TD - Espaces vectoriels normés 1

Notation. — La lettre K désigne le corps R ou C.

Exercice 1 ★☆☆ — Soit A une partie non vide d'un **R**-espace vectoriel normé E.

- 1. Rappeler la définition d'un point adhérent à A, en termes de voisinages ou de boules.
- 2. Soit $x \in E$. Démontrer que :

$$x \in \bar{A} \iff \exists (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \quad x_n \xrightarrow[n \to +\infty]{} x.$$

- 3. Démontrer que, si A est un sous-espace vectoriel de E, alors \overline{A} est un sous-espace vectoriel de E.
- 4. Soit B une autre partie non vide de E. Démontrer que $\overline{A \times B} = \overline{A} \times \overline{B}$.

banqueCcinp34

Exercice 2 $\star \Leftrightarrow \Leftrightarrow$ — Soient $(E, ||\cdot||_E)$ et $(F, ||\cdot||_E)$ deux espaces vectoriels normés.

- 1. Soient f une application de E dans F et a un point de E. On considère les propositions suivantes :
 - (P1) L'application f est continue en a.
 - (P2) Pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E telle que $x_n \xrightarrow[n \to +\infty]{} a$, $f(x_n) \xrightarrow[n \to +\infty]{} f(a)$.

Prouver que les assertions P1 et P2 sont équivalentes.

2. Soit A une partie dense dans E et soient f et g deux applications continues de E dans F. Démontrer que si, pour tout $x \in A$, f(x) = g(x), alors f = g.

banqueCcinp35

Exercice 3 $\star \Leftrightarrow \star = Soit \ E$ l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . On pose, pour tout $f \in E$:

$$N_{\infty}(f) = \sup_{x \in [0;1]} |f(x)|$$
 et $N_1(f) = \int_0^1 |f(t)| dt$.

- 1. Démontrer que N_{∞} et N_1 sont deux normes sur E.
- 2. Démontrer qu'il existe $\alpha \in \mathbf{R}_+$ tel que, pour tout f de E, $N_1(f) \leq \alpha N_{\infty}(f)$.
- 3. Démontrer que tout ouvert pour la norme N_1 est un ouvert pour la norme N_{∞} .
- 4. Démontrer qu'il n'existe aucune constante $\beta \in \mathbb{R}_+$ telle que, pour tout $f \in E$, $N_{\infty}(f) \leq \beta N_1(f)$.

banqueCcinp37

Exercice 4 ★☆☆ — Soient E un espace vectoriel normé et A, B deux parties non vides de E.

- 1. (a) Rappeler la caractérisation de l'adhérence d'un ensemble à l'aide des suites.
 - (b) Démontrer que :

$$A \subset B \implies \overline{A} \subset \overline{B}$$
.

- 2. Démontrer que $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Une réponse sans utiliser les suites est aussi acceptée.
- 3. (a) Démontrer que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
 - (b) Démontrer, à l'aide d'un exemple, que l'autre inclusion n'est pas forcément vérifiée. On pourra prendre $E=\mathbf{R}$.

banqueCcinp44

Exercice 5 $\star \Leftrightarrow \star = Soient E$ un R-espace vectoriel normé et A une partie non vide de E. On note \overline{A} l'adhérence de A.

- 1. (a) Donner la caractérisation séquentielle de \overline{A} .
 - (b) Prouver que, si A est convexe, alors \overline{A} est convexe.
- 2. On pose, pour tout $x \in E$:

$$d_A(x) = \inf_{a \in A} ||x - a||.$$

(a) Soit $x \in E$. Prouver que:

$$d_A(x) = 0 \iff x \in \overline{A}$$
.

(b) On suppose que A est fermée et que :

$$\forall (x, y) \in E^2 \quad \forall t \in [0, 1] \quad d_A(t x + (1 - t) y) \le t d_A(x) + (1 - t) d_A(y).$$

Prouver que A est convexe.

banqueCcinp45

Exercice 6 $\bigstar \Leftrightarrow \Leftrightarrow -$ *Munissons* $\mathbf{R}[X]$ *des normes* $||\cdot||_{\infty}$ *et* $||\cdot||'_{\infty}$ *définies par, pour tout* $P \in \mathbf{R}[X]$:

$$||P||_{\infty} = \max_{k \in \mathbb{N}} |[P]_k|$$
 et $||P||'_{\infty} = \sup_{x \in [0,1]} |P(x)|$.

- 1. Démontrer que $||\cdot||_{\infty}$ et $||\cdot||'_{\infty}$ sont des normes.
- 2. Existe-t-il une constante $\alpha \in \mathbb{R}_+$ telle que, pour tout $P \in \mathbb{R}[X]$, $||P||_{\infty} \leq \alpha ||P||_{\infty}'$?
- 3. Existe-t-il une constante $\beta \in \mathbb{R}_+$ telle que, pour tout $P \in \mathbb{R}[X]$, $||P||_{\infty}' \leq \beta ||P||_{\infty}$?

comparaisonNormesEspacePolynomes1

Exercice 7 $\bigstar \Leftrightarrow \bigstar -$ *Munissons* $\mathbf{R}[X]$ *des normes* $||\cdot||'_{\infty}$ *et* $||\cdot||'_{1}$ *définies par, pour tout* $P \in \mathbf{R}[X]$:

$$||P||'_{\infty} = \sup_{x \in [0,1]} |P(x)|$$
 et $||P||'_{1} = \int_{0}^{1} |P(x)| dx$.

- 1. Vérifier que $||\cdot||'_1$ est bien une norme sur $\mathbf{R}[X]$.
- 2. Existe-t-il une constante $\alpha \in \mathbb{R}_+$ telle que, pour tout $P \in \mathbb{R}[X]$, $||P||_{\infty}' \leq \alpha ||P||_{1}'$?
- 3. Existe-t-il une constante $\beta \in \mathbb{R}_+$ telle que, pour tout $P \in \mathbb{R}[X]$, $||P||_1' \leq \beta ||P||_{\infty}'$?

 ${\tt comparaisonNormesEspacePolynomes2}$

Exercice 8 $\star \Leftrightarrow \star = Munissons \ \mathbf{R}[X]$ des normes $||\cdot||_{\infty}$ et $||\cdot||'_{\infty}$ définies par, pour tout $P \in \mathbf{R}[X]$:

$$||P||_{\infty} = \max_{k \in \mathbb{N}} |[P]_k|$$
 et $||P||'_{\infty} = \sup_{x \in [0,1]} |P(x)|$.

Notons $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes de terme général $P_n(X) = \sum_{k=0}^n \frac{X^k}{k!}$.

- 1. Démontrer que $(P_n)_{n\in\mathbb{N}}$ est bornée pour les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_{\infty}'$.
- 2. Démontrer que $(P_n)_{n\in\mathbb{N}}$ est divergente pour la norme $||\cdot||_{\infty}$.
- 3. Munissons $\mathscr{C}^0([0,1],\mathbf{R})$ de la norme $||\cdot||_{\infty}'$ définie par, pour tout $f\in\mathscr{C}^0([0,1],\mathbf{R})$:

$$||f||'_{\infty} = \sup_{x \in [0,1]} |f(x)|.$$

Démontrer que la suite $(P_n)_{n\in\mathbb{N}}$, vue comme suite d'éléments de $\mathscr{C}^0([0,1],\mathbb{R})$, converge. Déterminer sa limite.

4. La suite $(P_n)_{n\in\mathbb{N}}$ converge-t-elle dans $(\mathbf{R}[X], ||\cdot||_{\infty})$?

 $\verb|comportementAsymptotiqueSuitePolynomesNormesDifferentes|\\$

Exercice 9 $\bigstar \Leftrightarrow \bigstar \longrightarrow$ *Munissons* $\mathbb{R}[X]$ *de la norme* $||\cdot||_1$ *définie par, pour tout* $P \in \mathbb{R}[X]$:

$$||P||_1 = \sum_{k=0}^{+\infty} |[P]_k|$$
.

Le sous-espace $F = \text{Vect}(\{X^{2n} : n \in \mathbb{N}\})$ de $\mathbb{R}[X]$ est-il fermé?

 ${\tt caractereFermeSousEspaceVectorielPolynomesNorme1}$

Exercice 10 ★☆☆ — *Munissons*:

$$\ell^{\infty}(\mathbf{R}) = \{ u \in \mathbf{R}^{\mathbf{N}} : \text{ la suite } u \text{ est born\'ee} \}$$

de la norme $||\cdot||_{\infty}$ définie par, pour tout $(u_n)_{n\in\mathbb{N}}\in\ell^{\infty}(\mathbb{R})$:

$$||(u_n)_{n\in\mathbb{N}}||_{\infty} = \sup_{n\in\mathbb{N}} |u_n|.$$

- 1. Notons $(u_k)_{k\in\mathbb{N}}$ la suite d'éléments de $\ell^{\infty}(\mathbb{R})$ telle que pour tout $k\in\mathbb{N}$, u_k soit la suite constante de terme général $\frac{1}{k+1}$. Démontrer que $u_k \xrightarrow[k \to +\infty]{} 0$.
- 2. Notons $(v_k)_{k\in\mathbb{N}}$ la suite d'éléments de $\ell^{\infty}(\mathbb{R})$ définie de terme général $v_k = \left(\frac{k}{n+1}\right)_{n\in\mathbb{N}}$. La suite $(v_k)_{k\in\mathbb{N}}$ est-elle bornée dans $(\ell^{\infty}, ||\cdot||_{\infty})$?
- 3. La suite $(w_k)_{k\in\mathbb{N}}$ d'éléments de $\ell^{\infty}(\mathbf{R})$ de terme général $w_k=(\sin(kn))_{n\in\mathbb{N}}$ est-elle bornée? Admet-elle une valeur d'adhérence?

suiteEspaceSuitesNormeInfinie1

Exercice 11 $\bigstar \not \approx \not = Soient E$ un **R**-espace vectoriel et N_1, N_2 deux normes sur E. Démontrer que les boules ouvertes $B_{N_1}(0,1)$ et $B_{N_2}(0,1)$ sont égales si et seulement si $N_1 = N_2$.

 $\verb|boulesUniteOuvertesEgalesDeuxNormes|\\$

Exercice 12 $\bigstar \Leftrightarrow \bigstar -$ Soient $n \in \mathbb{N}^*$ et $p \ge 1$. Pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, posons:

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}.$$

Soit $q \ge 1$ l'unique réel tel que $\frac{1}{p} + \frac{1}{q} = 1$.

1. Démontrer que, pour tout $(x, y) \in (\mathbf{R}_{+}^{*})^{2}$:

$$x^{1/p} y^{1/q} \le \frac{1}{p} x + \frac{1}{q} y$$
 [inégalité de Young].

2. Notons $\langle \cdot, \cdot \rangle$ le produit scalaire usuel sur \mathbb{R}^n . Démontrer que, pour tout $(x,y) \in (\mathbb{R}^n)^2$:

$$|\langle x, y \rangle| \le ||x||_p ||y||_q$$
 [inégalité de Hölder].

3. Soient $x = (x_1, ..., x_n) \in \mathbb{R}^n$ et $y = (y_1, ..., y_n) \in \mathbb{R}^n$. En remarquant que :

$$(|x_k| + |y_k|)^p = |x_k| (|x_k| + |y_k|)^{p-1} + |y_k| (|x_k| + |y_k|)^{p-1}$$

montrer que $||\cdot||_p$ est une norme sur \mathbb{R}^n .

4. Démontrer que, pour tout $x \in \mathbb{R}^n$, $||x||_p \xrightarrow[p \to +\infty]{} ||x||_{\infty}$.

 $\verb|inegalitesYoungHoelderNormesPEspacesKn|\\$

Exercice 13 $\bigstar \Leftrightarrow \bigstar -$ *Soient* $E = \mathscr{C}^0([0,1], \mathbb{R})$ *et* $p \ge 1$. *Pour toute fonction* $f \in E$, *notons* :

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}.$$

- 1. En s'inspirant de l'exercice 12, démontrer que $||\cdot||_p$ est une norme sur E.
- 2. Démontrer que, pour toute fonction $f \in E$, $||f||_p \xrightarrow[p \to +\infty]{} ||f||_{\infty}$.

normesPEspacesFonctions

Exercice 14 $\bigstar \Leftrightarrow \bigstar$ — *Notons E* = $\mathscr{C}^0([0,1], \mathbb{R})$. *Pour toute fonction f* \in *E, posons* :

$$N(f) = \int_0^1 e^x |f(x)| dx$$

- 1. Démontrer que N est une norme sur E.
- 2. Trouver la meilleure constante $\alpha \in \mathbb{R}_+$ telle que, pour tout $f \in E$, $N(f) \leq \alpha ||f||_{\infty}$.
- 3. Existe-t-il une constante $\beta \in \mathbf{R}_+$ telle que, pour tout $f \in E$, $||f||_{\infty} \leq \beta N(f)$?

 ${\tt norme1TordueExponentielleEspacesFonctions}$

Exercice 15 $\bigstar \Leftrightarrow \bigstar \frown$ *Notons E* = **R**[X]. *Pour tout P* \in **R**[X] *et tout n* \in **N**, *posons :*

$$\theta_n(P) = \int_0^1 P(t) t^n dt.$$

Posons $N(P) = \sup_{n \in \mathbb{N}} |\theta_n(P)|$. Démontrer que N(P) est bien définie et qu'elle induit une norme sur $\mathbb{R}[X]$.

enseaNormeEspacePolynomesMoments

Exercice $16 \star \Leftrightarrow \Leftrightarrow$ — Soit $(E, ||\cdot||)$ un espace vectoriel normé. Démontrer que E est le seul sous-espace vectoriel de E d'intérieur non vide.

tpeSousEspaceVectorielInterieurNonVide

Exercice 17 $\bigstar \Leftrightarrow \bigstar -$ Soient $(E, ||\cdot||)$ un espace vectoriel normé et $C \subset E$ une partie convexe. Démontrer que l'adhérence et l'intérieur de C sont convexes.

 ${\tt tpeAdherenceInterieurPartieConvexe}$

Exercice 18 $\bigstar \Leftrightarrow \bigstar \leftarrow$ *Notons* $\ell^2(\mathbf{R})$ *l'ensemble des suites* $x = (x_n)_{n \in \mathbf{N}} \in \mathbf{R}^{\mathbf{N}}$ *telles que la série* $\sum x_n^2$ *converge. Pour toute suite* $x = (x_n)_{n \in \mathbf{N}} \in \ell^2(\mathbf{R})$, *notons* :

$$||x||_2 = \sqrt{\sum_{n=0}^{+\infty} |x_n|^2}$$
.

- 1. Démontrer que $\ell^2(\mathbf{R})$ est un sous-espace vectoriel de $\mathbf{R}^{\mathbf{N}}$.
- 2. Démontrer que $||\cdot||_2$ est une norme sur $\ell^2(\mathbf{R})$.
- 3. Posons F l'ensemble des suites nulles à partir d'un certain rang. Démontrer que F est un sous-espace vectoriel de $\ell^2(\mathbf{R})$. L'ensemble F est-il une partie fermée de $\ell^2(\mathbf{R})$?

tpeCaractereFermeSousEspaceVectorielSuitesNorme2

Exercice 19 $\bigstar \Leftrightarrow \Rightarrow$ — Pour tout $n \in \mathbb{N}^*$, notons f_n la fonction définie sur [0,1] par :

$$\forall x \in [0,1] \begin{cases} 0 & \text{si } 0 \le x \le 1 - 1/n \\ 2n\left(x - 1 + \frac{1}{n}\right) & \text{si } 1 - \frac{1}{n} < x < 1 - \frac{1}{2n} \\ -2n\left(x - 1\right) & \text{si } 1 - \frac{1}{2n} \le x \le 1 \end{cases}$$

- 1. Tracer les courbes représentatives des fonctions f_1, f_2, f_3, f_4 .
- 2. Démontrer que pour tout $x \in [0,1]$:

$$f_n(x) \xrightarrow[n \to +\infty]{} 0$$
.

3. Est-ce que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge vers vers la fontion nulle dans $(\mathscr{C}^0([0,1],\mathbb{R}),||\cdot||_{\infty})$?

 $\verb|convergenceSimpleVersusConvergenceUniformeSuiteFonctions|\\$

Exercice 20 $\star \Leftrightarrow -$ Soient $(E, ||\cdot||)$ un K-espace vectoriel normé et $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ une suite telle que la suite réelle $(||u_n||)_{n \in \mathbb{N}}$ tend vers $+\infty$. Démontrer que la suite $(u_n)_{n \in \mathbb{N}}$ n'a pas de valeur d'adhérence.

 $\verb|suiteSansValeurAdherenceEspaceVectorielNormeGeneral|\\$

Exercice 21 $\bigstar \mathring{\Rightarrow} \mathring{\Rightarrow}$ — *Posons, pour tout n* \in **N** :

$$f_n \mid \begin{bmatrix} 0, 2\pi \end{bmatrix} & \longrightarrow & \mathbf{R} \\ x & \longmapsto & \cos(nx) \end{bmatrix}$$

Supposons que la suite $(f_n)_{n\in\mathbb{N}}$ admette une valeur d'adhérence f dans $(\mathscr{C}([0,2\pi],\mathbb{R}),||\cdot||_{\infty})$. On dispose alors d'une application $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ strictement croissante telle que :

$$\left| \left| f_{\varphi(n)} - f \right| \right|_{\infty} \xrightarrow[n \to +\infty]{\mathbf{R}} 0.$$

Démontrer que, pour tout $n \in \mathbb{N}$:

$$\left| f_{\varphi(n)}(0) - f_{\varphi(n)}\left(\frac{\pi}{2\,\varphi(n)}\right) \right| \leq 2 \left| \left| f_{\varphi(n)} - f \right| \right|_{\infty} + \left| f(0) - f\left(\frac{\pi}{2\,\varphi(n)}\right) \right| \, .$$

Que peut-on en déduire?

suiteFonctionsBorneesSansValeurAdherenceNormeInfini

Exercice 22 $\bigstar \Leftrightarrow \Leftrightarrow -$ Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle.

- 1. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et possède une unique valeur d'adhérence. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 2. Si on suppose seulement que la suite $(u_n)_{n\in\mathbb{N}}$ possède une unique valeur d'adhérence, la suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle nécessairement?

uniqueValeurAdherenceVersusConvergenceSuiteReelle

Exercice 23 $\star\star$ $\dot{\approx}$ — Munissons $\ell^{\infty}(\mathbf{R})$ de la norme $||\cdot||_{\infty}$ définie dans l'exercice 10.

- 1. Soit $(U_k)_{k\in\mathbb{N}}$ une suite d'éléments de $\ell^{\infty}(\mathbf{R})$. Pour tout $k\in\mathbb{N}$, U_k est une suite bornée notée $\left(u_n^{(k)}\right)_{n\in\mathbb{N}}$. Supposons que $(U_k)_{k\in\mathbb{N}}$ converge vers une suite $U=(u_n)_{n\in\mathbb{N}}\in\ell^{\infty}(\mathbf{R})$. Démontrer que, pour tout $n\in\mathbb{N}$, $u_n^{(k)}\xrightarrow[k\to+\infty]{}u_n$.
- 2. Réciproquement, si pour tout $n \in \mathbb{N}$, la suite $\left(u_n^{(k)}\right)_{k \in \mathbb{N}}$ converge vers un réel u_n , la suite $(U_k)_{k \in \mathbb{N}}$ converge-t-elle vers la suite $(u_n)_{n \in \mathbb{N}}$?

suiteEspaceSuitesNormeInfinie2

Exercice 24 $\star \star \Leftrightarrow$ — Soit une application $f: \mathbf{R} \longrightarrow \mathbf{R}$ polynomiale et non constante. Démontrer que, pour toute partie fermée F de \mathbf{R} , f(F) est une partie fermée de \mathbf{R} .

applicationPolynomialeFermee

Exercice 25 $\star \star \star \Leftrightarrow$ — Munissons $\ell^{\infty}(\mathbf{R})$ de la norme $||\cdot||_{\infty}$ définie dans l'exercice 10. Si $u \in \ell^{\infty}(\mathbf{R})$ et A est une partie non vide de $\ell^{\infty}(\mathbf{R})$, on définit la distance de u à A par :

$$d(u,A) = \inf_{a \in A} ||u - a||_{\infty}.$$

- 1. Notons \mathcal{C}_0 le sous-espace vectoriel de $\ell^{\infty}(\mathbf{R})$ constitué des suites convergeant vers 0. Déterminer la distance de la suite constante égale à 1 à \mathcal{C}_0 .
- 2. Notons $\mathscr C$ le sous-espace vectoriel de $\ell^\infty(R)$ constitué des suites convergentes. Déterminer la distance de la suite $((-1)^n)_{n\in\mathbb N}$ à $\mathscr C$.

 ${\tt distance Sous Espace Vectoriel Suites Norme Infini}$

Exercice 26 $\star\star$ \Leftrightarrow — Soient $(E, ||\cdot||)$ un espace vectoriel normé et $u = (u_n)_{n \in \mathbb{N}}$ une suite d'éléments de E. Démontrer que l'ensemble des valeurs d'adhérence de la suite u est une partie fermée de E.

 ${\tt caractereFermeEnsembleValeursAdherenceSuite}$

Exercice 27 $\star\star$ $\dot{\star}$ — Soient $(E, ||\cdot||)$ un **R**-espace vectoriel normé, $C \subset E$ un ouvert convexe de E, contenant 0, borné et symétrique par rapport à 0 (pour tout $x \in C$, $-x \in C$). Pour tout $x \in E$, posons :

$$||x||_C = \inf \left\{ t > 0 : \frac{x}{t} \in C \right\}.$$

On dit que $||\cdot||_C$ est la jauge associée à C.

- 1. Démontrer que $||\cdot||_C$ est bien définie sur E.
- 2. Démontrer que $||\cdot||_C$ est une norme sur E.
- 3. Quelle est la boule unité ouverte pour la norme $||\cdot||_C$?

normeJauge

Exercice 28 $\star \star \star = Soit P \in \mathbb{R}[X]$ un polynôme réel de degré $n \ge 2$ scindé à racines simples sur \mathbb{R} . Démontrer qu'il existe $\alpha > 0$ tel que, pour tout $\varepsilon \in [-\alpha, \alpha]$, le polynôme $P(X) + \varepsilon X^{n+1}$ est scindé à racines simples dans \mathbb{R} .

perturbationPolynomeScindeRacinesSimplesCoefficientsReels

Exercice 29 $\star\star$ $\dot{\star}$ — Le but de cet exercice est de montrer que toute suite réelle possède une suite extraite monotone. Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle. On pose :

 $E = \left\{ n \in \mathbf{N} : \forall p > n \mid u_p < u_n \right\}.$

- 1. On suppose que E est infini. En utilisant les éléments de E, construire une suite extraite de u qui est strictement décroissante.
- 2. On suppose maintenant que E est fini et non vide. Soit $N = \max(E)$. Justifier que si n > N, alors il existe p > n tel que $u_p \ge u_n$, puis en déduire une construction d'une suite extraite de u qui est croissante.
- 3. Démontrer que u possède une suite extraite monotone.
- 4. En déduire une nouvelle démonstration du théorème de Bolzano-Weierstraß.

 $\verb"extractionSuiteMonotoneSuiteReelle"$

Exercice 30 $\star\star$ \Leftrightarrow — Posons $E = \mathscr{C}^1([0,1], \mathbb{R})$. Pour toute fonction $f \in E$, notons :

$$N(f) = \sqrt{f(0)^2 + \int_0^1 f'(x)^2 dx}.$$

- 1. Démontrer que N est une norme sur E.
- 2. Existe-t-il une constante $\alpha \in \mathbb{R}_+$ telle que, pour tout $f \in E$, $N(f) \leq \alpha ||f||_{\infty}$?
- 3. Existe-t-il une constante $\beta \in \mathbb{R}_+$ telle que, pour tout $f \in E$, $||f||_{\infty} \leq \beta N(f)$?

 $\verb|centraleSupelecComparaisonNormesEspaceFonctions|\\$

Exercice 31 $\star \star \Leftrightarrow$ — Soient $a \in]-1,1[$ et $(u_n)_{n \in \mathbb{N}}$ une suite de réels. Démontrer que :

$$u_n \xrightarrow[n \to +\infty]{} 0 \iff u_{n+1} - a u_n \xrightarrow[n \to +\infty]{} 0.$$

 $\verb|centraleSupelecCnsConvergenceZeroSuiteRelle| \\$

Exercice 32 $\star \star \dot{\approx}$ — Munissons $E = \mathscr{C}^0([0,1],[0,1])$ de la norme $||\cdot||_{\infty}$ de la convergence uniforme. Les parties de E suivantes sont-elles ouvertes? fermées?

$$I = \{ f \in E : f \text{ est injective} \}$$

$$S = \{ f \in E : f \text{ est surjective} \}$$

$$B = \{ f \in E : f \text{ est bijective} \}$$

 $\verb|natureTopologiquePartiesEspaceFonctionsNormeInfini|\\$

Exercice 33 $\star\star$ \Leftrightarrow — Munissons \mathbb{R}^2 de la norme $||\cdot||_2$.

Karol Borsuk (1905-1982)

Soit C le cercle unité de \mathbb{R}^2 et $f: C \longrightarrow \mathbf{R}$ une fonction continue. Démontrer qu'il existe $M \in C$ tel que f(-M) = f(M). Il s'agit d'un cas particulier du théorème de Borsuk-Ulam.

Stanisław Marcin Ulam (1909-1984)

theoremeBorsukUlamDimension1

Exercice 34 $\star \star \dot{\approx}$ — On munit $\mathscr{C}^0([0,1],\mathbf{R})$ de la norme $||\cdot||_{\infty}$ de la convergence uniforme.

On se propose de démontrer le théorème de Weierstraß, énoncé ci-dessous.

Théorème. — Pour toute fonction $f \in \mathcal{C}^0([0,1], \mathbf{R})$, il existe une suite de polynômes à coefficients réels $(P_n)_{n \in \mathbb{N}}$, telle que :

$$P_n \xrightarrow[n \to +\infty]{\|\cdot\|_{\infty}} f$$

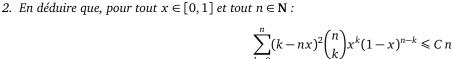
Ici les polynômes sont identifiés à leurs fonctions polynomiales associées de [0,1] dans **R**.

Pour ce faire, fixons une fonction $f \in \mathcal{C}^0([0,1], \mathbf{R})$ et un réel $\varepsilon > 0$.

1. Justifier que, pour tout $x \in [0,1]$ et tout $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} = 1$$

$$\sum_{k=0}^{n} k \binom{n}{k} x^{k} (1-x)^{n-k} = n x$$



pour une constante C > 0 à préciser.

3. Justifier l'existence de $\alpha > 0$ tel que, pour tout $(x, y) \in [0, 1]^2$:

$$|x-y| < \alpha \implies |f(x)-f(y)| < \varepsilon$$

4. Pour tout $n \in \mathbb{N}$, on définit le polynôme de Bernstein :

$$B_n(X) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} X^k (1-X)^{n-k}$$

Soit $x \in [0,1]$. On partitionne les entiers k entre 0 et n en :

$$X = \left\{ k \in \llbracket 0, n \rrbracket \ : \ \left| x - \frac{k}{n} \right| < \alpha \right\} \ \ \text{et} \ \ Y = \left\{ k \in \llbracket 0, n \rrbracket \ : \ \left| x - \frac{k}{n} \right| \geqslant \alpha \right\}$$

Démontrer que, pour tout $n \in \mathbb{N}$:

$$|B_n(x) - f(x)| \le \varepsilon + 2 ||f||_{\infty} \sum_{k \in V} {n \choose k} x^k (1 - x)^{n - k}$$

5. Conclure qu'il existe $N \in \mathbb{N}$ tel que, pour tout $n \ge N$, $||B_n - f||_{\infty} \le 2\varepsilon$.

Karl Weierstraß (1815-1897)

$$\sum_{k=0}^{n} {n \choose k} x^k (1-x)^{n-k} = 1 \qquad \qquad \sum_{k=0}^{n} k {n \choose k} x^k (1-x)^{n-k} = n x \qquad \qquad \sum_{k=0}^{n} k^2 {n \choose k} x^k (1-x)^{n-k} = n x + n (n-1) x^2$$

Sergueï Bernstein (1880-1968)

 $\verb|minesPontsTheoremeDensitePolynomialeWeierstrassPolynomesBernstein| \\$

Exercice 35 $\star\star$ $\dot{\star}$ — Soit $(E, ||\cdot||)$ un espace vectoriel normé. H un hyperplan de E. Démontrer que H est soit fermé soit dense dans E.

hyperplanFermeOuDense

Exercice 36 $\star \star \star \star$ — Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite de réels telle que $u_{n+1} - u_n \xrightarrow[n \to +\infty]{} 0$. Démontrer que l'ensemble des valeurs d'adhérence de u est un intervalle.

ensemble Valeurs Adherence Suite Reelle Intervalle

Exercice 37 $\star \star \star \star$ — Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite de réels telle que $u_{n+1} - u_{n-1} \xrightarrow[n \to +\infty]{} 0$. Démontrer que l'ensemble des valeurs d'adhérence de u est soit infini, soit fini de cardinal inférieur ou égal à 2.

minesPontsEnsembleValeursAdherenceSuiteReelleInfiniCardinalInferieur2

Exercice 38 $\star \star \star \star$ — Munissons $\mathcal{M}_p(\mathbf{C})$ de la norme définie par, pour tout $A \in \mathcal{M}_p(\mathbf{C})$:

$$||A|| = \max_{(i,j) \in [1,p]} |[A]_{i,j}|.$$

- 1. Soit $A \in \mathcal{M}_p(\mathbf{C})$ telle que la suite $(||A^n||)_{n \in \mathbb{N}}$ est bornée. Démontrer que les valeurs propres de A sont toutes de module inférieur ou égal à 1.
- 2. Soit $B \in \mathcal{M}_p(\mathbf{C})$. On suppose que la suite $(B^n)_{n \in \mathbb{N}}$ converge vers une matrice $C \in \mathcal{M}_p(\mathbf{C})$.
 - (a) Démontrer que $C^2 = C$ et $\operatorname{Spec}_{\mathbb{C}}(C) \subset \{0, 1\}$.
 - (b) Démontrer que les valeurs propres de B sont toutes de module inférieur ou égal à 1 et qu'une valeur propre de B de module 1 est égale à 1.

 ${\tt suitePuissancesMatriceMnC}$

Exercice 39 $\star\star\star$ — On munit $[0,1]^2$ de la norme $||\cdot||_{\infty}$. Soit K une partie fermée de $[0,1]^2$ telle que, pour tout $x\in[0,1]$, l'ensemble :

$$F_x := \{ y \in [0,1] : (x,y) \in K \}$$

est un intervalle non vide. Démontrer que K intersecte la droite d'équation y = x.

 ${\tt minesPontsIntersectionFermeCarrePremiereBissectrice}$

Exercice 40 $\star\star\star$ — Déterminer toutes les applications $f: U \longrightarrow U$ continues telles que, pour tout $(z_1, z_2) \in U^2$:

$$f(z_1 z_2) = f(z_1) f(z_2)$$
.

xMorphismesContinusCercleUnite

Exercice 41 $\star\star\star$ — Que dire d'une partie convexe et dense d'un espace vectoriel normé?

xPartiesConvexeDense

Exercice 42 $\star \star \star$ — Soit un entier $n \ge 2$. Déterminer l'adhérence et l'intérieur de l'ensemble $\mathcal{D}'_n(\mathbf{C})$ des matrices diagonalisables de $\mathcal{M}_n(\mathbf{C})$.

xAdherenceEnsembleMatricesDiagonalisablesMnC

Exercice 43 $\star\star\star$ — Soit un entier $n \ge 2$. Déterminer les matrices $A \in \mathcal{M}_n(\mathbf{C})$ telles que la suite $\left(A^k\right)_{k\in\mathbf{N}}$ est bornée.

ensSuitePuissancesBornéesMnC

Exercice 44 $\star\star\star$ — Soit un entier $n \ge 2$. Déterminer les matrices A de $\mathcal{M}_n(\mathbf{C})$ dont la classe similitude, i.e. l'ensemble :

$$\left\{P^{-1}AP : P \in \mathbf{GL}_n(\mathbf{C})\right\}$$

est fermée.

 ${\tt xClasseSimilitudeFermeeMnC}$

Exercice 45 $\star \star \star$ — Soient un entier $n \ge 2$ et $A \in \mathcal{M}_n(\mathbb{C})$. Démontrer que A est nilpotente si et seulement si il existe une suite $(A_k)_{k \in \mathbb{N}}$ de matrices semblables à A, qui converge vers A.

 ${\tt xCnsMatriceNilpotenteSuiteMatricesSemblablesConvergeZeroMnC}$