la famille $(u_{i,j})_{i\in \llbracket 1,n\rrbracket, j\in \llbracket 1,m\rrbracket}$ est une base de $\mathscr{L}(E,F)$. Qu'en déduire pour $\mathscr{L}(E,F)$?

baseEvApplicationsLineaires

Exercice 26 $\bigstar \Leftrightarrow -$ Soient a_1, a_2, a_3 trois scalaires distincts donnés de K.

1. Démontrer que :

$$\Phi \mid \mathbf{K}_2[X] \longrightarrow \mathbf{K}^3 \\
P \longmapsto (P(a_1), P(a_2), P(a_3))$$

est un isomorphisme d'espaces vectoriels.

- 2. On note (e_1, e_2, e_3) la base canonique de K^3 et on pose, pour tout $k \in \{1, 2, 3\}$, $L_k = \Phi^{-1}(e_k)$.
 - (a) Justifier que (L_1, L_2, L_3) est une base de $K_2[X]$.
 - (b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- 3. Soit $P \in \mathbf{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- 4. Application : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1). Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

banqueCcinp90

Exercice 27 $\bigstar \Leftrightarrow \bigstar \longrightarrow$ *Supposons E de dimension finie n* ≥ 1 *sur* **K**.

- 1. Préciser l'élément neutre de $\mathcal{L}(E)$ pour la loi \circ et l'élément neutre de $\mathcal{M}_n(\mathbf{R})$ pour la loi \times .
- 2. Étant donnée une base ${\mathcal B}$ de ${\mathcal E}$, notons φ l'application définie par :

$$\varphi \mid \mathcal{L}(E) \longrightarrow \mathcal{M}_n(\mathbf{K})$$

$$u \longmapsto \operatorname{Mat}_{\mathscr{B}}(u).$$

- (a) Démontrer que φ est un isomorphisme d'anneaux de $\mathcal{L}(E)$ vers $\mathcal{M}_n(\mathbf{R})$.
- (b) Démontrer que, pour tout $u \in \mathcal{L}(E)$ et tout $p \in \mathbb{N}$, $\operatorname{Mat}_{\mathscr{B}}(u^p) = (\operatorname{Mat}_{\mathscr{B}}(u))^p$.

 $\verb|ccinpIsomorphismeAnneauxEndomorphismesMatrices| \\$

Exercice 28 $\bigstar \Leftrightarrow -$ Soient E un K-espace vectoriel. et φ une forme linéaire non nulle sur E. Démontrer qu'il existe $a \in E$ tel que $E = \text{Ker}(\varphi) \oplus \text{Vect}(a)$.

noyauFormeLineaireNonNulleHyperplan

Exercice 29 * $\Rightarrow \Rightarrow$ — Soit P le plan d'équation x + y + z = 0 et D la droite d'équation $x = \frac{y}{2} = \frac{z}{3}$.

- 1. Vérifier que $\mathbb{R}^3 = P \oplus D$.
- 2. Soit p la projection vectorielle de \mathbb{R}^3 sur P parallèlement à D. Soit $u=(x,y,z)\in\mathbb{R}^3$. Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .
- 3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.

banqueCcinp71

Exercice 30 $\bigstar \Leftrightarrow \Leftrightarrow$ — Soient E un K-espace vectoriel et p un projecteur de E.

- 1. Démontrer que $E = \text{Ker}(p) \oplus \text{Im}(p)$.
- 2. Réciproquement, si $f \in \mathcal{L}(E)$ vérifie $E = \text{Ker}(f) \oplus \text{Im}(f)$, f est-il un projecteur de E?

 $\verb"projecteurDecompositionEv"$

Exercice 31 $\bigstar \Leftrightarrow \bigstar$ — Soient E un K-espace vectoriel et s une symétrie de E.

- 1. Démontrer que $E = \text{Ker}(s \text{id}_E) \oplus \text{Ker}(s + \text{id}_E)$.
- 2. Réciproquement, si $f \in \mathcal{L}(E)$ vérifie $E = \text{Ker}(s \text{id}_E) \oplus \text{Ker}(s + \text{id}_E)$, u est-il une symétrie de E?

 $\verb"symetrieDecompositionEv"$

Exercice 32 $\star\star$ \Leftrightarrow — Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbf{R})$ défini par :

$$\forall M \in \mathcal{M}_2(\mathbf{R}) \quad f(M) = AM$$
.

- 1. Déterminer une base de Ker(f).
- 2. f est-il surjectif?
- 3. Déterminer une base de Im(f).
- 4. A-t-on $\mathcal{M}_2(\mathbb{R}) = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$?

banqueCcinp60

Exercice 33 $\star \star \Leftrightarrow$ — Soient $n \in \mathbb{N}^*$, $A, B, M \in \mathcal{M}_n(\mathbb{C})$, $\lambda, \mu \in \mathbb{C}^*$ tels que : :

$$\lambda \neq \mu$$
 , $I_n = A + B$, $M = \lambda A + \mu B$, $M^2 = \lambda^2 A + \mu^2 B$

- 1. Calculer $M^2 (\lambda + \mu)M + \lambda \mu I_n$. En déduire que M est inversible, puis exprimer M^{-1} .
- 2. Démontrer que A et B sont des projecteurs.

ccinpPolynomeAnnulateurDegre2ProjecteursMatrices

Exercice 34 $\star\star$ \Leftrightarrow — Soient E un K-espace vectoriel et $u \in \mathcal{L}(E)$ tel que $u^2 - 4u + 3 \operatorname{id}_E = 0$.

- 1. Démontrer que u est inversible est exprimer u^{-1} en fonction de u.
- 2. Démontrer que $E = \text{Ker}(u \text{id}_E) \oplus \text{Ker}(u 3 \text{id}_E)$.

 $\verb"polynomeAnnulateurDegre2DecompositionEspaceAbstrait"$

Exercice 35 $\star \Leftrightarrow \Leftarrow$ — Soit f un endomorphisme d'un espace vectoriel E de dimension finie n.

1. Démontrer que :

$$E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f) \Longrightarrow \operatorname{Im}(f) = \operatorname{Im}(f^2)$$
.

2. (a) Démontrer que :

$$\operatorname{Im}(f) = \operatorname{Im}(f^2) \iff \operatorname{Ker}(f) = \operatorname{Ker}(f^2).$$

(b) Démontrer que :

$$\operatorname{Im}(f) = \operatorname{Im}(f^2) \Longrightarrow E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$$
.

banqueCcinp64

Exercice 36 $\star \Leftrightarrow \star$ Soient E un K-espace vectoriel, $f \in \mathcal{L}(E)$ un endomorphisme nilpotent de nilindice p.

- 1. Démontrer qu'il existe $u \in E$ tel que la famille $(u, f(u), \dots, f^{p-1}(u))$ soit libre.
- 2. Si maintenant on suppose E de dimension finie, comparer l'indice de nilpotence p de f et de la dimension de E.

majorationNilindice

Exercice 37 $\star \not \approx \not \approx$ — Soient n un entier supérieur ou égal à 2 et $A \in \mathcal{M}_n(\mathbf{K})$ une matrice nilpotente de nilindice p. Démontrer que $I_n - A$ est inversible et calculer son inverse.

inversibiliteIdentitePlusNilpotente

Exercice 38 $\star \star \star \Leftrightarrow$ — Soient E un K-espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. L'identité $\operatorname{rg}(f \circ g) = \operatorname{rg}(g \circ f)$ est-elle nécessairement vraie?

rangComposee

Exercice 39 $\star\star$ \Leftrightarrow — Soient E un K-espace vectoriel de dimension finie et $u, v \in \mathcal{L}(E)$. Démontrer que :

$$|\operatorname{rg}(u) - \operatorname{rg}(v)| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v).$$

ccinpEncadrementRangSomme

Exercice 40 $\star \Leftrightarrow \Leftrightarrow$ — *Soit* $f \in \mathcal{L}(\mathbb{R}^3)$ *tel que* $f^2 = 0$ *et* $f \neq 0$. *Déterminer le rang de* f.

rangEndomorphismeNilpotentR3

Exercice 41
$$\bigstar$$
 \Leftrightarrow \leftarrow *Calculer le rang des matrices A* = $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 2 & -3 & -4 \end{pmatrix}$ *et B* = $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

rangMatrices3x3

Exercice 42 $\star\star$ $\dot{\Rightarrow}$ — Une matrice de rang r est-elle nécessairement semblable à la matrice $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$?

nonNecessairementSemblableMatriceJordan

Exercice 43 $\star \star \star \Leftrightarrow$ — Soient un entier $n \ge 2$, $A, B \in \mathcal{M}_n(\mathbf{R})$ telles qu'il existe $(P,Q) \in \mathbf{GL}_n(\mathbf{R})^2$ vérifiant B = PAQ et $u \in \mathcal{L}(\mathbf{R}^n)$ l'endomorphisme canoniquement associé à A. Existe-t-il nécessairement une base \mathcal{B} de \mathbf{R}^n telle que $B = \mathrm{Mat}_{\mathcal{B}}(u)$?

semblablesVersusEquivalentes

Exercice 44 \bigstar \Leftrightarrow \Longrightarrow — Soient un entier $n \ge 2$, $A \in \mathcal{M}_n(\mathbf{K})$ telle que $A^2 = A$. Démontrer qu'il existe $r \in \mathbf{N}$ tel que A soit semblable à $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

reductionMatriceProjecteur

Exercice 45 $\star \star \Leftrightarrow$ — Soient E un K-espace vectoriel (non nécessairement de dimension finie) et $(f,g) \in \mathcal{L}(E)^2$ tels que $f \circ g = \mathrm{id}_E$. Démontrer que :

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker}(f)$$
 , $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$, $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(g)$

 $\verb|ccinpEndomorphismesAbstraitDecompositionSommeDirecte|\\$

Exercice 46 $\bigstar \Leftrightarrow -$ Soient un entier $n \ge 2$ et $(A, B) \in \mathcal{T}_n(K)^2$, où $\mathcal{T}_n(K)$ désigne l'ensemble des matrices $n \times n$ à coefficients dans K qui sont triangulaires supérieures. Démontrer que, pour tout $i \in [1, n]$, $[AB]_{i,i} = [A]_{i,i} \times [B]_{i,i}$.

 ${\tt coefficientsDiagonauxProduitMatricesTriangulaires}$

Exercice 47 $\bigstar \Leftrightarrow \Leftrightarrow -$ *Soit un entier n* ≥ 2 .

- 1. Pour tout $(i, j) \in [1, n]^2$, déterminer $C_{i,j} = \{A \in \mathcal{M}_n(\mathbf{K}) : AE_{i,j} = E_{i,j}A\}$.
- 2. En déduire l'ensemble des matrices de $\mathcal{M}_n(\mathbf{K})$ qui commutent avec toutes les matrices de $\mathcal{M}_n(\mathbf{K})$.

centreMnK

Exercice 48
$$\bigstar$$
 \Leftrightarrow Déterminer si la matrice $A = \begin{pmatrix} 7 & 7 & 1 \\ 14 & 7 & -4 \\ 7 & -21 & 1 \end{pmatrix}$ est inversible et calculer son inverse le cas échéant.

inversibiliteInverseMatrice3x3

Exercice 49 $\star \star \star \Leftrightarrow$ — Soient un entier $n \ge 2$ et $A \in \mathcal{M}_n(\mathbf{K})$. Démontrer que A est inversible si et seulement si, pour toute matrice colonne $X \in \mathcal{M}_{n,1}(\mathbf{K})$ non nulle, $AX \ne 0$.

cnsInversibiliteMatriceNoyau

Exercice 50 $\bigstar \Leftrightarrow \Leftrightarrow$ — Pour tout couple $(a,b) \in \mathbb{R}^2$, notons $M(a,b) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ et posons :

$$F = \left\{ M(a,b) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : (a,b) \in \mathbb{R}^2 \right\} .$$

- 1. Démontrer que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbf{R})$. Quelle est sa dimension?
- 2. Posons:

$$\varphi \mid \mathbf{C} \longrightarrow F$$

$$z \longmapsto M(\operatorname{Re}(z), \operatorname{Im}(z)).$$

- (a) Démontrer que φ est un isomorphisme de **R**-espaces vectoriels et un isomorphisme d'anneaux.
- (b) Pour tout couple $(a, b) \in \mathcal{M}_2(\mathbf{R})^2$ et tout entier naturel n, calculer $M(a, b)^n$.

ccinpRealisationComplexesMatrices2x2

Exercice 51
$$\bigstar \Leftrightarrow \Leftrightarrow -$$
 Posons $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.. Déterminer A^n , pour tout $n \in \mathbb{N}$.

puissancesMatriceTriangulaire3x3

Exercice 52 $\bigstar \Leftrightarrow \Leftrightarrow -$ *Soit un entier n* \geq 2. *Démontrer que :*

$$\forall (A, B) \in \mathcal{M}_n(\mathbf{K})^2 \quad \operatorname{tr}(AB) = \operatorname{tr}(BA)$$
.

traceProduitMatrices

Exercice 53 $\star \star \star \dot{\sim}$ — Soient un entier $n \ge 2$ et $A, B \in \mathcal{M}_n(K)$. Résoudre, dans $\mathcal{M}_n(K)$, l'équation $X = \operatorname{tr}(X) A + B$.

 $\verb|ccinpEquationMatricielleTraceXFoisAPlusB| \\$

Exercice 54 $\bigstar \Leftrightarrow \bigstar \longrightarrow D\acute{e}montrer que, pour tout <math>(A, B) \in \mathcal{M}_n(K), (AB)^\top = B^\top A^\top.$

 ${\tt transposeeProduitMatrices}$

Exercice 55 $\star \star \star \Leftrightarrow$ — Soit un entier $n \ge 2$. Pour toute matrice $A \in \mathcal{M}_n(\mathbf{K})$, notons f_A la forme linéaire sur $\mathcal{M}_n(\mathbf{K})$ définie par :

$$\forall M \in \mathcal{M}_n(\mathbf{K}) \quad f_A(M) = \operatorname{tr}(AM) .$$

1. Démontrer que l'application :

$$f \mid \mathcal{M}_n(\mathbf{K}) \longrightarrow (\mathcal{M}_n(\mathbf{K}))^*$$

$$A \longmapsto f_A$$

est linéaire et injective.

- 2. Démontrer que, pour tout forme linéaire φ sur $\mathcal{M}_n(\mathbf{K})$, il existe une unique matrice $A \in \mathcal{M}_n(\mathbf{K})$ telle que $\varphi = f_A$.
- 3. Soit $\varphi \in \mathcal{M}_n(\mathbf{K})^*$ telle que :

$$\forall (M,N) \in \mathcal{M}_n(\mathbf{K})^2 \quad \varphi(MN) = \varphi(NM).$$

Démontrer qu'il existe $\lambda \in \mathbf{K}$ tel que $\varphi = \lambda$ tr.

 $\verb|ccinpRepresentationFormesLineairesMnKFormesLineairesCentrales|\\$

Exercice 56 $\bigstar \Leftrightarrow -$ Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbf{Z})$ tel que A est inversible dans $\mathcal{M}_n(\mathbf{R})$. Démontrer que $A^{-1} \in \mathcal{M}_n(\mathbf{Z})$ si et seulement $si \det(A) \in \{-1, 1\}$.

 ${\tt ccinpMatricesInversiblesMnZ}$

Exercice 57 $\star \star \star \Leftrightarrow$ — Soient n un entier supérieur ou égal à 2 et $(e_1, ..., e_n)$ une famille libre de vecteurs d'un K-espace vectoriel E. Posons :

$$f_1 = e_1 + e_2$$
 , $f_2 = e_2 + e_3$, ... , $f_{n-1} = e_{n-1} + e_n$, $f_n = e_n + e_1$

Déterminer une condition nécessaire et suffisante pour que la famille $(f_1, ..., f_n)$ soit libre.

liberteFamilleFinieAbstrait

Exercice 58 $\star \star \star \Leftrightarrow$ — Soient E un K-espace vectoriel, $f \in \mathcal{L}(E)$ et $(x_1, ..., x_p)$ une famille de vecteurs non nuls de E. Supposons qu'il existe des scalaires $\lambda_1, ..., \lambda_n$ deux à deux distincts tels que :

$$\forall i \in [1, p] \quad f(x_i) = \lambda_i x_i.$$

Démontrer que la famille $(x_1, ..., x_p)$ est libre.

liberteFamilleFinieVecteursPropres

Exercice 59 $\bigstar \bigstar \mathring{\sim}$ — Posons $P_0 := 1$ et, pour tout $n \in \mathbb{N}^*$, $P_n := \prod_{i=0}^{n-1} (X-i)$. Démontrer que $(P_n)_{n \in \mathbb{N}}$ est une base de $\mathbb{R}[X]$.

 ${\tt liberteFamilleInfiniePolynomes}$

Exercice 60 $\star \star \dot{} \Rightarrow \Box$ *Pour tout n* \in **Z**, notons e_n et c_n les fonctions définies par :

$$e_n \mid \mathbf{R} \longrightarrow \mathbf{C} \\ x \longmapsto e^{inx} \qquad c_n \mid \mathbf{R} \longrightarrow \mathbf{C} \\ x \longmapsto \cos(nx)$$

Démontrer que la famille $(e_n)_{n\in\mathbb{Z}}$ est libre dans le **C**-espace vectoriel \mathbb{C}^R , puis que la famille $(c_n)_{n\in\mathbb{N}}$ est libre dans le **R**-espace vectoriel \mathbb{R}^R .

 ${\tt liberteFamilleInfinieCosinusDilate}$

Exercice 61 $\star \star \Leftrightarrow$ — Pour tout $k \in \mathbb{N}$, notons f_k la fonction définie par :

$$f_k \mid \mathbf{R} \longrightarrow \mathbf{R} \\ x \longmapsto \cos^k(x)$$

La famille $(f_k)_{k \in \mathbb{N}}$ est-elle libre dans $\mathbb{R}^{\mathbb{R}}$?

liberteFamilleInfiniePuissancesCosinus

Exercice 62 $\star \star \star \simeq$ — Soit $A \in K[X]$ un polynôme non constant. Démontrer que $F = \{AP : P \in K[X]\}$ est un sous-espace vectoriel de K[X] et déterminer un supplémentaire de F dans K[X].

supplementairesEnsembleMutiplesPolynome

Exercice 63 $\star\star$ \Leftrightarrow — Soient un entier $n \ge 2$ et a_1, a_2, \ldots, a_n des nombres réels deux à deux distincts.

- 1. Démontrer que $F = \{ f \in \mathbb{R}^{\mathbb{R}} : f(a_1) = f(a_2) = \dots = f(a_n) = 0 \}$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.
- 2. Donner un supplémentaire de F dans R^R.

 $\verb|supplementairesEnsembleFonctionsNullesNombreFiniPoints|$

Exercice 64 $\star \star \star \Leftrightarrow$ — Soient E un K-espace vectoriel et $f \in \mathcal{L}(E)$. Supposons qu'il existe p sous-espaces vectoriels non triviaux E_1, \ldots, E_p et p scalaires deux-à-deux distincts $\lambda_1, \ldots, \lambda_p$ tels que :

$$\forall i \in [1, p] \quad \forall x \in E_i \quad f(x) = \lambda_i x.$$

 $\label{eq:definition} \textit{D\'{e}montrer que} \sum_{i=1}^p E_i = \bigoplus_{i=1}^p E_i.$

sommeDirecteSousEspacesPropres

Exercice 65 $\star \star \star \Leftrightarrow$ — Soient E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ un endomorphisme nilpotent de nilindice $p \in \mathbb{N}^*$.

- 1. Démontrer que pour tout $k \in [1, p]$, il existe un sous-espace vectoriel F_k tel que $\operatorname{Ker}(u^k) = \operatorname{Ker}(u^{k-1}) \oplus F_k$.
- 2. Démontrer que $E = \bigoplus_{k=1}^{p} F_k$.
- 3. Démontrer que la matrice de u dans une base adaptée à la somme directe de la question 2 est triangulaire supérieure. Que valent les coefficients diagonaux?

trigonalisationEndomorphismeNilpotent

Exercice 66 $\star \star \Leftrightarrow$ — Soient E un K-espace vectoriel et $f \in \mathcal{L}(E)$ telle que, pour tout $u \in E$, la famille (u, f(u)) soit liée. Démontrer que f est une homothétie.

 ${\tt endomorphismes} Vecteurs {\tt Colineaires} {\tt Images}$

Exercice 67 $\star\star$ \Leftrightarrow — *Soit E un* **K**-espace vectoriel de dimension finie.

- 1. Soient φ et ψ deux formes linéaires sur E. Démontrer que φ et ψ sont colinéaires si et seulement si elles ont même noyau.
- 2. Soit $\varphi_1, \ldots, \varphi_n$ et ψ des formes linéaires sur E. Démontrer que :

$$\psi \in \text{Vect}(\{\varphi_1, \dots, \varphi_n\}) \qquad \Longleftrightarrow \qquad \bigcap_{k=1}^n \text{Ker}(\varphi_k) \subset \text{Ker}(\psi) .$$

noyauxFormesLineairesAppartenanceSevEngendre

Exercice 68 $\star\star$ \star — Soient E un R-espace vectoriel de dimension finie $n \ge 1$, F un sous-espace vectoriel de E distinct de E.

- 1. Démontrer que F peut s'obtenir comme une intersection finie d'hyperplans.
- 2. Quel est le nombre minimal d'hyperplans nécessaire pour obtenir F?

sevVersusIntersectionHyperplans

Exercice 69 $\star\star$ \Leftrightarrow — Soient F_1 , F_2 deux sous-espaces vectoriels d'un K-espace vectoriel E.

- Supposons que F₁ et F₂ possède un supplémentaire commun. Démontrer qu'ils sont isomorphes.
- 2. Si F_1 et F_2 sont isomorphes, ont-ils nécessairement un supplémentaire commun?

 ${\tt deuxSevMemeDimensionExistenceSupplementaireCommun}$

Exercice 70 $\star \star \dot{\approx}$ — Soient a_0, \ldots, a_n des réels deux-à-deux distincts. Démontrer qu'il existe des réels $\lambda_0, \ldots, \lambda_n$ tels que :

$$\forall P \in \mathbf{R}_n[X] \quad \int_0^1 P(t) \, \mathrm{d}t = \sum_{k=0}^n \lambda_k P(a_k) .$$

 ${\tt casParticulierTheoremeRieszRnX}$

Exercice 71 $\star \star \dot{\approx}$ — Soient E un R-espace de dimension finie et $f \in \mathcal{L}(E)$ un endomorphisme tel que $f^2 = -\mathrm{id}_E$.

- 1. Démontrer que pour tout vecteur a non nul, la famille (a, f(a)) est libre.
- 2. Démontrer qu'il existe $p \in \mathbb{N}^*$ et p vecteurs a_1, \ldots, a_p tels que :

$$E = \bigoplus_{i=1}^{p} \operatorname{Vect}(\{a_i, f(a_i\})).$$

3. Démontrer que E est de dimension paire et trouver une base de E dans laquelle la matrice de f est « simple ».

 ${\tt reductionEndomorphismeCarreMoinsId}$

Exercice 72 $\star \star \Leftrightarrow$ — Soient un entier $n \ge 2$ et $A \in \mathcal{M}_n(K)$. Comparer le rang de A et le rang de sa comatrice.

rangComatrice

Exercice 73 $\star \star \star \Leftrightarrow$ — Soient E un K-espace vectoriel de dimension finie $n \ge 1$ et $u \in \mathcal{L}(E)$. Déterminer le rang de l'application linéaire :

$$\varphi \mid \mathcal{L}(E) \longrightarrow \mathcal{L}(E)$$

$$v \longmapsto v \circ u.$$

rangTransposeeEndomorphisme

Exercice 74 $\star \star \Leftrightarrow$ — *Ici,* **K** désigne un sous-corps de **C**. Soit *D* l'opérateur de dérivation sur **K**[X]:

$$D \mid \mathbf{K}[X] \longrightarrow \mathbf{K}[X]$$

$$P \longmapsto P'.$$

Déterminer tous les sous-espaces vectoriels de K[X] stables par D.

sousEspacesPolynomesStablesDerivation [corrigé]

Exercice 75 $\star\star$ \star Soient E un K-espace vectoriel, $u \in \mathcal{L}(E)$. On suppose qu'il existe un polynôme $P = \sum_{k=0}^{n} a_k X^k \in K[X]$ tel que:

$$P(u) := \sum_{k=0}^{n} a_k u^k = 0_{\mathcal{L}(E)} \quad \text{et} \quad P'(0) \neq 0.$$

Démontrer que Ker(u) et Im(u) sont en somme directe.

 $\verb"polynomeAnnulateurSommeDirecteImageNoyau"$

Exercice 76 $\star \star \star$ — Soient un entier $n \ge 2$ et $A = \left(a_{i,j}\right)_{1 \le i,j \le n} \in \operatorname{Mat}_n(\mathbf{C})$ une matrice diagonalement dominante, i.e. telle que :

$$\forall i \in [1, n], \quad \left| a_{i,i} \right| > \sum_{\substack{1 \le j \le n \\ i \ne i}} \left| a_{i,j} \right| .$$

Démontrer que A est inversible.

matricesDiagonalementDominantes

Exercice 77 $\star\star$ \Leftrightarrow — Soient $n \in \mathbb{N}^*$ et $A, B \in \mathcal{M}_n(\mathbb{Z})$.

- 1. Justifier que det(A) et det(B) sont des entiers relatifs.
- 2. Supposons $\det(A)$ et $\det(B)$ premiers entre eux. Démontrer qu'il existe deux matrices $U, V \in \mathcal{M}_n(\mathbf{Z})$ telles que $UA + VB = I_n$.

versionMatricielleIdentiteBezout

Exercice 78 $\star \star \star =$ Soient E un K-espace vectoriel de dimension finie $n \ge 1$ et $u \in \mathcal{L}(E)$. On considère les deux propriétés (P1) et (P2) définies par :

- (P1) il existe une base \mathcal{B} de E telle que $Mat_{\mathcal{B}}(u)$ est diagonale;
- (P2) tout sous-espace vectoriel de E possède un supplémentaire stable par u.

Démontrer que les propriétés (P1) et (P2) sont équivalentes.

 $\verb|critereDiagonalisabil| ite Existence Supplementaire Stable \\$

Exercice 79 $\star \star \star$ — Soient $n \in \mathbb{N}$, $P \in \mathbb{C}[X]$ de degré n et x_0, x_1, \ldots, x_n des complexes deux à deux distincts. On définit, pour tout $k \in [0, n]$, $P_k = P(X + x_k)$. Prouver que (P_0, P_1, \ldots, P_n) est une base de $\mathbb{C}_n[X]$.

 ${\tt baseCnXIssuePolynomeTranslationVariable}$

Exercice $80 \star \star \star$ — Soit $\alpha \in R$ un nombre algébrique, i.e. racine d'un polynôme non nul, à coefficients rationnels. Posons :

$$\mathbf{Q}[\alpha] := \mathrm{Vect}_{\mathbf{O}}(\{\alpha^k : k \in \mathbf{N}\})$$
.

- 1. Démontrer que l'entier $n := \min \{ \deg(P) : P \in \mathbf{Q}[X] \setminus \{0\} \text{ et } P(\alpha) = 0 \}$ est bien défini.
- 2. Démontrer que $(1, \alpha, ..., \alpha^{n-1})$ est une base du **Q**-espace vectoriel **Q**[α].
- 3. Démontrer que $\mathbf{Q}[\alpha]$ est un corps.

corpsEngendreNombreAlgebrique

Exercice 81 $\star \star \star$ — Notons $(p_n)_{n \in \mathbb{N}}$ la suite strictement croissante des nombres premiers. Montrer que la famille $(\ln(p_n))_{n \in \mathbb{N}}$ est libre dans le **Q**-espace vectoriel **R**.

xFamilleLibreLogarithmesNombresPremiers

Exercice 82 $\star\star\star$ — Soient E un K-espace vectoriel de dimension finie $n \ge 1$ et G un sous-groupe fini de GL(E). Posons:

$$E^G = \{ x \in E : \forall g \in G \mid g(x) = x \}$$

l'ensemble des points fixes par tous les éléments de G. Démontrer que :

$$\dim(E^G) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(g) .$$

ensDimensionSevPointsFixesGroupeAutomorphismes

Exercice 83 $\star \star \star \star$ — Soient a_0, \ldots, a_n des scalaires deux à deux distincts. Notons f_0, \ldots, f_n les formes linéaires sur $\mathbf{K}_n[X]$ définies par :

$$\forall P \in \mathbf{K}_n[X] \quad f_i(P) = P(a_i)$$
.

Démontrer que (f_0, \ldots, f_n) est une base de $(\mathbf{K}_n[X])^*$ et trouver sa base antéduale.

baseAntedualeFormesLineairesEvaluationsKnX

Exercice 84 ★★★ — *On considère le diagramme :*

$$E_{1} \xrightarrow{f_{1}} E_{2} \xrightarrow{f_{2}} E_{3} \xrightarrow{f_{3}} E_{4} \xrightarrow{f_{4}} E_{5}$$

$$\downarrow h_{1} \qquad \downarrow h_{2} \qquad \downarrow h_{3} \qquad \downarrow h_{4} \qquad \downarrow h_{5}$$

$$F_{1} \xrightarrow{g_{1}} F_{2} \xrightarrow{g_{2}} F_{3} \xrightarrow{g_{3}} F_{4} \xrightarrow{g_{4}} F_{5}$$

formé de K-espaces vectoriels et d'applications linéaires. On suppose que le diagramme est commutatif, i.e. :

$$h_2 \circ f_1 = g_1 \circ h_1$$
 ; $h_3 \circ f_2 = g_2 \circ h_2$; $h_4 \circ f_3 = g_3 \circ h_3$; $h_5 \circ f_4 = g_4 \circ h_4$

et que les deux lignes sont exactes, i.e. :

$$\operatorname{Ker}(f_2) = \operatorname{Im}(f_1)$$
 ; $\operatorname{Ker}(f_3) = \operatorname{Im}(f_2)$; $\operatorname{Ker}(f_4) = \operatorname{Im}(f_3)$

$$Ker(g_2) = Im(g_1)$$
 ; $Ker(g_3) = Im(g_2)$; $Ker(g_4) = Im(g_3)$.

Montrer que:

 h_1, h_2, h_4, h_5 isomorphismes \implies h_3 isomorphisme.

lemme des cinq

Exercice 85 $\star \star \star \star$ — Soient E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et n endomorphismes nilpotents u_1, \ldots, u_n de E commutant deux à deux. Démontrer que $u_1 \circ \ldots \circ u_n = 0$.

 $\verb"ensCompositionsEndomorphismesNilpotentsCommutent"$

Exercice 86 $\star \star \star \star$ — Soient E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$, F un K-espace vectoriel de dimension finie $m \in \mathbb{N}^*$ et $f, g \in \mathcal{L}(E, F)$. Démontrer que $\operatorname{rg}(g) \leq \operatorname{rg}(f)$ si et seulement s'il existe $h \in \operatorname{GL}(F)$ et $k \in \mathcal{L}(E)$ tels que $h \circ g = f \circ k$.

 ${\tt xInegaliteRangEgaliteCompositionEndomorphismes}$

Exercice 87 $\star\star\star$ — Soient E un K-espace vectoriel de dimension finie $n \ge 1$ et $u \in \mathcal{L}(E)$.

- 1. Montrer que les suites $(\text{Ker}(u^k))_{k\in\mathbb{N}}$ et $(\text{Im}(u^k))_{k\in\mathbb{N}}$ sont d'abord strictement monotones pour l'inclusion, puis constantes à partir d'un certain rang $p \leq n$.
- 2. Démontrer que la suite $(\dim \operatorname{Ker}(u^{k+1}) \dim \operatorname{Ker}(u^k))_{k \in \mathbb{N}}$ est décroissante.
- 3. Démontrer que $E = \text{Ker}(u^p) \oplus \text{Im}(u^p)$.
- 4. En déduire que toute matrice de $\mathcal{M}_n(\mathbf{K})$ est semblable à une matrice de la forme $\begin{pmatrix} N & 0 \\ 0 & A \end{pmatrix}$ où N est une matrice carrée nilpotente et A une matrice carrée inversible.

xLemmeFitting

Exercice 88 $\star \star \star \star$ — Soient $n \in \mathbb{N}^*$ et une application $f : \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ telle que $f(0_{\mathcal{M}_n(\mathbb{K})}) = 0$, $f(I_n) = 1$ et :

$$\forall (A, B) \in \mathcal{M}_n(\mathbf{K})^2 \quad f(AB) = f(A) f(B).$$

Démontrer que, pour tout $A \in \mathcal{M}_n(K)$, $f(A) \neq 0$ si et seulement si $A \in GL_n(K)$.

 $\verb"xCaracterisation" Inversibilite \verb"MatriceFormeMultiplicative" and \verb"ma$

Exercice 89 $\star \star \star$ — Soient un entier $n \ge 2$ et $A \in \mathcal{M}_n(\mathbf{K})$ une matrice de trace nulle.

- 1. Montrer que A est semblable à une matrice dont les coefficients diagonaux sont tous nuls.
- 2. Montrer qu'il existe deux matrices $B, C \in \mathcal{M}_n(\mathbf{K})$ telles que A = BC CB.

xMatriceTraceNulleCrochetLie

Exercice 90 $\star\star\star$ — Soit un entier $n \ge 2$. Démontrer que tout hyperplan de $\mathcal{M}_n(K)$ contient une matrice inversible.

hyperplanMnKMatriceInversible

sousEspacesPolynomesStablesDerivation [énoncé]

Un corrigé de l'exercice 74

(a) Un sous-espace vectoriel F de K[X] est stable par D si :

$$\forall P \in F \quad D(P) = P' \in F$$
.

- (b) Observons que les sous-espaces vectoriels $\{0_{\mathbf{K}[X]}\}$, $\mathbf{K}[X]$ et les $\mathbf{K}_n[X]$ $(n \in \mathbf{N})$ sont stables par D. Nous allons démontrer que ce sont les seuls.
- (c) Soit F un sous-espace vectoriel de K[X], distinct de $0_{K[X]}$ et stable par D. Considérons un polynôme $P \in F \setminus \{0_{K[X]}\}$. En notant $d := \deg(P) \in \mathbb{N}$, il vient :

$$P, P', \dots, P^{(d)} \in F$$
.

Par minimalité d'un sous-espace vectoriel engendré, nous en déduisons que :

$$Vect(P, P', ..., P^{(d)}) \subset F$$
.

D'après le théorème des degrés échelonnés :

$$Vect(P, P', \dots, P^{(d)}) = \mathbf{K}_d[X].$$

Ainsi:

$$\mathbf{K}_d[X] \subset F$$
.

(d) Soit F un sous-espace vectoriel de K[X], distinct de $0_{K[X]}$ et stable par F. Introduisons l'ensemble :

$$A := \left\{ \deg(P) : P \in F \setminus \left\{ 0_{K[X]} \right\} \right\}$$

des degrés des polynômes non nuls de F, qui est une partie non vide de \mathbf{N} . Scindons l'étude en deux parties suivant que la partie A soit majorée ou non.

— Supposons la partie *A* majorée. Par bon ordre, l'entier naturel :

$$n := \max(A)$$

est bien défni. Nécessairement $F \subset \mathbf{K}_n[X]$ et, par définition de n, il existe un polynôme $P \in F \setminus \{0_{\mathbf{K}[X]}\}$ tel que $n = \deg(P)$. D'après (c), $\mathbf{K}_n[X] \subset F$. Finalement $F = \mathbf{K}_n[X]$.

— Supposons la partie A non majorée. Considérons un polynôme $P \in F \setminus \{0_{K[X]}\}$. Comme l'entier naturel deg (P) ne majore pas A, il existe $d \in A$ tel que :

$$deg(P) < d$$
.

Puisque $d \in A$, il existe un polynôme $Q \in F \setminus \{0_{K[X]}\}$ tel que $\deg(Q) = d$. D'après (c) :

$$P \in \mathbf{K}_{\deg(P)}[X] \subset \mathbf{K}_d[X] \subset F$$
.

Le sous-espace vectoriel F de K[X] contient tous les polynômes non nuls de K[X]. Il s'agit donc de K[X] lui-même.