Un corrigé de l'exercice de topologie matricielle (X-ÉNS PC 2017) adapté d'un travail d'Édouard Lebeau

Dans cet exercice, n est un nombre entier naturel supérieur ou égal à 2.

 \mathbf{C}^n est identifié à l'espace $\mathcal{M}_{n,1}(\mathbf{C})$ des matrices colonnes à n lignes et à coefficients dans \mathbf{C} . Les coefficients d'un vecteur $x \in \mathbf{C}^n$ sont notés x_1, \dots, x_n . Dans tout le problème, \mathbf{C}^n est muni de la norme $\|\cdot\|_1$ définie par $\|x\|_1 = \sum_{i=1}^n |x_i|$.

La matrice diagonale
$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \in \mathcal{M}_n(\mathbf{C}) \text{ sera notée diag}(\lambda_1, \dots, \lambda_n).$$

Pour $M \in \mathcal{M}_n(\mathbf{C})$, on pose $||M|| = \sup_{x \in \mathbf{C}^n, ||x||_1 = 1} ||Mx||_1 = \sup_{x \in \mathbf{C}^n \setminus \{0\}} \frac{||Mx||_1}{||x||_1}$.

1. (a) Pour toute matrice $M \in \mathcal{M}_n(\mathbf{C})$ et tout nombre réel C > 0, montrer l'équivalence :

$$||M|| \le C \iff (\forall x \in \mathbf{C}^n \ ||Mx||_1 \le C||x||_1).$$

Soit $M \in \mathcal{M}_n(\mathbb{C})$. Soit C > 0.

- Sens direct. On fait l'hypothèse $\|M\| \le C$, c'est-à-dire $\sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{\|Mx\|_1}{\|x\|_1} \le \mathbf{C}$. Pour tout x non nul de \mathbb{C}^n , on a donc la majoration $\frac{\|Mx\|_1}{\|x\|_1} \le \mathbf{C}$. On multiplie par $\|x\|_1$, qui est positif, ce qui donne $\|Mx\|_1 \le C\|x\|_1$. Cette inégalité est également valable si x est nul.
- Sens réciproque. Réciproquement, on fait l'hypothèse :

$$\forall x \in \mathbb{C}^n \quad ||Mx||_1 \le C||x||1.$$

Pour tout vecteur x non nul de \mathbb{C}^n , on en déduit l'inégalité $\frac{\|Mx\|_1}{\|x\|_1} \le C$ car $\|x\|_1 > 0$, donc $\|M\| \le C$.

• Conclusion. On a prouvé l'équivalence :

$$||M|| \leq C \iff \forall x \in \mathbb{C}^n ||Mx||_1 \leq C||x||_1$$
.

- *Remarque*. On a prouvé en particulier l'inégalité $||Mx||_1 \le ||M|| \times ||x||_1$ et qu'on possède une méthode pour majorer ||M|| dans le cas général. Ces deux points serviront fréquemment dans ce qui suit.
- **(b)** Montrer que l'application $M \mapsto ||M||$ est une norme sur $\mathcal{M}_n(\mathbf{C})$.
 - *Valeurs prises par l'application*. Déjà, la fonction $M \mapsto ||M||$ est à valeurs réelles positives.
 - *Séparation*. Soit $M \in \mathcal{M}_n(\mathbb{C})$ tel que ||M|| = 0. À la question précédente, on n'a pas utilisé le caractère strict de l'inégalité C > 0. On peut donc écrire :

$$\forall x \in \mathbb{C}^n \quad ||Mx||_1 \leq 0.$$

Par positivité de la norme, on obtient donc :

$$\forall x \in \mathbb{C}^n \qquad ||Mx||_1 = 0$$

c'est-à-dire:

$$\forall x \in \mathbb{C}^n \quad Mx = 0 .$$

Les colonnes de la matrice M sont les produits Me_i , où (e_1, \ldots, e_n) désigne la base canonique de \mathbb{C}^n . Ainsi, les colonnes de M sont nulles donc M est la matrice nulle.

• Homogénéité. Soit $M \in \mathcal{M}_n(\mathbb{C})$. Soit $\lambda \in \mathbb{C}$. Soit $x \in \mathbb{C}^n$. Exploitons l'homogénéité de la norme $\|\cdot\|_1$:

$$\|\lambda M x\|_1 = |\lambda| \times \|M x\|_1 \le |\lambda| \times \|M\| \times \|x\|_1$$
.

On en déduit la majoration $\|\lambda M\| \le |\lambda| \times \|M\|$ d'après 1.(a).

Si $\lambda = 0$, on obtient $||\lambda M|| \le 0$ donc $||\lambda M|| = 0 = |\lambda| \times ||M||$.

Si $\lambda \neq 0$, on effectue la substitution $(M,\lambda) \leftarrow (\lambda M,1/\lambda)$ dans l'inégalité $\|\lambda M\| \leq |\lambda| \times \|M\|$, pour obtenir $\|M\| \leq \|\lambda M\|/|\lambda|$, c'est-à-dire $\|\lambda M\| \geq |\lambda| \times \|M\|$.

On obtient donc $\|\lambda M\| = |\lambda| \times \|M\|$ dans tous les cas.

• Inégalité triangulaire. Soient M et N dans $\mathcal{M}_n(\mathbb{C})$. L'inégalité triangulaire pour la norme $\|\cdot\|_1$ donne :

$$\forall x \in \mathbb{C}^n, \quad \|(M+N)x\|_1 \le \|Mx\|_1 + \|Nx\|_1 \le \|M\| \times \|x\|_1 + \|N\| \times \|x\|_1.$$

On en déduit l'inégalité $||M + N|| \le ||M|| + ||N||$ par application de 1.(a).

- *Conclusion*. On a montré que $\|\cdot\|$ est une norme sur $\mathcal{M}_n(\mathbb{C})$.
- **2.** Montrer que, pour $A, B \in \mathcal{M}_n(\mathbf{C})$, $||AB|| \le ||A|| \, ||B||$.

Soient *A* et *B* dans $\mathcal{M}_n(\mathbb{C})$. En appliquant 1.(a) dans le sens \Longrightarrow , on obtient :

$$\forall x \in \mathbb{C}^n$$
 $\|(AB)x\|_1 \le \|A\| \times \|Bx\|_1 \le \|A\| \times \|B\| \times \|x\|_1$.

En appliquant 1.(a) dans le sens \Leftarrow , on en déduit l'inégalité $||A \times B|| \le ||A|| \times ||B||$.

3. Soit $A \in \mathcal{M}_n(\mathbf{C})$. On note $a_{i,j}$ le coefficient de A d'indice de ligne i et d'indice de colonne j. Montrer que :

$$||A|| = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} |a_{i,j}| \right).$$

• *Une première inégalité*. Posons $S(A) = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} \left| a_{i,j} \right| \right)$ et notons j_0 un indice qui réalise ce maximum. En notant de nouveau (e_1, \dots, e_n) la base canonique de \mathbb{C}^n , on observe l'égalité :

$$Ae_{j_0} = \left(\begin{array}{c} a_{1,j_0} \\ \vdots \\ a_{n,j_0} \end{array}\right)$$

puis $S(A) = ||Ae_{j_0}||_1$.

L'égalité $\|e_{j_0}\|_1 = 1$ donne alors $S(A) = \frac{\|Ae_{j_0}\|_1}{\|e_{j_0}\|_1} \le \|A\|$.

• La seconde inégalité. Pour l'inégalité réciproque, prenons x quelconque dans \mathbb{C}^n .

$$Ax = A \times \sum_{j=1}^{n} x_j e_j = \sum_{j=1}^{n} x_j \times Ae_j$$

L'inégalité triangulaire de la norme $\|\cdot\|_1$ donne alors :

$$||Ax||_1 \le \sum_{k=1}^n |x_j| \times ||Ae_j||_1$$
.

Pour tout $j \in [1, n]$, on observe les relations :

$$||Ae_j||_1 = \sum_{i=1}^n |a_{i,j}| \le S(A)$$

donc:

$$||Ax||_1 \le \sum_{k=1}^n |x_j| \times S(A) = S(A) \times ||x||_1.$$

D'après 1.(a), on en déduit la majoration $||A|| \le S(A)$.

- Conclusion. Par double inégalité, on a prouvé l'égalité $||A|| = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} |a_{i,j}| \right)$.
- **4.** On dit qu'une suite $(A^{(k)})_{k\in\mathbb{N}}$ de matrices de $\mathcal{M}_n(\mathbf{C})$ converge vers une matrice $B\in\mathcal{M}_n(\mathbf{C})$ lorsque :

$$\forall i \in [[1, n]] \qquad \forall j \in [[1, n]] \qquad \lim_{k \to +\infty} (a_{i,j})^{(k)} = b_{i,j}$$

 $\forall i \in \llbracket [1,n \rrbracket] \qquad \forall j \in \llbracket [1,n \rrbracket] \qquad \lim_{k \to +\infty} (a_{i,j})^{(k)} = b_{i,j} \; .$ Montrer que la suite $(A^{(k)})$ converge vers B si et seulement si $\lim_{k \to +\infty} \|A^{(k)} - B\| = 0$.

• Sens direct. On commence par supposer que la suite $(A^{(k)})_{k\in\mathbb{N}}$ converge vers la matrice B. Pour tout $k\in\mathbb{N}$, on remarque l'encadrement:

$$0 \le ||A^{(k)} - B|| \le \sum_{i=1}^{n} \sum_{i=1}^{n} |a_{i,j}^{(k)} - b_{i,j}|.$$

Chaque terme du membre de droite tend vers 0 quand k tend vers $+\infty$ donc, par le théorème des gendarmes, on voit que $||A^{(k)} - B||$ tend vers 0 quand k tend vers $+\infty$.

• Sens direct. Réciproquement, on suppose que $||A^{(k)} - B||$ tend vers 0 quand k tend vers $+\infty$. Soit $(i, j) \in [1, n]^2$. Pour tout $k \in \mathbb{N}$, on observe l'encadrement :

$$0 \le \left| a_{i,j}^{(k)} - b_{i,j} \right| \le \sum_{s=1}^{n} \left| a_{s,j}^{(k)} - b_{s,j} \right| \le \left\| A^{(k)} - B \right\| .$$

On en déduit que $a_{i,j}^{(k)}$ tend vers $b_{i,j}$ quand k tend vers $+\infty$. Ainsi, la suite $(A^{(k)})_{k\in\mathbb{N}}$ converge vers la matrice

- Remarque. Ici est établi un résultat utile dans la suite : une suite de matrices de $\mathcal{M}_n(\mathbf{K})$ converge vers une matrice pour la norme $||\cdot||$ si et seulement s'il y a convergence coefficient par coefficient.
- 5. On considère dans cette question une matrice $A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & \cdots & a_{2,n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \end{pmatrix} \in \mathcal{M}_n(\mathbf{C}).$

On suppose que, pour tout $i \in [1, n]$, $|a_{i,i}| < 1$. Pour tout réel b > 0, on pose $P_b = \operatorname{diag}(1, b, b^2, \dots, b^{n-1}) \in \mathcal{M}_n(\mathbf{R})$.

(a) Calculer $P_b^{-1}AP_b$. Que se passe-t-il lorsqu'on fait tendre b vers 0?

Le calcul donne:

$$P_b^{-1}AP_b = \begin{pmatrix} a_{1,1} & ba_{1,2} & b^2a_{1,3} & \cdots & b^{n-1}a_{1,n} \\ 0 & a_{2,2} & ba_{2,3} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & b^2a_{n-2,n} \\ \vdots & & \ddots & \ddots & ba_{n-1,n} \\ 0 & \cdots & \cdots & 0 & a_{n,n} \end{pmatrix}.$$

On en déduit que $P_b^{-1}AP_b$ tend vers la matrice diag $(a_{1,1},\ldots,a_{n,n})$ quand b tend vers 0 (coefficient par coefficient donc pour la norme $||\cdot||$, d'après la question 4).

(b) Montrer qu'il existe b > 0 tel que $||P_b^{-1}AP_b|| < 1$.

D'après les questions 4 et 5.(a):

$$\left\| P_{1/k}^{-1} A P_{1/k} - \operatorname{diag}(a_{1,1}, \dots, a_{n,n}) \right\|_{k \to +\infty} 0$$

Par hypothèse:

$$\left|\left|\operatorname{diag}\left(a_{1,1},\ldots,a_{n,n}\right)\right|\right| = \max_{1 \leq i \leq j \leq n} \left|a_{i,i}\right| < 1.$$

Ainsi:

$$\varepsilon := \frac{1 - \left| \left| \operatorname{diag}\left(a_{1,1}, \ldots, a_{n,n}\right) \right| \right|}{2} > 0.$$

Il existe donc un rang $K_{\varepsilon} \in \mathbf{N}^*$ tel que :

$$\forall k \geqslant K_{\varepsilon} \qquad \left| \left| P_{1/k}^{-1} A P_{1/k} - \operatorname{diag}\left(a_{1,1}, \dots, a_{n,n}\right) \right| \right| \leqslant \varepsilon = \frac{1 - \left| \left| \operatorname{diag}\left(a_{1,1}, \dots, a_{n,n}\right) \right| \right|}{2}.$$

En particulier pour $k := K_{\varepsilon}$, on obtient :

$$\left| \left| P_{1/K_{\varepsilon}}^{-1} A P_{1/K_{\varepsilon}} - \operatorname{diag}(a_{1,1}, \dots, a_{n,n}) \right| \right| \leq \frac{1 - \left| \left| \operatorname{diag}(a_{1,1}, \dots, a_{n,n}) \right| \right|}{2}.$$

Avec la seconde inégalité triangulaire, on en déduit :

$$\left| \left| P_{1/K_{\varepsilon}}^{-1} A P_{1/K_{\varepsilon}} \right| \right| - \left| \left| \operatorname{diag}(a_{1,1}, \dots, a_{n,n}) \right| \right| \leq \frac{1 - \left| \left| \operatorname{diag}(a_{1,1}, \dots, a_{n,n}) \right| \right|}{2}$$

puis:

$$\left| \left| P_{1/K_{\varepsilon}}^{-1} A P_{1/K_{\varepsilon}} \right| \right| \leq \frac{1 + \left| \left| \operatorname{diag}(a_{1,1}, \dots, a_{n,n}) \right| \right|}{2} < 1.$$

Le réel $b := 1/K_{\varepsilon}$ convient donc.

(c) En déduire que la suite $(A^k)_{k\in\mathbb{N}^*}$ converge vers 0.

Gardons la notation *b* de la question précédente.

• Une itération de l'inégalité de la question 2 donne :

$$\forall k \in \mathbb{N}^* \qquad 0 \leq \left\| \left(P_b^{-1} A P_b \right)^k \right\| \leq \left\| P_b^{-1} A P_b \right\|^k \; .$$

L'inégalité $\|P_b^{-1}AP_b\| < 1$ donne que $\|P_b^{-1}AP_b\|^k$ tend vers 0 quand k tend vers $+\infty$.

• Rappelons l'identité :

$$\forall k \in \mathbb{N}^* \qquad \left(P_b^{-1} A P_b\right)^k = P_b^{-1} A^k P_b .$$

• L'inégalité de la question 2 donne maintenant :

$$\forall k \in \mathbb{N}^* \qquad 0 \le \left\| \left\| A^k \right\| \le \left\| P_b \right\| \times \left\| \left(P_b^{-1} A P_b \right)^k \right\| \times \left\| P_b^{-1} \right\|$$

si bien que $||A^k||$ tend également vers 0.

• La suite de matrices $(A^k)_{k \in \mathbb{N}^*}$ converge vers la matrice nulle (pour la norme $||\cdot||$ donc coefficient par coefficient, d'après la question 4).