Un corrigé du devoir maison n°2 — Idéaux de $\mathcal{M}_n(R)$

1. Notations et définitions	1
2. Résultats préliminaires	1
3. Applications	2
4. Idéaux bilatères de $\mathcal{M}_n(\mathbf{R})$	4
5. Idéaux à droite de $\mathcal{M}_n(\mathbf{R})$	
6. Idéaux à gauche de $\mathcal{M}_n(\mathbf{R})$	7

Ce sujet est issu d'une épreuve de 3 heures du concours ESIM (École Supérieure d'Ingénieurs de Marseille) 2002.

1. Notations et définitions

Étant donnés n et p deux entiers naturels non nuls, on désigne par $\mathcal{M}_{p,n}(\mathbf{R})$ l'espace vectoriel des matrices à p lignes et n colonnes à coefficients réels.

 $\mathcal{M}_n(\mathbf{R})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients réels.

On rappelle que deux matrices A et B appartenant à $\mathcal{M}_{p,n}(\mathbf{R})$ sont équivalentes si et seulement s'il existe une matrice P carrée inversible d'ordre P et une matrice P carrée inversible d'ordre P et une matrice P carrée inversible d'ordre P telles que P et une matrice P carrée inversible d'ordre P et une matrice P et une matrice

A étant un élément de $\mathcal{M}_{p,n}(\mathbf{R})$, on appelle noyau de A, noté $\operatorname{Ker}(A)$, le sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{R})$:

$$\operatorname{Ker}(A) = \left\{ X \in \mathcal{M}_{n,1}(\mathbf{R}) : AX = 0 \right\}.$$

On appelle image de A le sous-espace vectoriel de $\mathcal{M}_{p,1}(\mathbf{R})$, noté $\operatorname{Im}(A)$:

$$\operatorname{Im}(A) = \left\{ AX, X \in \mathcal{M}_{n,1}(\mathbf{R}) \right\}.$$

Un sous-groupe J de $(\mathcal{M}_n(\mathbf{R}), +)$ est appelé un idéal à droite de $\mathcal{M}_n(\mathbf{R})$ si et seulement si :

$$\forall A \in \mathcal{M}_n(\mathbf{R}), \quad \forall M \in J, \quad MA \in J.$$

Un sous-groupe J de $(\mathcal{M}_n(\mathbf{R}), +)$ est appelé un idéal à gauche de $\mathcal{M}_n(\mathbf{R})$ si et seulement si :

$$\forall A \in \mathcal{M}_n(\mathbf{R}), \quad \forall M \in J, \quad AM \in J.$$

Si J est à la fois un idéal à gauche et un idéal à droite, on dit que J est un idéal bilatère de $\mathcal{M}_n(\mathbf{R})$.

On désigne par I la matrice identité d'ordre n.

2. Résultats préliminaires

Soit A appartenant à $\mathcal{M}_n(\mathbf{R})$. On suppose A de rang r.

Soit u l'endomorphisme de matrice A dans la base canonique de \mathbb{R}^n .

Q1. — Soit $(e_{r+1}, e_{r+2}, \dots, e_n)$ une base du noyau de u. Démontrer l'existence d'une famille de vecteurs (e_1, e_2, \dots, e_r) telle que $(e_1, e_2, \dots, e_r, e_{r+1}, e_{r+2}, \dots, e_n)$ soit une base de \mathbb{R}^n .

- On sait que rg(u) = rg(A) = r supposé supérieur ou égal à 1. D'après le théorème du rang, Ker(u) est de dimension n-r. Il est donc légitime de considérer une base de Ker(u) notée (e_{r+1}, \ldots, e_n) .
- Cette famille étant libre dans \mathbb{R}^n , on sait qu'on peut la compléter en une base $\mathscr{B} = (e_1, \dots, e_r, e_{r+1}, \dots, e_n)$ de \mathbb{R}^n .

Q2. — Démontrer que le sous-espace vectoriel de \mathbb{R}^n engendré par (e_1, e_2, \dots, e_r) est un supplémentaire de $\mathrm{Ker}(u)$.

D'après le cours, si $\mathcal{B} = (e_1, \dots, e_r, e_{r+1}, \dots, e_n)$ est une base de \mathbb{R}^n , alors en notant $F = \text{Vect}(e_1, \dots, e_r)$, on sait que $\mathbb{R}^n = F \oplus \text{Ker}(u)$, ce qui exprime que F est un supplémentaire de Ker(u).

- **Q3.** En déduire que le sous-espace vectoriel engendré par (e_1, e_2, \dots, e_r) est isomorphe à Im(u).
 - Considérons l'application :

$$\tilde{u} \mid F \longrightarrow \operatorname{Im}(u) \\ x \longmapsto u(x)$$

qui est linéaire, comme restriction et corestriction d'une application linéaire.

- Comme $\operatorname{Ker}(\tilde{u}) = \operatorname{Ker}(u) \cap F = \{0\}$, l'application \tilde{u} est injective.
- Comme F et Im(u) ont même dimension finie r, l'application \tilde{u} est bijective.
- Ainsi \tilde{u} est un isomorphisme de F sur Im(u).
- **Q4.** En déduire que $(u(e_1), u(e_2), \dots, u(e_r))$ est une base de Im(u).
 - D'après la question précédente, l'image par \tilde{u} de la base (e_1,\ldots,e_r) de F est donc une base de $\mathrm{Im}(u)$.
 - Comme, pour tout $i \in [1, r]$, $e_i \in F$ on a $\tilde{u}(e_i) = u(e_i)$. Ainsi $(u(e_1), \dots, u(e_r))$ est une base de Im(u).
- **Q5.** Peut-on compléter la famille $(u(e_1), u(e_2), \dots, u(e_r))$ en une base de \mathbb{R}^n ?

La famille $(u(e_1),...,u(e_r))$ étant libre dans \mathbf{R}^n , on sait qu'on peut la compléter en une base $\mathscr{C} = (u(e_1),...,u(e_r),f_{r+1},...,f_n)$ de \mathbf{R}^n .

- **Q6.** En déduire que A est équivalente à la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, où I_r désigne la matrice identité d'ordre r et 0 une matrice nulle de taille convenable.
 - Notons $\mathscr E$ la base canonique de $\mathbf R^n$, P la matrice de passage de $\mathscr E$ à $\mathscr B$, Q la matrice de passage de $\mathscr E$ à $\mathscr C$ et $B=\mathrm{Mat}_{\mathscr B,\mathscr C}(u)$. Puisque $A=\mathrm{Mat}_{\mathscr E}(u)$, le théorème de changement de base livre $A=QBP^{-1}$.
 - D'autre part, par construction des bases \mathcal{B} et \mathcal{C} de \mathbb{R}^n , la matrice B est de la forme $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, matrice diagonale notée D_r .
 - Ainsi A est équivalente à D_r .
- **Q7.** Soit D une matrice diagonale d'ordre n telle que r éléments de la diagonale sont égaux à 1, les n-r autres sont nuls. Démontrer que A est équivalente à D.
 - La matrice D est de rang r. D'aprés la question précédente, elle est aussi équivalente à D_r .
 - La relation d'équivalence des matrices d'ordre *n* étant symétrique et transitive, on obtient que *A* est semblable à toutes les matrices du type de *D*.

3. Applications

On considère une application f de $\mathcal{M}_n(\mathbf{R})$ dans \mathbf{R} , différente des constantes 0 et 1, telle que :

$$\forall (A,B) \in \mathcal{M}_n(\mathbf{R})^2, \quad f(AB) = f(A)f(B).$$

Q8. — Démontrer que pour toute matrice inversible *A* de $\mathcal{M}_n(\mathbf{R})$, f(A) est non nul.

Soit $A \in GL_n(\mathbf{R})$. Si f(A) = 0 alors pour tout $B \in \mathcal{M}_n(\mathbf{R})$:

$$f(B) = f(BA^{-1}A) = f(BA^{-1}) f(A) = 0$$

ce qui contredit que $f \neq 0$. Donc $f(A) \neq 0$.

Soit A une matrice de rang r, strictement inférieur à n.

Q9. — Démontrer l'existence de r+1 matrices, notées $A_1, A_2, ..., A_{r+1}$, toutes équivalentes à A et telles que le produit $A_1A_2...A_{r+1}$ soit nul.

- Posons $A_{r+1} = D_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$. Pour $k \in [1, r]$, on choisit A_k diagonale avec r coefficients diagonaux égaux à 1 les n-r autres étant égaux à 0 dont celui d'indice (k,k).
- Toutes les A_k pour $k \in [1, r+1]$ sont équivalentes à A d'après la question 7.
- Leur produit B est une matrice diagonale.
 - Si $1 \le k \le r$, alors $[B]_{k,k} = 0$ car $[A_k]_{k,k} = 0$.
 - Si $r + 1 \le k \le n$, alors $[B]_{k,k} = 0$ car $[A_{r+1}]_{k,k} = 0$.

Ainsi $B = A_1 A_2 \dots A_{r+1} = 0_n$, où 0_n désigne la matrice nulle de $\mathcal{M}_n(\mathbf{R})$.

Q10. — En déduire que f(A) = 0.

• Comme :

$$f(0_n) = f(0_n \times 0_n) = f(0_n) \times f(0_n)$$

il vient $f(0_n) = 0$ ou 1.

• Si on avait $f(0_n) = 1$, alors on aurait, pour tout $B \in \mathcal{M}_n(\mathbf{R})$:

$$1 = f(0_n) = f(0_n \times B) = f(0_n)f(B) = f(B)$$

ce qui contredit que $f \neq 1$. Donc $f(0_n) = 0$.

• Nous en déduisons que :

$$f(A_1)f(A_2)...f(A_{r+1}) = f(A_1A_2...A_{r+1}) = 0$$

donc un des réels $f(A_k)$ est nul.

• Comme la matrice A_k est équivalente à A, il existe deux matrices inversibles P_k et Q_k telles que $A_k = Q_k^{-1}AP_k$. Donc

$$f\left(Q_k^{-1}\right)f(A)f(P_k) = 0.$$

Mais $f(Q_k^{-1})$ et $f(P_k)$ sont non nuls d'après la question 8. Donc f(A) = 0.

Q11. — Que peut-on en conclure pour l'application f ?

• D'après ce qui précède, nous pouvons conclure que :

$$\forall A \in \mathcal{M}_n(\mathbf{R}), \quad f(A) \neq 0 \quad \Longleftrightarrow \quad A \in \mathbf{GL}_n(\mathbf{R}).$$

• De plus, f induit un morphisme de groupe multiplicatif $GL_n(\mathbf{R})$ vers le groupe multiplicatif \mathbf{R}^* . En particulier, f(I) = 1.

Q12. — Donner un exemple d'une telle application.

Un exemple de telle application est l'application déterminant de $\mathcal{M}_n(\mathbf{R})$ dans \mathbf{R} .

4. Idéaux bilatères de $\mathcal{M}_n(\mathbf{R})$

Soit J un idéal bilatère de $\mathcal{M}_n(\mathbf{R})$.

Q13. — Démontrer que si $I \in J$, alors $J = \mathcal{M}_n(\mathbf{R})$.

• Si $I \in J$ alors, pour tout $A \in \mathcal{M}_n(\mathbf{R})$:

$$A = AI \in J$$
.

• Nous en déduisons $\mathcal{M}_n(\mathbf{R}) \subset J$ et par suite $J = \mathcal{M}_n(\mathbf{R})$.

Q14. — Démontrer que si *J* contient une matrice inversible alors $J = \mathcal{M}_n(\mathbf{R})$.

Si *J* contient une matrice inversible *A*, alors :

$$I = A^{-1}A \in J$$

donc $J = \mathcal{M}_n(\mathbf{R})$, d'après la question précédente.

On suppose que J n'est pas réduit au vecteur nul de $\mathcal{M}_n(\mathbf{R})$. Soit A une matrice de rang r (non nul) appartenant à J.

Q15. — Démontrer que J contient la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

- On a vu à la question 6 que A est équivalente à D_r . Il existe donc deux matrices inversibles P et Q telles que $D_r = Q^{-1}AP$.
- *J* étant idéal à droite, $AP \in J$, puis étant idéal à gauche, $D_r = Q^{-1}(AP) \in J$.

Q16. — Démontrer l'existence de n-r+1 matrices, notées $A_1, A_2, ..., A_{n-r+1}$, toutes équivalentes à A et telles que la somme $A_1 + A_2 + \cdots + A_{n-r+1}$ soit une matrice inversible.

• Pour $k \in [1, n-r+1]$, on pose :

$$A_k = Diag(0, ..., 0, 1, ..., 1, 0, ..., 0)$$

où, pour tout $i \in [1, n]$:

$$[A_k]_{i,i} = 1 \quad \Longleftrightarrow \quad k \le i \le k+r-1$$

ce qui est possible car $k+r-1 \le (n-r+1)+r-1 = n$ (point essentiel).

- Toutes les A_k sont équivalentes à A d'après la question 7, donc sont toutes dans J d'après la solution apportée à la question précédente.
- On constate que $C = A_1 + \cdots + A_{n-r+1}$ est diagonale et que ses éléments diagonaux sont tous des entiers supérieurs ou égaux à 1.
- Nous en déduisons que C est inversible et $C \in J$, car J est stable pour l'addition comme sous-groupe de $\mathcal{M}_n(\mathbf{R})$.

Q17. — Quelle conclusion peut-on en tirer pour les idéaux bilatères de $\mathcal{M}_n(\mathbf{R})$?

- Puisque $C \in \mathbf{GL}_n(\mathbf{R})$ et $C \in J$, on a $J = \mathcal{M}_n(\mathbf{R})$, d'après la question 14.
- Ainsi le seul idéal bilatère non nul de $\mathcal{M}_n(\mathbf{R})$ est $\mathcal{M}_n(\mathbf{R})$.
- Les seuls idéaux bilatères de $\mathcal{M}_n(\mathbf{R})$ sont $\{0_n\}$ et $\mathcal{M}_n(\mathbf{R})$.

5. Idéaux à droite de $\mathcal{M}_n(\mathbf{R})$

Soit E un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{R})$.

On désigne par J_E le sous-ensemble de $\mathcal{M}_n(\mathbf{R})$:

$$J_E = \{A \in \mathcal{M}_n(\mathbf{R}) : E \text{ contient } \operatorname{Im}(A)\}.$$

Q18. — Démontrer que J_E est un idéal à droite de $\mathcal{M}_n(\mathbf{R})$.

- J_E est non vide car contient 0_n .
- Si A et B sont deux éléments de J_E , alors $A B \in J_E$ car $\mathrm{Im}(A B) \subset \mathrm{Im}(A) + \mathrm{Im}(B) \subset E + E \subset E$.
- D'autre part, si $M \in \mathcal{M}_n(\mathbf{R})$ et $A \in J_E$, alors $AM \in J_E$ car $\mathrm{Im}(AM) \subset \mathrm{Im}(A) \subset E$.
- Nous avons démontré que J_E est un idéal à droite de $\mathcal{M}_n(\mathbf{R})$.

Soit A un élément de $\mathcal{M}_{n,p}(\mathbf{R})$ et B un élément de $\mathcal{M}_{n,q}(\mathbf{R})$. On suppose que $\operatorname{Im}(B)$ est contenue dans $\operatorname{Im}(A)$. On veut montrer qu'il existe une matrice C appartenant à $\mathcal{M}_{p,q}(\mathbf{R})$ telle que B = AC.

On fixe un supplémentaire S de Ker(A) dans $\mathcal{M}_{p,1}(\mathbf{R})$.

Q19. — Justifier que l'application ϕ définie par $X \mapsto AX$ définit un isomorphisme de S dans Im (A).

• Il est clair que :

$$\phi \mid \begin{array}{ccc} S & \longrightarrow & \operatorname{Im}(A) \\ X & \longmapsto & AX \end{array}$$

est linéaire et à valeurs dans Im(A).

- L'application ϕ est injective car si $X \in \text{Ker}(\phi)$, alors $X \in S$ et AX = 0, donc $X \in S \cap \text{Ker}(A) = \{0\}$.
- L'application ϕ est est surjective. En effet, soit $Y \in \text{Im}(A)$. Il existe donc $X \in \mathcal{M}_{p,1}(K)$ tel que Y = AX. Le vecteur X se décompose sous la forme :

$$X = X_1 + X_2$$
 où $X_1 \in S$ et $X_2 \in \text{Ker}(A)$.

Alors $Y = AX_1 + AX_2 = AX_1 = \phi(X_1)$. Ainsi il existe $X_1 \in S$ tel que $Y = \phi(X_1)$.

• En résumé, ϕ définit un isomorphisme de S sur Im(A).

Soit $(e_1, e_2, ..., e_q)$ la base canonique de $\mathcal{M}_{q,1}(\mathbf{R})$.

Q20. — Justifier l'existence, pour tout i compris entre 1 et q, d'un unique élément ε_i de S tel que :

$$A\varepsilon_i = Be_i$$
.

Soit $i \in [1, q]$. Alors:

$$Be_i \in \operatorname{Im}(B) \subset \operatorname{Im}(A)$$
.

D'après la question précédente, il existe $\varepsilon_i \in S$ tel que :

$$Be_i = \phi(\varepsilon_i)$$

c'est à dire $A\varepsilon_i = Be_i$.

Soit C l'élément de $\mathcal{M}_{p,q}(\mathbf{R})$ dont les colonnes sont les matrices $\varepsilon_1, \varepsilon_2, ..., \varepsilon_q$:

$$C = [\varepsilon_1 \quad \varepsilon_2 \quad \dots \quad \varepsilon_a].$$

Q21. — Démontrer que B = AC.

• On a $C = [\varepsilon_1 \quad \varepsilon_2 \quad \dots \quad \varepsilon_q]$, donc :

$$AC = [A\varepsilon_1 \quad \dots \quad A\varepsilon_q] = [Be_1 \quad \dots \quad Be_q] = B$$

puisque Be_j représente la j-ième colonne de $B \in \mathcal{M}_{n,q}(\mathbf{R})$.

Soient A, B et C trois éléments de $\mathcal{M}_n(\mathbf{R})$ tels que $\operatorname{Im}(A) + \operatorname{Im}(B)$ contient $\operatorname{Im}(C)$.

On désigne par D = (A, B) la matrice de $\mathcal{M}_{n,2n}(\mathbf{R})$ obtenue en juxtaposant les matrices A et B, c'est-à-dire que les n premières colonnes de D sont celles de A et les n dernières celles de B.

Q22. — Démontrer que $\operatorname{Im}(D) = \operatorname{Im}(A) + \operatorname{Im}(B)$.

• Soit $Y \in \mathcal{M}_{n,1}(\mathbf{R})$.

$$Y \in \text{Im}(D) \iff \exists X \in \mathcal{M}_{2n,1}(\mathbf{R}) \quad Y = DX.$$

Or X peut s'écrire:

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

avec X_1 et X_2 dans $\mathcal{M}_{n,1}(\mathbf{R})$. Ainsi :

$$Y \in \operatorname{Im}(D) \iff \exists (X_1, X_2) \in \left(\mathcal{M}_{n,1}(\mathbf{R})\right)^2 \quad Y = (A, B) \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = AX_1 + BX_2$$

$$\iff Y \in \operatorname{Im}(A) + \operatorname{Im}(B).$$

Q23. — En déduire l'existence d'une matrice W appartenant à $\mathcal{M}_{2n,n}(\mathbf{R})$ telle que : C = DW.

D'après le résultat de la question 21, spécialisé à :

$$A \leftarrow D$$
 $B \leftarrow C$ $p \leftarrow 2n$ $q \leftarrow n$

il existe $W \in \mathcal{M}_{2n,n}(\mathbf{R})$ tel que C = DW.

Q24. — En déduire l'existence de deux matrices U et V appartenant à $\mathcal{M}_n(\mathbf{R})$ telles que C = AU + BV.

La matrice W peut s'écrire :

$$W = \begin{pmatrix} U \\ V \end{pmatrix}$$

avec U et V dans $\mathcal{M}_n(\mathbf{R})$. Ainsi :

$$C = (A, B) \begin{pmatrix} U \\ V \end{pmatrix} = AU + BV.$$

Soit J un idéal à droite de $\mathcal{M}_n(\mathbf{R})$.

Q25. — Démontrer qu'il existe un entier naturel r tel que :

$$(\forall M \in J, \operatorname{rg}(M) \leq r)$$
 et $(\exists M_0 \in J, \operatorname{rg}(M_0) = r).$

Notons:

$$X := \{ \operatorname{rg}(M) : M \in J \}.$$

Il s'agit d'une partie non vide de N (car $J \neq \emptyset$) et majorée par n. Elle admet donc un plus grand élément noté r. Comme

 $r \in X$:

$$\exists M_0 \in J \quad \operatorname{rg}(M_0) = r.$$

Soit M un élément quelconque de J. On suppose que $\operatorname{Im}(M)$ n'est pas contenue dans $\operatorname{Im}(M_0)$.

Q26. — En utilisant le sous-espace vectoriel $\text{Im}(M) + \text{Im}(M_0)$ de $\mathcal{M}_n(\mathbf{R})$, démontrer l'existence d'un élément de J de rang strictement supérieur à r.

- Comme $\operatorname{Im}(M)$ n'est pas contenue dans $\operatorname{Im}(M_0)$, $\operatorname{Im}(M_0)$ est inclus strictement dans $\operatorname{Im}(M) + \operatorname{Im}(M_0)$.
- On peut trouver une matrice $P \in \mathcal{M}_n(\mathbf{R})$ telle que $\operatorname{Im}(P) = \operatorname{Im}(M) + \operatorname{Im}(M_0)$, par exemple une matrice de projecteur $\operatorname{sur}(M) + \operatorname{Im}(M_0)$.
- D'après le résultat de la question 24 spécialisé à :

$$C \leftarrow P$$
 $A \leftarrow M$ $B \leftarrow M_0$

il existe deux matrices U et V dans $\mathcal{M}_n(\mathbf{R})$ telles que $P = MU + M_0V$.

• Comme $M \in J$ et J est un idéal à droite de $\mathcal{M}_n(\mathbf{R})$, $MU \in J$. De même $M_0V \in J$. Puisque J est un sous-groupe de $\mathcal{M}_n(\mathbf{R})$, alors :

$$P = MU + M_0V \in J$$
.

Or:

$$\operatorname{rg}(P) = \dim \operatorname{Im}(P) > \dim \operatorname{Im}(M_0) = r.$$

Q27. — Déduire des questions précédentes que J est contenu dans $J_{\text{Im}(M_0)}$.

- Si J possède un élément M tel que Im(M) n'est pas inclus dans $Im(M_0)$, alors le raisonnement de la question précédente livre une contradiction avec la définition de r.
- Donc :

$$\forall M \in J$$
, $\operatorname{Im}(M) \subset \operatorname{Im}(M_0)$

ce qui signifie que $J \subset J_{\text{Im}(M_0)}$.

Q28. — Démontrer que $J = J_{Im(M_0)}$.

- Soit $M \in J_{\operatorname{Im}(M_0)}$. Alors $\operatorname{Im}(M) \subset \operatorname{Im}(M_0)$.
- D'après le résultat de la question 21 spécialisé à :

$$B \leftarrow M$$
 $A \leftarrow M_0$

il existe $C \in \mathcal{M}_n(\mathbf{R})$ tel que $M = M_0C$. Comme $M_0 \in J$ et J est un idéal à droite de $\mathcal{M}_n(\mathbf{R})$, $M \in J$.

- Avec la question précédente, il vient $J = J_{\text{Im}(M_0)}$.
- Conclusion. Les idéaux à droite de $\mathcal{M}_n(\mathbf{R})$ sont les parties de la forme

$$J_E = \{ A \in \mathcal{M}_n(\mathbf{R}) : \operatorname{Im}(A) \subset E \}$$

où E est un sous-espace vectoriel quelconque de $\mathcal{M}_{n,1}(\mathbf{R})$. Pour $E = \{0\}$, alors $J_E = \{0_n\}$ et pour $E = \mathcal{M}_{n,1}(\mathbf{R})$, alors $J_E = \mathcal{M}_n(\mathbf{R})$ (seuls idéaux bilatères).

6. Idéaux à gauche de $\mathcal{M}_n(\mathbf{R})$

Soit E un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{R})$.

On désigne par J_E le sous-ensemble de $\mathcal{M}_n(\mathbf{R})$:

$$J_E = \{ M \in \mathcal{M}_n(\mathbf{R}) : \operatorname{Ker}(M) \text{ contient } E \}.$$

Q29. — Démontrer que J_E est un idéal à gauche de $\mathcal{M}_n(\mathbf{R})$.

- J_E est non vide car contient 0_n .
- Si A et B sont deux éléments de J_E , alors $A B \in J_E$, car $E \subset \text{Ker}(A)$ et $E \subset \text{Ker}(B)$, donc :

$$E \subset \operatorname{Ker}(A) \cap \operatorname{Ker}(B) \subset \operatorname{Ker}(A - B)$$
.

- D'autre part, si $M \in \mathcal{M}_n(\mathbf{R})$ et $A \in J_E$, alors $MA \in J_E$ car $E \subset \text{Ker}(A) \subset \text{Ker}(MA)$.
- Nous avons donc établi que J_E est un idéal à gauche de $\mathcal{M}_n(\mathbf{R})$.

On désigne par u une application linéaire de \mathbf{R}^n dans \mathbf{R}^p , v une application linéaire de \mathbf{R}^n dans \mathbf{R}^q .

On suppose que Ker(v) contient Ker(u).

Q30. — Démontrer qu'il existe un homomorphisme w de \mathbb{R}^p dans \mathbb{R}^q tel que : $v = w \circ u$.

• Première preuve exploitant les dimensions finies.

Posons r = rg(u) et s = rg(v). On a:

$$r = n - \dim \operatorname{Ker}(u) \ge n - \dim \operatorname{Ker}(v) = s$$
.

Soit (e_{r+1}, \ldots, e_n) une base de $\operatorname{Ker}(u)$. On la complète en $(e_{s+1}, \ldots, e_{r+1}, \ldots, e_n)$ une base de $\operatorname{Ker}(v)$, puis on complète en :

$$\mathcal{B} = (e_1, \dots, e_s, e_{s+1}, \dots, e_{r+1}, \dots, e_n)$$

une base de \mathbb{R}^n .

En reprenant la démonstration faite à la question 4, on montre de même que $(u(e_1), ..., u(e_r))$ est une base de Im(u). On la complète en une base :

$$\mathscr{C} = (u(e_1), \dots, u(e_r), f_{r+1}, \dots, f_p)$$

de \mathbf{R}^p .

Soit w l'application linéaire de \mathbb{R}^p dans \mathbb{R}^q déterminée sur la base \mathscr{C} par :

$$\forall i \in [1, r], \quad w(u(e_i)) = v(e_i)$$

et

$$\forall i \in [r+1, p], \quad w(f_i) = 0.$$

Pour vérifier que $v = w \circ u$, il suffit de se placer sur la base \mathscr{C} de \mathbf{R}^p . On a déjà :

$$\forall i \in [1, r], \quad w(u(e_i)) = v(e_i).$$

Si $j \in [r+1, p]$, alors $u(e_i) = 0$, donc $v(e_i) = 0$ car $Ker(u) \subset Ker(v)$ et l'égalité $w(u(e_i)) = v(e_i)$ est encore vraie.

• Deuxième preuve plus générale.

Soit F un supplémentaire de Im(u) dans \mathbf{R}^p . Notons p la projection sur Im(u) parallèlement à F.

Soit $y \in \mathbb{R}^p$. Comme $p(y) \in \text{Im}(u)$, donc il existe $x \in \mathbb{R}^n$ tel que p(y) = u(x). Posons w(y) = v(x) avec p(y) = u(x).

Cette définition de w(y) ne dépend pas de l'antécédent x de p(y) par u. En effet, si x' est un autre antécédent, alors u(x) = u(x'), donc u(x - x') = 0, d'où a fortiori v(x - x') = 0 puisque $Ker(u) \subset Ker(v)$ et ainsi v(x) = v(x').

On vient donc de définir une application w de \mathbb{R}^p dans \mathbb{R}^q .

Comme, pour tout $x \in \mathbb{R}^p$, $y = u(x) \in \text{Im}(u)$, il vient p(y) = y. Donc x est un antécédent de p(y) par u et, par définition de w, on a w(y) = v(x), c'est à dire w(u(x)) = v(x), ce qui prouve que :

$$v = w \circ u$$
.

Il reste à démontrer w est linéaire. Soient y_1 et y_2 deux éléments de \mathbf{R}^p , λ un réel, x_1 et x_2 des antécédents respectifs de $p(y_1)$ et de $p(y_2)$ par u. Par définition de w, on a : $w(y_1) = v(x_1)$ et $w(y_2) = v(x_2)$. Or :

$$p(\lambda \cdot y_1 + y_2) = \lambda \cdot p(y_1) + f(y_2) = \lambda \cdot u(x_1) + u(x_2) = u(\lambda \cdot x_1 + x_2).$$

En utilisant à nouveau la définition de w, on obtient :

$$w(\lambda \cdot y_1 + y_2) = v(\lambda \cdot x_1 + v \cdot x_2) = \lambda \cdot v(x_1) + v(x_2) = \lambda \cdot w(y_1) + w(y_2).$$

Q31. — Soient $A \in \mathcal{M}_{p,n}(\mathbf{R})$, $B \in \mathcal{M}_{q,n}(\mathbf{R})$ telles que $\operatorname{Ker}(B)$ contient $\operatorname{Ker}(A)$. Déduire de la question précédente qu'il existe $C \in \mathcal{M}_{q,p}(\mathbf{R})$ telle que B = CA.

- Il suffit de considérer l'élément $u \in \mathcal{L}(\mathbf{R}^n, \mathbf{R}^p)$ (resp. $v \in \mathcal{L}(\mathbf{R}^n, \mathbf{R}^q)$) associé canoniquement à $A \in \mathcal{M}_{p,n}(\mathbf{R})$ (resp. $B \in \mathcal{M}_{q,n}(\mathbf{R})$).
- D'après la question précédente, il existe $w \in \mathcal{L}(\mathbf{R}^p, \mathbf{R}^q)$ tel que $v = w \circ u$.
- En notant C la matrice de $\mathcal{M}_{q,p}(\mathbf{R})$ représentant w relativement aux bases canoniques de \mathbf{R}^p et \mathbf{R}^q , on a B=CA.

Soient A, B et C trois matrices carrées d'ordre n telles que Ker(C) contient $Ker(A) \cap Ker(B)$.

Q32. — Démontrer qu'il existe deux matrices carrées d'ordre n, U et V, telles que C = UA + VB.

• Considérons la matrice :

$$D:=\begin{pmatrix}A\\B\end{pmatrix}\in\mathcal{M}_{2n,n}(\mathbf{R}).$$

• Soit $X \in \mathcal{M}_{n,1}(\mathbf{R})$. Alors :

$$X \in \text{Ker}(D) \iff \begin{pmatrix} A \\ B \end{pmatrix} X = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} AX \\ BX \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\iff AX = 0 \text{ et } BX = 0$$

$$\iff X \in \text{Ker}(A) \cap \text{Ker}(B).$$

Donc $Ker(D) = Ker(A) \cap Ker(B)$.

• Puisque $Ker(D) \subset Ker(C)$, d'après le résultat de la question 31 spécialisé à :

$$A \leftarrow D$$
 $B \leftarrow C$ $p \leftarrow 2n$ $q \leftarrow n$

il existe $G \in \mathcal{M}_{n,2n}(\mathbf{R})$ tel que C = GD. En écrivant :

$$G = (U, V)$$

avec U et V dans $\mathcal{M}_n(\mathbf{R})$, on obtient :

$$C = (U, V) \begin{pmatrix} A \\ B \end{pmatrix} = UA + VB.$$

Q33. — Déterminer les idéaux à gauche de $\mathcal{M}_n(\mathbf{R})$.

- Soit J un idéal à gauche de $\mathcal{M}_n(\mathbf{R})$.
 - Posons :

$$X = \{\dim \operatorname{Ker}(M) : M \in J\}$$

est une partie non vide de **N** minorée par 0. Elle admet donc un plus petit élément noté s et il existe $M_0 \in J$ tel que dim $Ker(M_0) = s$.

— Soit $M \in J$. Nous souhaitons prouver que $Ker(M_0) \subset Ker(M)$. Raisonnons par l'absurde en supposant que $Ker(M_0)$

n'est pas inclus dans Ker(M).

Alors $Ker(M) \cap Ker(M_0)$ est inclus strictement dans $Ker(M_0)$. Considérons un élément $Q \in \mathcal{M}_n \mathbf{R}$ dont le noyau est $Ker(M) \cap Ker(M_0)$ par exemple une matrice de projecteur parallèlement à $Ker(M) \cap Ker(M_0)$. Puisque $Ker(Q) = Ker(M) \cap Ker(M_0)$, d'après la question 32, il existe U et V dans $\mathcal{M}_n(\mathbf{R})$ telles que $Q = UM + VM_0$. Comme M et M_0 sont dans M0 et que M1 est un idéal à gauche de M2. Or :

$$\dim \operatorname{Ker}(Q) < \dim \operatorname{Ker}(M_0) = s$$

ce qui contredit la définition de s.

— En résumé :

$$\forall M \in J$$
, $\operatorname{Ker}(M_0) \subset \operatorname{Ker}(M)$

donc $J \subset J_{\text{Ker}(M_0)}$.

— Réciproquement, si $M \in J_{\text{Ker}(M_0)}$, alors $\text{Ker}(M_0) \subset \text{Ker}(M)$. D'après le résultat de la question 31 spécialisé à :

$$A \leftarrow M_0 \qquad M \leftarrow B \qquad p \leftarrow n \qquad q \leftarrow n$$

il existe $C \in \mathcal{M}_n(\mathbf{R})$ tel que $M = CM_0$. Comme $M_0 \in J$ et J est un idéal à gauche, on a $M \in J$.

- Nous avons démontré que $J = J_{Ker(M_0)}$.
- Conclusion. Les idéaux à gauche de $\mathcal{M}_n(\mathbf{R})$ sont les parties de la forme

$$J_E = \{ M \in \mathcal{M}_n(\mathbf{R}) : E \subset \mathrm{Ker}(M) \}$$

où E est un sous-espace vectoriel quelconque de $\mathcal{M}_{n,1}(\mathbf{R})$. Pour $E = \{0\}$, $J_E = \mathcal{M}_n(\mathbf{R})$ et pour $E = \mathcal{M}_{n,1}(\mathbf{R})$, $J_E = \{0_n\}$ (seuls idéaux bilatères).