Devoir surveillé n°1

samedi 13 septembre de 8h00 à 11h00

N.B. : vous attacherez la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

1. Questions de cours	1
2. Tirs successifs d'un archer sur une cible	1
3. Nombre de points fixes d'une permutation	3
4. Structure de l'ensemble des applications lipschitziennes	4
5. Racine carrée de $-I_n$ dans $\mathscr{M}_n(\mathbf{R})$	5
6. Action d'un groupe et théorème de Cauchy	8
6.1. Action d'un groupe	8
6.2. Formule des classes	
6.3. Théorème de Cauchy	12

1. Questions de cours

- Q1. Énoncer, puis démontrer l'inégalité de Markov.
- **Q2.** Soient **K** un corps, E un **K**-espace vectoriel de dimension finie, F un **K**-espace vectoriel et $f: E \longrightarrow F$ un isomorphisme. Démontrer que F est de dimension finie, de même dimension que E.
- Q3. Énoncer, puis démontrer la version géométrique du théorème du rang.
- **Q4.** Soient **K** un corps, E, F, G des **K**-espaces vectoriels de dimension finie, $\mathscr{E} = (e_1, \ldots, e_n)$ une base de $E, \mathscr{F} = (f_1, \ldots, f_m)$ une base de $F, \mathscr{G} = (g_1, \ldots, g_p)$ une base de $G, u \in \mathscr{L}(E, F)$ et $v \in \mathscr{L}(F, G)$. Démontrer que :

$$\operatorname{Mat}_{\mathscr{E},\mathscr{G}}(v \circ u) = \operatorname{Mat}_{\mathscr{F},\mathscr{G}}(v) \times \operatorname{Mat}_{\mathscr{E},\mathscr{F}}(u)$$
.

2. Tirs successifs d'un archer sur une cible

Un archer tire sur n cibles $(n \ge 2)$.

À chaque tir, il a la probabilité $p \in]0,1[$ de toucher la cible et les tirs sont supposés indépendants. Il tire une première fois sur chaque cible et l'on note X le nombre de cibles atteintes lors de ce premier jet. L'archer tire ensuite une seconde fois sur les cibles restantes et l'on note Y le nombre de cibles touchées lors de cette tentative.

- **Q5.** Déterminer la loi de X.
- **Q6.** Soit $k \in [0, n]$. Calculer, pour tout $i \in [0, n]$, P(Y = i | X = k).
- **Q7.** Déterminer la loi de la variable Z = X + Y.
- **Q8.** Donner les valeurs de E(Z) et V(Z).

3. Nombre de points fixes d'une permutation

Soit $n \in \mathbb{N}^*$. On munit \mathfrak{S}_n de la probabilité uniforme. Soit X la variable aléatoire définie par :

$$X \mid \mathfrak{S}_n \longrightarrow \llbracket 0, n \rrbracket$$

$$\sigma \longmapsto |\{k \in \llbracket 1, n \rrbracket : \sigma(k) = k\}|.$$

Pour tout $i \in [1, n]$, on définit la variable X_i par :

$$X_i \mid \mathfrak{S}_n \longrightarrow \llbracket 0, n \rrbracket$$

$$\sigma \longmapsto \begin{cases} 1 & \text{si } \sigma(i) = i \\ 0 & \text{sinon } . \end{cases}$$

- **Q9.** Soit $i \in [1, n]$. Déterminer la loi de X_i , son espérance et sa variance.
- **Q10.** Soient *i* et *j* des éléments distincts de [1, n]. Calculer $Cov(X_i, X_i)$.
- **Q11.** Déterminer l'espérance et la variance de X.

4. Structure de l'ensemble des applications lipschitziennes

Soient a et b des réels tels que a < b et $Lip([a, b], \mathbf{R})$ l'ensemble des applications lipschitziennes de [a, b] dans \mathbf{R} .

- **Q12.** Démontrer que $\mathscr{C}^1([a,b],\mathbf{R}) \subset \text{Lip}([a,b],\mathbf{R})$.
- **Q13.** Démontrer que Lip([a, b], \mathbb{R}) est un sous-espace vectoriel de $\mathcal{F}([a, b], \mathbb{R})$.

5. Racine carrée de $-I_n$ dans $\mathcal{M}_n(\mathbf{R})$

Soient E un **R**-espace de dimension finie non nulle et $f \in \mathcal{L}(E)$ un endomorphisme tel que $f^2 = -\mathrm{id}_E$.

- **Q14.** Justifier que f est bijective et préciser f^{-1} .
- **Q15.** Démontrer que E est de dimension paire.

Soit $p \in \mathbb{N}^*$ tel que dim(E) = 2p.

- **Q16.** Démontrer que pour tout vecteur a non nul de E, la famille (a, f(a)) est libre.
- **Q17.** Démontrer qu'il existe des vecteurs non nuls a_1, \ldots, a_p de E tels que :

$$E = \bigoplus_{i=1}^{p} \operatorname{Vect}(\{a_i, f(a_i\})).$$

Q18. Constuire une base de E dans laquelle la matrice de f est :

R:=
$$\begin{pmatrix} 0 & -1 & & & \\ 1 & 0 & & & \\ & 0 & -1 & & \\ & & 1 & 0 & & \\ & & & \ddots & & \\ & & & & 0 & -1 \\ & & & & & 1 & 0 \end{pmatrix} = E_{2,1} - E_{1,2} + E_{4,3} - E_{3,4} + \dots + E_{2p,2p-1} - E_{2p-1,2p}$$

Q19. Soit $A \in \mathcal{M}_{2p}(\mathbf{R})$ telle que $A^2 = -I_{2p}$. Démontrer que la matrice A est semblable à la matrice R.

6. Action d'un groupe et théorème de Cauchy

6.1. Action d'un groupe

Soient E un ensemble fini et (G,*) un groupe, dont le neutre est noté e_G . On se donne une application :

$$\rho \mid G \times E \longrightarrow E \\ (g,x) \longmapsto g \cdot x := \rho(g,x)$$

vérifiant les deux propriétés suivantes :

(A1)
$$\forall x \in E \quad e_G \cdot x = x$$
;

$$(A2) \ \forall (g_1, g_2) \in G^2 \quad \forall x \in E \quad g_1 \cdot \underbrace{(g_2 \cdot x)}_{\in E} = \underbrace{(g_1 * g_2)}_{\in G} \cdot x .$$

Une telle application ρ *est appelée action du groupe* (G,*) *sur* E.

Q20. Soit $x \in E$. Le stabilisateur de x est l'ensemble Stab(x) défini par :

$$\operatorname{Stab}(x) := \{ g \in G : g \cdot x = x \} \subset G$$
.

Démontrer que Stab(x) est un sous-groupe de (G, *).

À tout $x \in E$, on associe son orbite $\mathcal{O}(x)$ définie par :

$$\mathcal{O}(x) := \{g \cdot x : g \in G\} \subset E.$$

- **Q21.** Soient $(x_1, x_2) \in E^2$. Démontrer que $\mathscr{O}(x_1) \cap \mathscr{O}(x_2) = \emptyset$ ou $\mathscr{O}(x_1) = \mathscr{O}(x_2)$.
- **Q22.** Soient $\mathscr{O}(x_1), \ldots, \mathscr{O}(x_p)$ une liste exhaustive et sans répétition de toutes les orbites. Justifier :

$$E = \bigsqcup_{k=1}^{p} \mathcal{O}(x_k)$$
 [réunion disjointe]

et en déduire une expression de card (E) en fonction des cardinaux des orbites $\mathcal{O}(x_1), \ldots, \mathcal{O}(x_p)$.

Q23. Nous savons qu'une relation d'équivalence sur E livre une partition de E: celle donnée par les classes d'équivalences. Proposer une relation d'équivalence \sim sur E dont la partition de E associée est celle obtenue à la question précédente.

6.2. Formule des classes

Nous considérons ici un ensemble fini E, muni d'une action de groupe ρ par un groupe fini (G,*) et nous fixons un élément $x \in E$.

Q24. Soit τ l'application définie par :

$$\tau \mid G \longrightarrow \mathscr{O}(x)$$

$$g \longmapsto g \cdot x.$$

Justifier que:

$$G = \bigsqcup_{y \in \mathcal{O}(x)} \tau^{-1}(\{y\}) .$$

- **Q25.** Soit $y \in \mathcal{O}(x)$. Démontrer que les ensembles Stab(x) et $\tau^{-1}(\{y\})$ sont équipotents.
- Q26. En déduire la formule des classes, qui s'énonce comme suit :

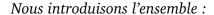
$$\operatorname{card}(\mathscr{O}(x)) = \frac{\operatorname{card}(G)}{\operatorname{card}(\operatorname{Stab}(x))}$$
.

6.3. Théorème de Cauchy

Soient $(\Gamma,*)$ un groupe fini de cardinal n et p un diviseur premier de n. Nous nous proposons de démontrer que :

$$\exists \, \gamma \in \Gamma \quad \gamma \neq e_{\Gamma} \quad et \quad \gamma^p = e_{\Gamma}$$

où e_{Γ} désigne le neutre du groupe $(\Gamma,*)$. Il s'agit d'un théorème dû à Cauchy.



$$E := \left\{ \left(\gamma_1, \gamma_2, \dots, \gamma_p \right) \in \Gamma^p : \gamma_1 * \gamma_2 * \dots * \gamma_p = e_\Gamma \right\} \subset \Gamma^p.$$

Q27. Démontrer que E est un ensemble fini, de cardinal n^{p-1} .

Soit $c \in \mathfrak{S}_p$ le cycle de longueur p défini par :

$$c := \begin{pmatrix} 1 & 2 & \dots & p-1 & p \end{pmatrix}$$

de sorte que c(p) = 1 et :

$$\forall\,i\in \llbracket 1,p-1\rrbracket\quad c(i)=i+1\;.$$

Q28. Démontrer que :

$$G := \{c^k : k \in [0, p-1]\}$$

est un sous-groupe du groupe symétrique (\mathfrak{S}_p, \circ) et que card (G) = p.

Pour tout $\gamma := (\gamma_1, \gamma_2, \dots, \gamma_p) \in \Gamma^p$ et tout $\sigma \in \mathfrak{S}_p$, on définit $\sigma \cdot \gamma \in \Gamma^p$ par :

$$\sigma \cdot \gamma := \left(\gamma_{\sigma(1)}, \gamma_{\sigma(2)}, \dots, \gamma_{\sigma(p)}\right) \qquad [\textit{permutation des composantes de } \gamma] \; .$$

Q29. Soit $\gamma := (\gamma_1, \gamma_2, \dots, \gamma_p) \in E$. Démontrer que :

$$\forall \sigma \in G \quad \sigma \cdot \gamma \in E$$
.

Q30. D'après la question précédente, l'application ρ définie par :

$$\rho \mid \begin{matrix} G \times E & \longrightarrow & E \\ (\sigma, \gamma) & \longmapsto & \sigma \cdot \gamma \end{matrix}$$

est bien définie. Démontrer qu'elle définit une action du groupe G sur l'ensemble E, i.e. que les propriétés (A1) et (A2) de la partie I sont vérifiées.

Fixons un élément $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_p) \in E$.

Q31. Démontrer que card $(\mathcal{O}(\gamma))$ est égal à 1 ou p.

Q32. Démontrer :

$$\operatorname{card}(\mathscr{O}(\gamma)) = 1 \implies \gamma_1^p = e_{\Gamma}.$$

Q33. En déduire qu'il existe $\kappa \in \Gamma$ tel que $\kappa \neq e_{\Gamma}$ et $\kappa^p = e_{\Gamma}$.