Devoir maison n°2 — Idéaux de $\mathcal{M}_n(R)$

pour le vendredi 26 septembre

1. Notations et définitions	1
2. Résultats préliminaires	1
3. Applications	2
4. Idéaux bilatères de $\mathcal{M}_n(\mathbf{R})$	2
5. Idéaux à droite de $\mathcal{M}_n(\mathbf{R})$	2
6. Idéaux à gauche de $\mathcal{M}_n(\mathbf{R})$	3

Ce sujet est issu d'une épreuve de 3 heures du concours ESIM (École Supérieure d'Ingénieurs de Marseille) 2002.

1. Notations et définitions

Étant donnés n et p deux entiers naturels non nuls, on désigne par $\mathcal{M}_{p,n}(\mathbf{R})$ l'espace vectoriel des matrices à p lignes et n colonnes à coefficients réels.

 $\mathcal{M}_n(\mathbf{R})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients réels.

On rappelle que deux matrices A et B appartenant à $\mathcal{M}_{p,n}(\mathbf{R})$ sont équivalentes si et seulement s'il existe une matrice P carrée inversible d'ordre P et une matrice P carrée inversible d'ordre P telles que P appartenant à P carrée inversible d'ordre P carrée inversible d'ordre

A étant un élément de $\mathcal{M}_{p,n}(\mathbf{R})$, on appelle noyau de A, noté $\operatorname{Ker}(A)$, le sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{R})$:

$$\operatorname{Ker}(A) = \left\{ X \in \mathcal{M}_{n,1}(\mathbf{R}) : AX = 0 \right\}.$$

On appelle image de A le sous-espace vectoriel de $\mathcal{M}_{p,1}(\mathbf{R})$, noté $\operatorname{Im}(A)$:

$$\operatorname{Im}(A) = \left\{ AX, X \in \mathcal{M}_{n,1}(\mathbf{R}) \right\}.$$

Un sous-groupe J de $(\mathcal{M}_n(\mathbf{R}), +)$ est appelé un idéal à droite de $\mathcal{M}_n(\mathbf{R})$ si et seulement si :

$$\forall A \in \mathcal{M}_n(\mathbf{R}), \quad \forall M \in J, \quad MA \in J.$$

Un sous-groupe J de $(\mathcal{M}_n(\mathbf{R}), +)$ est appelé un idéal à gauche de $\mathcal{M}_n(\mathbf{R})$ si et seulement si :

$$\forall A \in \mathcal{M}_n(\mathbf{R}), \quad \forall M \in J, \quad AM \in J.$$

Si J est à la fois un idéal à gauche et un idéal à droite, on dit que J est un idéal bilatère de $\mathcal{M}_n(\mathbf{R})$.

On désigne par I la matrice identité d'ordre n.

2. Résultats préliminaires

Soit A appartenant à $\mathcal{M}_n(\mathbf{R})$. On suppose A de rang r.

Soit u l'endomorphisme de matrice A dans la base canonique de \mathbb{R}^n .

Q1. — Soit $(e_{r+1}, e_{r+2}, \dots, e_n)$ une base du noyau de u. Démontrer l'existence d'une famille de vecteurs (e_1, e_2, \dots, e_r) telle que $(e_1, e_2, \dots, e_r, e_{r+1}, e_{r+2}, \dots, e_n)$ soit une base de \mathbf{R}^n .

Q2. — Démontrer que le sous-espace vectoriel de \mathbb{R}^n engendré par (e_1, e_2, \dots, e_r) est un supplémentaire de $\mathrm{Ker}(u)$.

Q3. — En déduire que le sous-espace vectoriel engendré par (e_1, e_2, \dots, e_r) est isomorphe à Im(u).

- **Q4.** En déduire que $(u(e_1), u(e_2), \dots, u(e_r))$ est une base de $\operatorname{Im}(u)$.
- **Q5.** Peut-on compléter la famille $(u(e_1), u(e_2), \dots, u(e_r))$ en une base de \mathbb{R}^n ?
- **Q6.** En déduire que A est équivalente à la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, où I_r désigne la matrice identité d'ordre r et 0 une matrice nulle de taille convenable.
- **Q7.** Soit D une matrice diagonale d'ordre n telle que r éléments de la diagonale sont égaux à 1, les n-r autres sont nuls. Démontrer que A est équivalente à D.

3. Applications

On considère une application f de $\mathcal{M}_n(\mathbf{R})$ dans \mathbf{R} , différente des constantes 0 et 1, telle que :

$$\forall (A,B) \in \mathcal{M}_n(\mathbf{R})^2, \quad f(AB) = f(A)f(B).$$

Q8. — Démontrer que pour toute matrice inversible A de $\mathcal{M}_n(\mathbf{R})$, f(A) est non nul.

Soit A une matrice de rang r, strictement inférieur à n.

- **Q9.** Démontrer l'existence de r+1 matrices, notées $A_1, A_2, ..., A_{r+1}$, toutes équivalentes à A et telles que le produit $A_1A_2...A_{r+1}$ soit nul.
- **Q10.** En déduire que f(A) = 0.
- **Q11.** Que peut-on en conclure pour l'application f ?
- **Q12.** Donner un exemple d'une telle application.

4. Idéaux bilatères de $\mathcal{M}_n(\mathbf{R})$

Soit J un idéal bilatère de $\mathcal{M}_n(\mathbf{R})$.

- **Q13.** Démontrer que si $I \in J$, alors $J = \mathcal{M}_n(\mathbf{R})$.
- **Q14.** Démontrer que si *J* contient une matrice inversible alors $J = \mathcal{M}_n(\mathbf{R})$.

On suppose que J n'est pas réduit au vecteur nul de $\mathcal{M}_n(\mathbf{R})$. Soit A une matrice de rang r (non nul) appartenant à J.

- **Q15.** Démontrer que J contient la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
- **Q16.** Démontrer l'existence de n-r+1 matrices, notées $A_1, A_2, ..., A_{n-r+1}$, toutes équivalentes à A et telles que la somme $A_1 + A_2 + \cdots + A_{n-r+1}$ soit une matrice inversible.
- **Q17.** Quelle conclusion peut-on en tirer pour les idéaux bilatères de $\mathcal{M}_n(\mathbf{R})$?

5. Idéaux à droite de $\mathcal{M}_n(\mathbf{R})$

Soit E un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{R})$.

On désigne par J_E le sous-ensemble de $\mathcal{M}_n(\mathbf{R})$:

$$J_E = \{A \in \mathcal{M}_n(\mathbf{R}) : E \text{ contient } \operatorname{Im}(A)\}.$$

Q18. — Démontrer que J_E est un idéal à droite de $\mathcal{M}_n(\mathbf{R})$.

Soit A un élément de $\mathcal{M}_{n,p}(\mathbf{R})$ et B un élément de $\mathcal{M}_{n,q}(\mathbf{R})$. On suppose que $\operatorname{Im}(B)$ est contenue dans $\operatorname{Im}(A)$. On veut montrer qu'il existe une matrice C appartenant à $\mathcal{M}_{p,q}(\mathbf{R})$ telle que B = AC.

On fixe un supplémentaire S de Ker(A) dans $\mathcal{M}_{p,1}(\mathbf{R})$.

Q19. — Justifier que l'application ϕ définie par $X \longrightarrow AX$ définit un isomorphisme de S dans Im(A).

Soit $(e_1, e_2, ..., e_q)$ la base canonique de $\mathcal{M}_{q,1}(\mathbf{R})$.

Q20. — Justifier l'existence, pour tout i compris entre 1 et q, d'un unique élément ε_i de S tel que :

$$A\varepsilon_i = Be_i$$

Soit C l'élément de $\mathcal{M}_{p,q}(\mathbf{R})$ dont les colonnes sont les matrices $\varepsilon_1, \varepsilon_2, ..., \varepsilon_q$:

$$C = [\varepsilon_1 \quad \varepsilon_2 \quad \dots \quad \varepsilon_q].$$

Q21. — Démontrer que B = AC.

Soient A, B et C trois éléments de $\mathcal{M}_n(\mathbf{R})$ tels que $\operatorname{Im}(A) + \operatorname{Im}(B)$ contient $\operatorname{Im}(C)$.

On désigne par D = (A, B) la matrice de $\mathcal{M}_{n,2n}(\mathbf{R})$ obtenue en juxtaposant les matrices A et B, c'est-à-dire que les n premières colonnes de D sont celles de A et les n dernières celles de B.

Q22. — Démontrer que $\operatorname{Im}(D) = \operatorname{Im}(A) + \operatorname{Im}(B)$.

Q23. — En déduire l'existence d'une matrice W appartenant à $\mathcal{M}_{2n,n}(\mathbf{R})$ telle que : C = DW.

Q24. — En déduire l'existence de deux matrices U et V appartenant à $\mathcal{M}_n(\mathbf{R})$ telles que C = AU + BV.

Soit J un idéal à droite de $\mathcal{M}_n(\mathbf{R})$.

Q25. — Démontrer qu'il existe un entier naturel r tel que :

$$(\forall M \in J, \operatorname{rg}(M) \leq r)$$
 et $(\exists M_0 \in J, \operatorname{rg}(M_0) = r).$

Soit M un élément quelconque de J. On suppose que $\operatorname{Im}(M)$ n'est pas contenue dans $\operatorname{Im}(M_0)$.

Q26. — En utilisant le sous-espace vectoriel $\text{Im}(M) + \text{Im}(M_0)$ de $\mathcal{M}_n(\mathbf{R})$, démontrer l'existence d'un élément de J de rang strictement supérieur à r.

Q27. — Déduire des questions précédentes que J est contenu dans $J_{\text{Im}(M_0)}$.

Q28. — Démontrer que $J = J_{Im(M_0)}$.

6. Idéaux à gauche de $\mathcal{M}_n(\mathbf{R})$

Soit E un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{R})$.

On désigne par J_E le sous-ensemble de $\mathcal{M}_n(\mathbf{R})$:

$$J_E = \{ M \in \mathcal{M}_n(\mathbf{R}) : \operatorname{Ker}(M) \text{ contient } E \}.$$

Q29. — Démontrer que J_E est un idéal à gauche de $\mathcal{M}_n(\mathbf{R})$.

On désigne par u une application linéaire de \mathbb{R}^n dans \mathbb{R}^p , v une application linéaire de \mathbb{R}^n dans \mathbb{R}^q .

On suppose que Ker(v) contient Ker(u).

Q30. — Démontrer qu'il existe un homomorphisme w de \mathbf{R}^p dans \mathbf{R}^q tel que : $v = w \circ u$.

Q31. — Soient $A \in \mathcal{M}_{p,n}(\mathbf{R})$, $B \in \mathcal{M}_{q,n}(\mathbf{R})$ telles que $\operatorname{Ker}(B)$ contient $\operatorname{Ker}(A)$. Déduire de la question précédente qu'il existe $C \in \mathcal{M}_{q,p}(\mathbf{R})$ telle que B = CA.

Soient A, B et C trois matrices carrées d'ordre n telles que Ker(C) contient $Ker(A) \cap Ker(B)$.

Q32. — Démontrer qu'il existe deux matrices carrées d'ordre n, U et V, telles que C = UA + VB.

Q33. — Déterminer les idéaux à gauche de $\mathcal{M}_n(\mathbf{R})$.