Réduction des endomorphismes et des matrices 1

1.	Compléments d'algèbre linéaire	
	1.1. Projecteurs associés à une décomposition en somme directe	. 2
	1.2. Dimension d'une somme de sous-espaces vectoriels	. 2
	1.3. Construction d'applications linéaires et décomposition en somme directe	. 3
	1.4. Sommes et produits de matrices définies par blocs	. 3
	1.5. Déterminant d'une matrice triangulaire par blocs	. 4
2.	Éléments propres d'un endomorphisme	. 5
	2.1. Sous-espaces stables et endomorphisme induit	
	2.2. Sous-espaces stables d'un espace vectoriel de dimension finie	
	2.3. Endomorphisme diagonalisable et droites stables	
	2.4. Endomorphisme trigonalisable et drapeau stable	
	2.5. Définition des valeurs propres et des vecteurs propres d'un endomorphisme	
	2.6. Définition des sous-espaces propres d'un endomorphisme	
	2.7. Des sous-espaces propres distincts sont en somme directe	
	2.8. Majoration du nombre de valeurs propres d'un endomorphisme d'un espace de dimension finie	
	2.9. Une méthode pour déterminer les éléments propres d'un endomorphisme	
	2.10. Détermination des éléments propres d'endomorphismes usuels	
	2.11. Endomorphismes qui commutent et sous-espaces stables	
_		
3.	Éléments propres d'une matrice carrée	
	3.1. Définition des éléments propres d'une matrice carrée	
	3.2. Éléments propres d'un endomorphisme versus éléments propres d'une matrice	
	3.3. Majoration du nombre de valeurs propres d'une matrice	
4.	Polynôme caractéristique	
	4.1. Définition du polynôme caractéristique d'une matrice carrée	
	4.2. Polynôme caractéristique de deux matrices semblables	
	4.3. Définition du polynôme caractéristique d'un endomorphisme	
	4.4. Degré et coefficients remarquables du polynôme caractéristique	
	4.5. Les valeurs propres sont les racines du polynôme caractéristique	
	4.6. Valeurs propres de deux matrices semblables	
	4.7. Une méthode pour déterminer les valeurs propres d'une matrice	
	4.8. Quelques calculs de valeurs propres à l'aide du polynôme caractéristique	
	4.9. Polynôme caractéristique et valeurs propres d'une matrice triangulaire	
	4.10. Polynôme caractéristique d'un endomorphisme induit	
	4.11. Ordre de multiplicité d'une valeur propre	
	4.12. Dimension d'un sous-espace propre et ordre de multiplicité de la valeur propre correspondante	14
	4.13. Matrices compagnon	
	4.14. Polynôme caractéristique de l'inverse d'une matrice inversible	
	4.15. Polynôme caractéristique du produit de deux matrices carrées	15
5.	Diagonalisabilité	
	5.1. Définition d'une matrice carrée diagonalisable	
	5.2. Une condition nécessaire (non suffisante) de diagonalisabilité	
	5.3. Influence du corps de base sur la diagonalisabilité d'une matrice	
	5.4. Définition d'un endomorphisme diagonalisable	
	5.5. Projecteurs et symétries sont diagonalisables	
	5.6. Caractérisation de la diagonalisabilité via la somme directe de sous-espaces propres	
	5.7. Caractérisation de la diagonalisabilité via la somme des dimensions des sous-espaces propres	
	5.8. Une condition suffisante (non nécessaire) de la diagonalisabilité	
	5.9. Caractérisation de la diagonalisabilité via le scindage de χ et les ordres de multiplicité des racines	
	5.10. Trace, déterminant et valeurs propres d'un endomorphisme/une matrice diagonalisable	
	5.11. Un exemple de calcul des puissances d'une matrice diagonalisable	
	5.12. Matrices à coefficients réels diagonalisables sur C	
6	Trigonalisabilité	
٠.	6.1. Définition d'une matrice carrée trigonalisable	
	6.2. Influence du corps de base sur la trigonalisabilité d'une matrice	
	6.3. Définition d'un endomorphisme trigonalisable	
	6.4. Caractérisation de la trigonalisabilité via le polynôme caractéristique	
	6.5. Trigonalisabilité dans le cas où le corps de base est C	
	6.6. Trace, déterminant et valeurs propres d'un endomorphisme/d'une matrice trigonalisable	
	o.o. Trace, determinant et valeurs propres d'un endomorphisme/d'une matrice trigonalisable	41

	6.7. Trigonalisation d'une matrice trigonalisable de format (2,2)	22
	6.8. Trigonalisation d'une matrice trigonalisable de format (3,3)	22
7	Nilpotence	24
	7.1. Définition d'une matrice carrée nilpotente	24
	7.2. Définition d'un endomorphisme nilpotent	24
	7.3. Majoration du nilindice	
	7.4. Caractérisation de la nilpotence via le polynôme caractéristique	

Notation. — Dans tout ce chapitre, la lettre K désigne un corps.

1. Compléments d'algèbre linéaire

Notation. — La lettre *E* désigne un **K**-espace vectoriel.

1.1. Projecteurs associés à une décomposition en somme directe

Proposition 1. — Soient un entier $p \ge 2$ et $E_1, ..., E_p$ des sous-espaces vectoriels de E tels que $E = \bigoplus_{i=1}^p E_i$. Pour tout $i \in [1, p]$, π_i désigne la projection de E sur E_i parallèlement à $\bigoplus_{j=1}^p E_j$, i.e. :

$$\pi_i \left| \begin{array}{c} E = \bigoplus_{j=1}^p E_j & \longrightarrow & E \\ \\ x = \sum_{j=1}^p \underbrace{x_j}_{\in E_j} & \longmapsto & x_i \end{array} \right.$$

Alors $\sum_{i=1}^{p} \pi_i = \mathrm{id}_E$ et, pour tout $(i,j) \in [1,p]^2$ tel que $i \neq j$, $\pi_i \circ \pi_j = 0_{\mathscr{L}(E)}$.

Une démonstration de la proposition 1 est à connaître.

Exercice 2. — Soient un entier $p \ge 2$ et π_1, \dots, π_p des projecteurs de E tels que $\sum_{i=1}^p \pi_i = \mathrm{id}_E$ et, pour tout $(i,j) \in [1,p]^2$ tel que $i \ne j$, $\pi_i \circ \pi_j = 0_{\mathscr{L}(E)}$. Démontrer que $E = \bigoplus_{i=1}^p \mathrm{Im}(\pi_i)$.

1.2. Dimension d'une somme de sous-espaces vectoriels

Rappel 3. — Soient un entier $p \ge 2$ et E_1, \dots, E_p des **K**-espaces vectoriels. Si l'on définit sur :

$$\prod_{i=1}^{p} E_i = \{(x_1, \dots, x_p) : x_1 \in E_1, \dots, x_p \in E_p\}$$

une addition + et une multiplication par un scalaire · composante par composante, alors $\left(\prod_{i=1}^p E_i, +, \cdot\right)$ est un **K**-espace vectoriel. De plus, si les **K**-espaces vectoriels E_1, \dots, E_p sont de dimension finie, alors le **K**-espace vectoriel $\prod_{i=1}^p E_i$ est également de dimension finie et :

$$\dim\left(\prod_{i=1}^{p} E_i\right) = \sum_{i=1}^{p} \dim\left(E_i\right)$$

Proposition 4. — Soient un entier $p \ge 2$ et E_1, \dots, E_p des sous-espaces vectoriels de E, que nous supposons ici de dimension finie.

1.
$$\dim\left(\sum_{i=1}^{p} E_i\right) \leq \sum_{i=1}^{p} \dim\left(E_i\right)$$

2. La somme
$$\sum_{i=1}^{p} E_i$$
 est directe si et seulement si $\dim \left(\sum_{i=1}^{p} E_i\right) = \sum_{i=1}^{p} \dim (E_i)$.

Éléments de démonstration. L'application:

$$f \mid \prod_{i=1}^{n} E_{i} \longrightarrow \sum_{i=1}^{n} E_{i}$$
$$(x_{1}, \dots, x_{p}) \longmapsto x_{1} + \dots + x_{p}$$

est linéaire et surjective.

1.3. Construction d'applications linéaires et décomposition en somme directe

Proposition 5. — Soient un entier $p \ge 2$, E_1, \ldots, E_p des sous-espaces vectoriels de E tels que $E = \bigoplus_{i=1}^p E_i$ et E un E-espace vectoriel. Alors:

$$\forall (u_1,\ldots,u_p) \in \prod_{i=1}^p \mathcal{L}(E_i,F) \quad \exists ! u \in \mathcal{L}(E,F) \quad \forall i \in [1,p] \quad u_{|E_i} = u_i.$$

1.4. Sommes et produits de matrices définies par blocs

Remarque 6. — Soient un entier $n \ge 2$ et $p \in \llbracket 1, n-1 \rrbracket$. Il est parfois utile de considérer une matrice de $\mathcal{M}_n(K)$ comme une matrice par blocs :

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

où $A \in \mathcal{M}_p(\mathbf{K}), B \in \mathcal{M}_{p,n-p}(\mathbf{K}), C \in \mathcal{M}_{n-p,p}(\mathbf{K}) \text{ et } D \in \mathcal{M}_{n-p,n-p}(\mathbf{K}).$

Proposition 7. — Les matrices par blocs s'additionnent et se multiplient comme des matrices 2×2 . Plus précisément, soient :

$$M_1 = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \qquad et \qquad M_2 = \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix}$$

 $o\grave{u}\;(A_1,A_2)\in\mathcal{M}_p(\mathbf{K})^2,\;(B_1,B_2)\in\mathcal{M}_{p,n-p}(\mathbf{K})^2,\;(C_1,C_2)\in\mathcal{M}_{n-p,p}(\mathbf{K})^2\;et\;(D_1,D_2)^2\in\mathcal{M}_{n-p,n-p}(\mathbf{K})^2.\;Alors:$

$$M_1 + M_2 = \begin{pmatrix} A_1 + A_2 & B_1 + B_2 \\ C_1 + C_2 & D_1 + D_2 \end{pmatrix} \qquad \text{et} \qquad M_1 M_2 = \begin{pmatrix} A_1 A_2 + B_1 C_2 & A_1 B_2 + B_1 D_2 \\ C_1 A_2 + D_1 C_2 & C_1 B_2 + D_1 D_2 \end{pmatrix} \,.$$

Remarque 8. — On peut généraliser les formules de la proposition 7 à une décomposition en un nombre arbitraire de blocs.

Exercice 9. — Soient $n_1, ..., n_p$ des nombres entiers naturels non nuls et $A_1 \in \mathcal{M}_{n_1}(K), ..., A_p \in \mathcal{M}_{n_p}(K)$. Quel lien existe-t-il entre les puissances de la matrice :

$$M := \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_p \end{pmatrix}$$
 [matrice diagonale par blocs]

et les puissances des matrices $A_1, ..., A_p$?

Remarque 10. — Soient *E* un **K**-espace vectoriel de dimension finie $n \ge 2$ muni d'une base $\mathcal{B} = (e_1, ..., e_n)$ et $u \in \mathcal{L}(E)$. Considérons la décomposition par blocs de Mat_{\mathcal{B}}(u) suivante :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

où $A \in \mathcal{M}_p(\mathbf{K}), B \in \mathcal{M}_{p,n-p}(\mathbf{K}), C \in \mathcal{M}_{n-p,p}(\mathbf{K})$ et $D \in \mathcal{M}_{n-p,n-p}(\mathbf{K})$. Nous allons donner une interprétation géométriques des différents blocs A, B, C, D.

- (a) Nous décomposons l'espace vectoriel E pour refléter la décomposition de la matrice $\mathrm{Mat}_{\mathscr{B}}(u)$ en blocs. Soient F le sous-espace vectoriel engendré par la famille libre $\mathscr{B}_F = (e_1, \dots, e_p)$ et G le sous-espace vectoriel engendré par la famille libre $\mathscr{B}_G = (e_{p+1}, \dots, e_n)$ de sorte que $E = F \oplus G$.
- (b) Nous introduisons les applications linéaires canoniquement associées à la décomposition de E introduite en (a). Soient i_F l'injection canonique de F dans E, p_F la projection de E sur F parallèlement à G correstreinte à G :

$$i_{F} \mid F \longrightarrow E \atop x \longmapsto x \qquad p_{F} \mid \sum_{i=1}^{n} \underbrace{x_{i}}_{\in K} e_{i} \longmapsto \sum_{i=1}^{p} x_{i} e_{i}$$

$$i_{G} \mid G \longrightarrow E \atop x \longmapsto x \qquad p_{G} \mid \sum_{i=1}^{n} \underbrace{x_{i}}_{\in K} e_{i} \longmapsto \sum_{i=p+1}^{n} x_{i} e_{i}.$$

(c) Nous pouvons alors proposer une interprétation géométrique des matrices A, B, C, D.

$$A = \operatorname{Mat}_{\mathscr{B}_F}(p_F \circ u \circ i_F) \qquad B = \operatorname{Mat}_{\mathscr{B}_G, \mathscr{B}_F}(p_F \circ u \circ i_G) \qquad C = \operatorname{Mat}_{\mathscr{B}_F, \mathscr{B}_G}(p_G \circ u \circ i_F) \qquad D = \operatorname{Mat}_{\mathscr{B}_G}(p_G \circ u \circ i_G)$$

Exercice 11. — Soient $M \in GL_n(K)$, $L \in \mathcal{M}_{1,n}(K)$ et $P = \begin{pmatrix} 1 & L \\ 0 & M \end{pmatrix}$. Démontrer que P est inversible et exprimer P^{-1} en fonction de M^{-1} et L.

Exercice 12. — Soient $A \in GL_p(K)$, $C \in \mathcal{M}_{p,n-p}(K)$, $D \in GL_{n-p}(K)$. Démontrer que $M = \begin{pmatrix} A & C \\ 0 & D \end{pmatrix}$ est inversible et exprimer son inverse en fonction de A^{-1} , D^{-1} et C.

1.5. Déterminant d'une matrice triangulaire par blocs

Théorème 13. — Soit
$$M = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$$
, où $A \in \mathcal{M}_p(\mathbf{K})$, $B \in \mathcal{M}_{p,n-p}(\mathbf{K})$, $D \in \mathcal{M}_{n-p}(\mathbf{K})$. Alors:
$$\det(M) = \det(A) \det(D)$$
.

Plus généralement, si n_1, \ldots, n_p sont des nombres entiers naturels non nuls, si :

$$M = \begin{pmatrix} A_1 & * & \dots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & A_n \end{pmatrix}$$
 [matrice triangulaire supérieure par blocs]

où $A_1 \in \mathcal{M}_{n_1}(\mathbf{K}), \ldots, A_p \in \mathcal{M}_{n_p}(\mathbf{K}), \text{ alors } :$

$$\det(M) = \prod_{i=1}^{p} \det(A_i) .$$

Une démonstration du théorème 13 est à connaître.

Remarque 14. — Les formules du théorème 13 valent également pour des matrices triangulaires inférieures par blocs.

Exercice 15. — Soient $A \in \mathcal{M}_p(\mathbf{K})$, $B \in \mathcal{M}_{p,n-p}(\mathbf{K})$ et $D \in \mathcal{M}_{n-p}(\mathbf{K})$.

1. Démontrer :

$$\det\begin{pmatrix} I_{n-p} & 0 \\ 0 & A \end{pmatrix} = \det\begin{pmatrix} A & B \\ 0 & I_{n-p} \end{pmatrix} = \det(A) .$$

2. En écrivant judicieusement la matrice $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ comme un produit de deux matrices définies par blocs, démontrer la première assertion du théorème 13.

Exercice 16. — Soient $(A, B, C, D) \in \mathcal{M}_n(\mathbf{K})^4$ telles que C et D commutent et D soit inversible. Démontrer que :

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC) .$$

On pourra écrire la matrice $\begin{pmatrix} AD-BC & B \\ 0 & D \end{pmatrix}$ comme un produit de deux matrices définies par blocs.

Exercice 17. — Soit $(A, B) \in \mathcal{M}_n(\mathbf{R})^2$.

1. Démontrer que

$$\det\begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det(A+B) \det(A-B) .$$

2. Démontrer que :

$$\det\begin{pmatrix} A & B \\ -B & A \end{pmatrix} = \det(A+iB) \det(A-iB) .$$

On pourra multiplier certaines lignes et colonnes de $\begin{pmatrix} A & B \\ -B & A \end{pmatrix}$ par i et effectuer des opérations sur les lignes et les colonnes.

3. Démontrer que :

$$\det \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \geqslant 0.$$

4. Supposons que AB = BA. Démontrer que :

$$\det\left(A^2+B^2\right)\geqslant 0.$$

5. Démontrer que l'inégalité de la question 4 ne vaut pas nécessairement lorsque A et B ne commutent pas.

2. Éléments propres d'un endomorphisme

2.1. Sous-espaces stables et endomorphisme induit

Notation. — Dans cette partie, on note *E* un **K**-espace vectoriel.

Définition 18. — Soient $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. On dit que F est stable par u, ou que u stabilise F, si $u(F) \subset F$, i.e. si:

$$\forall x \in F \quad u(x) \in F$$
.

Remarque 19. — Les sous-espaces vectoriels $\{0_E\}$ et E sont stables par tout endomorphisme de E.

Exercice 20. — Soit $u \in \mathcal{L}(E)$. Démontrer que Ker(u) et Im(u) sont stables par u.

Exercice 21. — Déterminer les sous-espaces vectoriels de K[X] stable par la dérivation :

$$D \mid \begin{matrix} \mathbf{K}[X] & \longrightarrow & \mathbf{K}[X] \\ P & \longmapsto & P' . \end{matrix}$$

Définition 22. — Soient $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E, stable par F. L'application u_F définie par :

$$u_F \mid F \longrightarrow F \atop x \longmapsto u(x)$$
 $\left[u_F \text{ est la restriction-corestriction } u_F^{|F|}\right]$

est un endomorphisme de F, appelé endomorphisme de F induit par u.

Exercice 23. — Soient F le plan de \mathbb{R}^3 d'équation x + y + z = 0 et u l'endomorphisme de \mathbb{R}^3 défini par :

$$u \mid \mathbf{R}^{3} \longrightarrow \mathbf{R}^{3}$$

$$(x, y, z) \longmapsto (2x + y + z, x + 2y + z, x + y + 2z)$$

- 1. Démontrer que la plan F est stable par u.
- 2. Déterminer la matrice de $u_{|F|}$ dans la base ((1,-1,0),(1,0,-1)) de F.
- 3. Reconnaître l'endomorphisme u_F de F?

Exercice **24.** — Soit *u* un endomorphisme de *E* stabilisant toute droite de *E*.

1. Démontrer que :

$$\forall x \in E \setminus \{0_E\} \quad \exists ! \lambda_x \in K \quad u(x) = \lambda \cdot x.$$

- 2. Soient x, y deux vecteurs liés de $E \setminus \{0_E\}$. Démontrer que $\lambda_x = \lambda_y$.
- 3. Soient x, y deux vecteurs libres de $E \setminus \{0_E\}$. En considérant le vecteur x + y, démontrer que $\lambda_x = \lambda_y$.
- 4. En déduire que *u* est une homothétie.

Exercice 25. — Soit f l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique $\mathscr{B}_0 = (e_1, e_2)$ est $\mathrm{Mat}_{\mathscr{B}_0}(f) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- 1. Déterminer toutes les droites de \mathbb{R}^2 stables par f.
- 2. Soit D une droite stable par f. Justifier que D ne possède aucun supplémentaire stable par f.

Exercice 26. — Donner un exemple d'endomorphisme de R² ne possédant aucun sous-espace stable non trivial.

2.2. Sous-espaces stables d'un espace vectoriel de dimension finie

Notation. — Dans cette partie, on note *E* un **K**-espace vectoriel de dimension finie $n \ge 1$.

Définition 27. — Soit F un sous-espace vectoriel de E de dimension finie $p \ge 1$. Une base (e_1, \ldots, e_n) de E est dite adaptée à F si (e_1, \ldots, e_p) est une base de F.

Il est possible de construire des bases adaptées à un sous-espace vectoriel grâce au théorème de la base incomplète. En effet, soient F un sous-espace vectoriel de E de dimension finie $p \ge 1$, (f_1, \ldots, f_p) une base de F et (e_1, \ldots, e_n) une base de E. D'après le théorème de la base incomplète, il existe (n-p) entiers $1 \le i_1 < i_2 < \ldots < i_{n-p} \le n$ tels que la famille $\mathscr{B} := (f_1, \ldots, f_p, e_{i_1}, \ldots, e_{i_{n-p}})$ soit une base de E. Le base \mathscr{B} de E ainsi construite est adaptée à F.

Proposition 28. — Soient F un sous-espace vectoriel de E de dimension $p \ge 1$ et $u \in \mathcal{L}(E)$. Alors F est stable par u si et seulement si, pour toute base \mathcal{B} de E adaptée à F:

$$Mat_{\mathscr{B}}(u) = \begin{pmatrix} A & C \\ 0 & D \end{pmatrix}$$

où $A \in \mathcal{M}_p(\mathbf{K}), C \in \mathcal{M}_{p,n-p}(\mathbf{K})$ et $D \in \mathcal{M}_{n-p}(\mathbf{K})$.

Une démonstration de la proposition 28 est à connaître.

Définition 29. — Soient un entier $p \ge 2$ et des sous-espaces vectoriels de E notés E_1, E_2, \ldots, E_p , de dimensions respectives $n_1 \ge 1, n_2 \ge 1, \ldots, n_p \ge 1$, tels que $E = \bigoplus_{i=1}^p E_i$. Une base (e_1, \ldots, e_n) de E est dite adaptée à la décomposition en somme directe $E = \bigoplus_{i=1}^p E_i$ si :

$$\begin{cases} (e_{1},\ldots,e_{n_{1}}) \text{ est une base de } E_{1};\\ (e_{n_{1}+1},\ldots,e_{n_{1}+n_{2}}) \text{ est une base de } E_{2};\\ \vdots\\ (e_{n_{1}+n_{2}+\ldots+n_{k}+1},\ldots,e_{n_{1}+n_{2}+\ldots+n_{k}+n_{k+1}}) \text{ est une base de } E_{k+1};\\ \vdots\\ (e_{n_{1}+n_{2}+\ldots+n_{p-1}+1},\ldots,e_{n_{1}+n_{2}+\ldots+n_{p-1}+n_{p}}=e_{n}) \text{ est une base de } E_{p}. \end{cases}$$

On conserve les notations de la définition 29. Il est possible de construire des bases adaptées à la décomposition en somme directe $E = \bigoplus_{i=1}^p E_i$. En effet, soit, pour tout $k \in [1,p]$, une base $\mathcal{B}_k = (e_{k,1},\ldots,e_{k,n_k})$ de F_k . Alors la famille :

$$\mathcal{B} := \mathcal{B}_1 \# \dots \# \mathcal{B}_p := \left(e_{1,1}, \dots, e_{1,n_1}, e_{2,1}, \dots, e_{2,n_2}, \dots, e_{p,1}, \dots, e_{p,n_p}\right)$$

obtenue en concaténant les familles $\mathcal{B}_1,\ldots,\mathcal{B}_p$ est une base de E, qui est adaptée à la décomposition en somme directe $E=\bigoplus_{i=1}^p E_i$.

Proposition 30. — Soient un entier $p \ge 2$, E_1, \ldots, E_p des sous-espaces vectoriels de E de dimensions respectives $n_1 \ge 1$, $n_2 \ge 1, \ldots, n_p \ge 1$, tels que $E = \bigoplus_{i=1}^p E_i$. et $u \in \mathcal{L}(E)$. Alors chacun des espaces E_1, \ldots, E_p est stable par u si et seulement si, pour toute base \mathcal{B} adaptée à la décomposition $\bigoplus_{i=1}^p E_i = E$:

$$Mat_{\mathscr{B}}(u) = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_r \end{pmatrix}$$
 [matrice diagonale par blocs]

où, pour tout $k \in [1, p]$, $A_k \in \mathcal{M}_{n_k}(K)$.

2.3. Endomorphisme diagonalisable et droites stables

Notation. — Dans cette partie, on note *E* un **K**-espace vectoriel de dimension finie $n \ge 1$.

Définition 31. — Un endomorphisme u de E est diagonalisable s'il existe une base \mathscr{B} de E tel que la matrice $\mathrm{Mat}_{\mathscr{B}}(u)$ est diagonale.

Exercice 32. — Soit *u* un endomorphisme de *E*. Démontrer l'équivalence des deux assertions suivantes.

- 1. L'endomorphisme *u* est diagonalisable.
- 2. Le K-espace vectoriel E est somme directe de n droites stables par u.

2.4. Endomorphisme trigonalisable et drapeau stable

Notation. — Dans cette partie, on note E un K-espace vectoriel de dimension finie $n \ge 1$.

Définition 33. — Un endomorphisme u de E est trigonalisable s'il existe une base \mathscr{B} de E tel que la matrice $\mathrm{Mat}_{\mathscr{B}}(u)$ est triangulaire.

Exercice 34. — Un drapeau de E est une famille (F_1, \ldots, F_n) de sous-espaces vectoriels de E tel que :

- $F_1 \subset F_2 \subset \ldots \subset F_n$;
- pour tout $i \in [1, n]$, dim $(F_i) = i$.

Soit u un endomorphisme de E. Démontrer l'équivalence des deux assertions suivantes.

- 1. L'endomorphisme *u* est trigonalisable.
- 2. Il existe un drapeau $(F_1, ..., F_n)$ de E formé de sous-espaces vectoriels de E stables par u.

2.5. Définition des valeurs propres et des vecteurs propres d'un endomorphisme

Définition 35. — *Soit* $u \in \mathcal{L}(E)$.

1. Un scalaire $\lambda \in \mathbf{K}$ est une valeur propre de u si :

$$\exists x \in E \quad x \neq 0_E \text{ et } u(x) = \lambda x.$$

2. L'ensemble des valeurs propres de u est appelé spectre de u et est noté Spec(u), i.e. :

Spec(u) :=
$$\{\lambda \in \mathbf{K} : \exists x \in E \mid x \neq 0_E \text{ et } u(x) = \lambda x\}$$
.

3. Si $\lambda \in \operatorname{Spec}(u)$, alors tout vecteur $x \in E \setminus \{0_E\}$ vérifiant $u(x) = \lambda x$ est appelé vecteur propre associé à la valeur propre λ .

La condition « $x \neq 0_E$ » dans la définition d'une valeur propre est essentielle. Si on l'omet, tout scalaire est valeur propre, ce qui ôte tout intérêt à l'introduction du concept.

Remarque 36. — Un vecteur propre est par essence non nul.

Exercice 37. — Soient $u \in \mathcal{L}(E)$, λ une valeur propre de u et x un vecteur propre de u associé à la valeur propre λ . Démontrer que, pour tout $k \in \mathbf{K}^*$, le vecteur kx est propre pour u associé à la valeur propre λ .

Dans le cas où $\mathbf{K} \neq \mathbf{F}_2$, un endomorphisme u de E admettant une valeur propre λ , possède plusieurs vecteurs propres associés à la valeur propre λ (cf. exercice 37). On parlera « d'un » vecteur propre et non pas « du » vecteur propre pour u associé à la valeur propre λ .

Proposition 38. — Soit $u \in \mathcal{L}(E)$. L'endomorphisme u possède une valeur propre si et seulement s'îl existe une droite de E stable par u.

Une démonstration de la proposition 38 est à connaître.

Exercice 39. — Donner un endomorphisme « géométrique » de \mathbb{R}^2 qui ne possède aucune valeur propre.

Proposition 40. — *Soient* $u \in \mathcal{L}(E)$ *et* $\lambda \in K$.

- 1. Le scalaire λ est valeur propre de u si et seulement si l'endomorphisme $u \lambda \operatorname{id}_E$ de E n'est pas injectif.
- 2. Si $\lambda \in \text{Spec}(u)$, alors l'ensemble des valeurs propres de u associé à la valeur propre λ est $\text{Ker}(u \lambda \text{id}_E) \setminus \{0_E\}$.

Exercice 41. — Soit u l'endomorphisme de \mathbf{R}^2 canoniquement associé à la matrice $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$. Déterminer les valeurs propres et les vecteurs propres de u.

2.6. Définition des sous-espaces propres d'un endomorphisme

Définition 42. — Soient $u \in \mathcal{L}(E)$ et $\lambda \in \operatorname{Spec}(u)$. Le sous-espace propre associé à la valeur propre λ , noté $E_{\lambda}(u)$, est défini par :

$$E_{\lambda}(u) := \{x \in E : u(x) = \lambda x\} = \text{Ker}(u - \lambda id_E)$$
 [sous-espace vectoriel de E].

Remarque 43. — Par essence, un sous-espace propre n'est jamais réduit à $\{0_E\}$.

Remarque 44. — Soit $u \in \mathcal{L}(E)$.

- 1. Le scalaire 0 est valeur propre de *u* si et seulement si *u* n'est pas injectif.
- 2. Si $0 \in \operatorname{Spec}(u)$, alors $E_0(u) = \operatorname{Ker}(u)$.
- 2.7. Des sous-espaces propres distincts sont en somme directe

Théorème 45. — Soient $u \in \mathcal{L}(E)$, r un nombre entier supérieur ou égal à 2, et $\lambda_1, \ldots, \lambda_r$ des valeurs propres deux à deux distinctes de u. Les sous-espaces propres $E_{\lambda_1}(u), \ldots, E_{\lambda_r}(u)$ sont en somme directe.

- Une démonstration du théorème 45 est à connaître.
- 2.8. Majoration du nombre de valeurs propres d'un endomorphisme d'un espace de dimension finie

Corollaire 46. — Supposons que l'espace vectoriel E est de dimension finie $n \ge 1$ et considérons un endomorphisme u de E. Le spectre Spec(u) de u est un ensemble fini et $|Spec(u)| \le \dim(E)$.

Une démonstration du corollaire 46 est à connaître.

2.9. Une méthode pour déterminer les éléments propres d'un endomorphisme

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \mathbf{K}$ un scalaire fixé. Considérons l'équation :

$$(\mathcal{E}_{\lambda})$$
 $u(x) = \lambda x$ [équation aux éléments propres]

 \bigcirc

d'inconnue $x \in E$, dont 0_E est solution (u est linéaire).

- 1. Le scalaire λ est valeur propre de u si et seulement si l'équation (\mathcal{E}_{λ}) possède une solution non nulle.
- 2. Si $\lambda \in \operatorname{Spec}(u)$ alors le sous-espace propre $E_{\lambda}(u)$ est l'ensemble des solutions de l'équation (\mathscr{E}_{λ}) .

Ainsi, en résolvant toutes les équations aux éléments propres (\mathscr{E}_{λ}) , où $\lambda \in \mathbf{R}$ est un paramètre, on détermine tous les éléments propres de u.

2.10. Détermination des éléments propres d'endomorphismes usuels

Exercice 47. — Soit $\lambda \in K^*$. On pose $u := \lambda \operatorname{id}_E$. Déterminer les valeurs propres et les sous-espaces propres de u.

Exercice 48. — Soit p un projecteur de E tel que $p \neq 0_{\mathcal{L}(E)}$ et $p \neq \mathrm{id}_E$. Déterminer les valeurs propres et les sous-espaces propres de p.

Exercice 49. — Soit s une symétrie de E tel que $s \neq \mathrm{id}_E$ et $s \neq -\mathrm{id}_E$. Déterminer les valeurs propres et les sous-espaces propres de s.

Exercice 50. — Soit $u \in \mathcal{L}(E)$. On suppose que u est nilpotent, i.e. qu'il existe $n \in \mathbb{N}^*$ tel que $u^n = 0_{\mathcal{L}(E)}$. Déterminer les valeurs propres et les sous-espaces propres de u.

Exercice 51. — Déterminer les éléments propres de l'opérateur de dérivation sur K[X]:

$$D \mid \begin{array}{ccc} \mathbf{K}[X] & \longrightarrow & \mathbf{K}[X] \\ P & \longmapsto & P' \end{array}.$$

Exercice 52. — Déterminer les éléments propres de l'opérateur de dérivation sur $\mathscr{C}^{\infty}(R,R)$:

$$D \mid \mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R}) \longrightarrow \mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})$$

$$f \longmapsto f'.$$

2.11. Endomorphismes qui commutent et sous-espaces stables

Proposition 53. — Soient u et v des endomorphismes de E tels que $u \circ v = v \circ u$.

- 1. L'endomorphisme v stabilise Ker(u) et Im(u).
- 2. Pour tout $\lambda \in \operatorname{Spec}(u)$, ν stabilise le sous-espace propre $E_{\lambda}(u)$.
- Une démonstration de la proposition 53 est à connaître.

Remarque 54. — Soit $u \in \mathcal{L}(E)$ et $\lambda \in \text{Spec}(u)$. Comme u commute avec lui-même, les sous-espaces vectoriels Ker(u), Im(u) et $E_{\lambda}(u)$ sont stables par u.

Exercice 55. — Supposons E de dimension finie et considérons un endomorphisme u de E.

1. On suppose que:

$$E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u) . \tag{1}$$

Que dire de la matrice de u dans une base adaptée à (1)?

2. On suppose qu'il existe des scalaires $\lambda_1, \ldots, \lambda_p$ tels que :

$$E = \bigoplus_{i=1}^{p} \operatorname{Ker}(u - \lambda_{i} \operatorname{id}_{E}) .$$
 (2)

Que dire de la matrice de u dans une base adaptée à (2)?

3. Éléments propres d'une matrice carrée

Notation. — La lettre *n* désigne un entier naturel non nul.

3.1. Définition des éléments propres d'une matrice carrée

Définition 56. — *Soit M* $\in \mathcal{M}_n(\mathbf{K})$.

1. Un scalaire $\lambda \in \mathbf{K}$ est appelé valeur propre de M si :

$$\exists X \in \mathcal{M}_{n,1}(\mathbf{K}) \quad X \neq 0_{\mathcal{M}_{n,1}(\mathbf{K})} \text{ et } MX = \lambda X$$

2. L'ensemble des valeurs propres dans K de M est notée $Spec_K(M)$.

$$\operatorname{Spec}_{\mathbf{K}}(M) = \left\{ \lambda \in \mathbf{K} : \exists X \in \mathcal{M}_{n,1}(\mathbf{K}) \mid X \neq 0_{\mathcal{M}_{n,1}(\mathbf{K})} \text{ et } MX = \lambda X \right\}$$

3. Si $\lambda \in \mathbf{K}$ est valeur propre de M, le sous-espace vectoriel :

$$E_{\lambda}(M) := \{X \in \mathcal{M}_{n,1}(\mathbf{K}) : MX = \lambda X\} = \operatorname{Ker}(M - \lambda I_n)$$
 [sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{K})$]

est appelé sous-espace propre de M associé à la valeur propre λ .

4. Si $\lambda \in \operatorname{Spec}_{\mathbf{K}}(M)$ alors tout vecteur $X \in \mathcal{M}_{n,1}(\mathbf{K}) \setminus \left\{0_{\mathcal{M}_{n,1}(\mathbf{K})}\right\}$ vérifiant $MX = \lambda X$ est appelé vecteur propre associé à la valeur propre λ .

Remarque 57. — Quand on parle du spectre d'une matrice $M \in \mathcal{M}_n(\mathbf{K})$, il convient de préciser le corps dans lequel on travaille. En effet, si \mathbf{L} est un sur-corps de \mathbf{K} , alors on peut également considérer M comme élément de $\mathcal{M}_n(\mathbf{L})$. On peut donc considérer les deux ensembles suivants :

$$\operatorname{Spec}_{\mathbf{K}}(M) := \left\{ \lambda \in \mathbf{K} : \exists X \in \mathcal{M}_{n,1}(\mathbf{K}) \setminus \left\{ 0_{\mathcal{M}_{n,1}(\mathbf{K})} \right\}, \quad MX = \lambda X \right\}$$

$$\mathrm{Spec}_{\mathbf{L}}(M) := \left\{ \lambda \in \mathbf{L} : \exists X \in \mathcal{M}_{n,1}(\mathbf{L}) \setminus \left\{ 0_{\mathcal{M}_{n,1}(\mathbf{L})} \right\}, \quad MX = \lambda X \right\}.$$

Clairement $\operatorname{Spec}_{\mathbb{K}}(M) \subset \operatorname{Spec}_{\mathbb{L}}(M)$, mais il n'y a pas nécessairement égalité (cf. exercice suivant). C'est pourquoi, comme cidessus, on précisera le corps des scalaires considéré, en l'indiquant en indice du symbole Spec.

Exercice 58. — Calculer $\operatorname{Spec}_{\mathbb{C}}(M)$ et $\operatorname{Spec}_{\mathbb{C}}(M)$, où $M := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Exercice 59. — Déterminer les éléments propres de la matrice $A \in \mathcal{M}_3(\mathbf{R})$ définie par :

$$A := \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}.$$

3.2. Éléments propres d'un endomorphisme versus éléments propres d'une matrice

Proposition 60. — Soient E un K-espace vectoriel de dimension finie n, $\mathcal{B} = (e_1, ..., e_n)$ une base de E, $u \in \mathcal{L}(E)$ et $M := Mat_{\mathcal{B}}(u) \in \mathcal{M}_n(K)$.

- 1. $\operatorname{Spec}(u) = \operatorname{Spec}_{K}(M)$
- 2. Soit $\lambda \in \operatorname{Spec}(u) = \operatorname{Spec}_{K}(M)$. Pour tout vecteur $x \in E$:

$$x \in E_{\lambda}(u) \iff \operatorname{Mat}_{\mathscr{B}}(x) \in E_{\lambda}(M)$$

Une démonstration de la proposition 60 est à connaître.

Remarque 61. — D'après la précédente proposition, les éléments propres d'une matrice $A \in \mathcal{M}_n(\mathbf{K})$ ont un lien ténu avec les éléments propres de l'endomorphisme de $\mathcal{M}_{n,1}(\mathbf{K})$:

$$\varphi_A \mid \mathcal{M}_{n,1}(\mathbf{K}) \longrightarrow \mathcal{M}_{n,1}(\mathbf{K})$$

$$X \longmapsto AX$$

qui lui est canoniquement associé. En effet, si \mathcal{B}_0 désigne la base canonique de $\mathcal{M}_{n,1}(\mathbf{K})$ alors $\mathrm{Mat}_{\mathcal{B}_0}(\varphi_A) = A$.

3.3. Majoration du nombre de valeurs propres d'une matrice

Proposition 62. — Une matrice $M \in \mathcal{M}_n(\mathbf{K})$ possède un nombre fini de valeurs propres et :

$$|\operatorname{Spec}_{\mathbf{K}}(M)| \leq n$$

Une démonstration de la proposition 62 est à connaître.

4. Polynôme caractéristique

Notation. — Dans cette partie, *n* désigne un nombre entier supérieur ou égal à 2 et *E* est un **K**-espace vectoriel de dimension finie *n*. Ici le corps **K** est supposé infini, ce qui nous autorise à identifier fonctions polynomiales sur **K** et polynômes à coefficients dans **K**.

4.1. Définition du polynôme caractéristique d'une matrice carrée

Proposition 63. — Soit $M \in \mathcal{M}_n(K)$. L'application χ_M définie par :

$$\chi_M \mid K \longrightarrow K$$
 $\lambda \longmapsto \det(\lambda I_n - M)$

est une application polynomiale. Le polynôme qui lui est associé, également noté χ_M , est appelé polynôme caractéristique de la matrice M.

Démonstration. La fonction polynomiale associée au polynôme :

$$\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{k=1}^n ([I_n]_{k,\sigma(k)} X - [M]_{k,\sigma(k)}) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{k=1}^n (\delta_{k,\sigma(k)} X - [M]_{k,\sigma(k)})$$

П

coïncide avec la fonction χ_M .

Exercice 64. — Calculer le polynôme caractéristique de la matrice $A := \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

4.2. Polynôme caractéristique de deux matrices semblables

Proposition 65. — Soient A et B deux matrices de $\mathcal{M}_n(\mathbf{K})$. Si A et B sont semblables alors $\chi_A = \chi_B$.

La réciproque de la proposition 65 est fausse. En effet, les matrices I_n et $I_n + E_{1,n}$ ont même polynôme caractéristique (X^n) mais elles ne sont pas semblables (la seule matrice semblable à I_n est la matrice I_n elle-même).

4.3. Définition du polynôme caractéristique d'un endomorphisme

Rappel 66. — Soit φ un endomorphisme de E. Soient \mathscr{B}_1 et \mathscr{B}_2 deux bases de E. Alors d'après le théorème de changement de bases :

$$\operatorname{Mat}_{\mathcal{B}_{2}}(\varphi) = P_{\mathcal{B}_{2} \to \mathcal{B}_{1}} \operatorname{Mat}_{\mathcal{B}_{1}}(\varphi) \left(P_{\mathcal{B}_{2} \to \mathcal{B}_{1}}\right)^{-1}$$

où $P_{\mathscr{B}_2 \to \mathscr{B}_1} := \operatorname{Mat}_{\mathscr{B}_1, \mathscr{B}_2} (\operatorname{id}_E)$. Ainsi :

$$\begin{split} \det \left(\operatorname{Mat}_{\mathscr{B}_{2}}(\varphi) \right) &= \det \left(P_{\mathscr{B}_{2} \to \mathscr{B}_{1}} \operatorname{Mat}_{\mathscr{B}_{1}}(\varphi) \left(P_{\mathscr{B}_{2} \to \mathscr{B}_{1}} \right)^{-1} \right) \\ &= \det \left(P_{\mathscr{B}_{2} \to \mathscr{B}_{1}} \right) \det \left(\operatorname{Mat}_{\mathscr{B}_{1}}(\varphi) \right) \det \left(\left(P_{\mathscr{B}_{2} \to \mathscr{B}_{1}} \right)^{-1} \right) \qquad [\text{ multiplicativit\'e du déterminant }] \\ &= \det \left(\operatorname{Mat}_{\mathscr{B}_{1}}(\varphi) \right) \qquad \left[\text{si A est inversible, } \det (A) \neq 0 \text{ et } \det \left(A^{-1} \right) = \left(\det (A) \right)^{-1} \right] \,. \end{split}$$

En d'autre termes, le déterminant de la matrice d'un endormorphisme dans une base de E ne dépend pas du choix de la base de E. Cette observation donne consistance à la définition suivante. Le déterminant de φ est le scalaire $\det(\varphi)$ défini par :

$$\det(\varphi) := \det(\operatorname{Mat}_{\mathscr{B}}(\varphi))$$

où \mathcal{B} est une base quelconque de E.

Définition 67. — Soit $u \in \mathcal{L}(E)$. L'application χ_u définie par :

$$\chi_u \mid \begin{matrix} \mathbf{K} & \longrightarrow & \mathbf{K} \\ \lambda & \longmapsto & \det(\lambda \operatorname{id}_E - u) \end{matrix}$$

est une application polynomiale. Le polynôme qui lui est associé, également noté χ_u , est appelé polynôme caractéristique de l'endomorphisme u.

Remarque 68. — Soient $u \in \mathcal{L}(E)$ et \mathcal{B} une base quelconque de E. Alors, pour tout scalaire $\lambda \in K$:

$$\chi_{u}(\lambda) = \det(\lambda \operatorname{id}_{E} - u) := \det(\operatorname{Mat}_{\mathscr{B}}(\lambda \operatorname{id}_{E} - u)) = \det(\lambda I_{n} - \operatorname{Mat}_{\mathscr{B}}(u)) = \chi_{\operatorname{Mat}_{\mathscr{B}}(u)}(\lambda)$$

Le corps K étant infini, nous en déduisons :

$$\chi_u = \chi_{\text{Mat}_{\mathscr{B}}(u)}$$

Remarque 69. — Soit $u \in \mathcal{L}(E)$. Il est possible que χ_u possède des racines dans un sur-corps strict L de K. Dans ce cas, ces racines ne sont pas des valeurs propres de u à proprement parler, mais ce sont des valeurs propres de la matrice M de u dans une base de E, où M est vue comme matrice de $\mathcal{M}_n(L)$.

4.4. Degré et coefficients remarquables du polynôme caractéristique

Théorème 70. — Soient $M \in \mathcal{M}_n(K)$ et $u \in \mathcal{L}(E)$.

- 1. χ_M est un polynôme de degré n.
- 2. Le coefficient de degré n est 1, i.e. χ_M est unitaire.
- 3. Le coefficient de degré n-1 de χ_M est $-\operatorname{tr}(M)$.
- 4. Le coefficient de degré 0 de χ_M est $(-1)^n \det(M)$.
- 1. χ_u est un polynôme de degré n.
- 2. Le coefficient de degré n est 1, i.e. χ_u est unitaire.
- 3. Le coefficient de degré n-1 de χ_u est $-\operatorname{tr}(u)$.
- 4. Le coefficient de degré 0 de χ_u est $(-1)^n \det(u)$.

Éléments de démonstration. Nous savons que :

$$\chi_{M} = \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \prod_{k=1}^{n} \left(\delta_{k,\sigma(k)} X - [M]_{k,\sigma(k)} \right) = \prod_{k=1}^{n} \left(X - [M]_{k,k} \right) + \underbrace{\sum_{\sigma \in \mathfrak{S}_{n} \setminus \{ \text{id} \}} \varepsilon(\sigma) \prod_{k=1}^{n} \left(\delta_{k,\sigma(k)} X - [M]_{k,\sigma(k)} \right)}_{(3)}$$

Comme une permutation $\sigma \in \mathfrak{S}_n$ distincte de l'identité possède au plus (n-2) points fixes :

$$\forall \sigma \in \mathfrak{S}_n \setminus \{ id \} \quad \deg \left(\prod_{k=1}^n \left(\delta_{k,\sigma(k)} X - [M]_{k,\sigma(k)} \right) \right) \leq n - 2$$

donc:

$$\deg(P) \le n - 2 \tag{4}$$

De (3) et (4), nous déduisons que $\deg(\chi_M) = n$ et, grâce aux formules de Viète, que :

$$[\chi_M]_n = \left[\prod_{k=1}^n (X - [M]_{k,k})\right]_n = 1 \qquad , \qquad [\chi_M]_{n-1} = \left[\prod_{k=1}^n (X - [M]_{k,k})\right]_{n-1} = -\sum_{k=1}^n [M]_{k,k} = -\operatorname{tr}(M)$$

Enfin:

$$[\chi_M]_0 = \chi_M(0) = \det(-M) = (-1)^n \det(M)$$

Remarque 71. — Soit $M \in \mathcal{M}_2(K)$. Alors $\chi_M = X^2 - \operatorname{tr}(M) X + \det(M)$.

4.5. Les valeurs propres sont les racines du polynôme caractéristique

Théorème 72. — Soient $M \in \mathcal{M}_n(K)$ et $u \in \mathcal{L}(E)$.

Les valeurs propres de M dans K sont les racines de χ_M dans K, i.e. :

$$\operatorname{Spec}_{\mathbf{K}}(M) = \{\lambda \in \mathbf{K} : \chi_M(\lambda) = 0\}$$

Les valeurs propres de u sont les racines de χ_u dans K, i.e. :

$$Spec(u) = \{ \lambda \in \mathbf{K} : \chi_u(\lambda) = 0 \}$$

Une démonstration du théorème 72 est à connaître.

Remarque 73. — Les théorèmes 70 et 72 livrent une nouvelle démonstration des deux résultats suivants.

Une matrice $M \in \mathcal{M}_n(\mathbf{K})$ possède un nombre fini de valeurs propres et :

$$|\operatorname{Spec}_{\mathbf{K}}(M)| \leq n$$

Un endomorphisme u de E possède un nombre fini de valeurs propres et :

$$|\operatorname{Spec}(u)| \leq \dim(E)$$

4.6. Valeurs propres de deux matrices semblables

Proposition 74. — Si A et B deux matrices semblables de $\mathcal{M}_n(\mathbf{K})$ alors $\operatorname{Spec}_{\mathbf{K}}(A) = \operatorname{Spec}_{\mathbf{K}}(B)$.

Démonstration. D'après la proposition 65, $\chi_A = \chi_B$, d'où :

$$\{\lambda \in \mathbf{K} : \chi_A(\lambda) = 0\} = \{\lambda \in \mathbf{K} : \chi_B(\lambda) = 0\}$$
(5)

D'autre part, le théorème 72 livre :

$$\operatorname{Spec}_{\mathbf{K}}(A) = \{\lambda \in \mathbf{K} : \chi_A(\lambda) = 0\} \qquad \text{et} \qquad \operatorname{Spec}_{\mathbf{K}}(B) = \{\lambda \in \mathbf{K} : \chi_B(\lambda) = 0\}$$
 (6)

De (5) et (6), nous déduisons que $\operatorname{Spec}_{\kappa}(A) = \operatorname{Spec}_{\kappa}(B)$.

La réciproque de la proposition 74 est fausse. En effet les matrices :

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

ont même spectre ({1}), mais elles ne sont pas semblables. En effet, la seule matrice semblable à la matrice identité est la matrice identité elle-même.

4.7. Une méthode pour déterminer les valeurs propres d'une matrice

Déterminer les valeurs propres d'un endomorphisme d'un espace de dimension finie ou d'une matrice carrée revient à déterminer les racines de son polynôme caractéristique.

4.8. Quelques calculs de valeurs propres à l'aide du polynôme caractéristique

Exercice 75. — Déterminer les éléments propres des matrices suivantes.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 5 \\ 0 & 3 & 4 \\ 0 & 2 & 3 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad E = \begin{pmatrix} -1 & 4 & 2 \\ -2 & 5 & 1 \\ 1 & -2 & 2 \end{pmatrix}$$

Exercice 76. — Soit l'application linéaire

$$u \mid \mathbf{R}^2 \longrightarrow \mathbf{R}^2 (x,y) \longmapsto (-y,x).$$

- 1. Donner une interprétation géométrique de u et la matrice M de u dans la base canonique de \mathbb{R}^2 .
- 2. Déterminer $Spec(u) = Spec_R(M)$ et $Spec_C(M)$.

4.9. Polynôme caractéristique et valeurs propres d'une matrice triangulaire

Proposition 77. — Soit $T \in \mathcal{M}_n(\mathbf{K})$ une matrice triangulaire de coefficients diagonaux $t_{1,1}, \ldots, t_{n,n}$. Alors:

$$\chi_T = \prod_{k=1}^n (X - t_{i,i}).$$

En particulier les valeurs propres de T sont ses coefficients diagonaux.

Exercice 78. — Soit l'application linéaire :

$$\varphi \mid \mathbf{K}_n[X] \longrightarrow \mathbf{K}_n[X]$$

$$P \longmapsto P + P'$$

- 1. Déterminer la matrice de φ dans la base canonique de $\mathbf{K}_n[X]$.
- 2. En déduire les éléments propres de φ .

4.10. Polynôme caractéristique d'un endomorphisme induit

Proposition 79. — *Soit* $u \in \mathcal{L}(E)$.

1. Soit F un sous-espace vectoriel de E stable par u. Notons u_F l'endomorphisme de F induit par u.

$$\chi_{u_F}$$
 divise χ_u dans $K[X]$

2. Supposons qu'il existe des sous-espaces vectoriels E_1, \ldots, E_r tous stables par u tels que $E = \bigoplus_{i=1}^r E_i$. Notons, pour tout $i \in [1, r]$, u_{E_i} l'endomorphisme de E_i induit par u.

$$\chi_u = \prod_{i=1}^r \chi_{u_{E_i}}$$

Une démonstration de la proposition 79 est à connaître.

4.11. Ordre de multiplicité d'une valeur propre

Rappel 80. — Soient un polynôme non nul $P \in K[X]$ et $\lambda \in K$ une racine de P. La multiplicité de la racine λ de P est définie par :

$$\operatorname{mult}(P,\lambda) := \max \{ k \in \mathbb{N}^* : (X - \lambda)^k \text{ divise } P \text{ dans } \mathbb{K}[X] \}$$

Ainsi la multiplicité mult (P, λ) est-elle l'unique entier $k \ge 1$ tel que :

$$(X - \lambda)^k \mid P$$
 et $(X - \lambda)^{k+1} \nmid P$

On dispose d'une caractérisation de la multiplicité mult (P, λ) via les polynômes dérivés itérés du polynôme P. La multiplicité mult (P, λ) est l'unique entier k tel que :

$$P(\lambda) = \dots = P^{(k-1)}(\lambda) = 0$$
 et $P^{(k)}(\lambda) \neq 0$

Définition 81. — Soient $M \in \mathcal{M}_n(\mathbf{K})$ et $u \in \mathcal{L}(E)$.

Soit $\lambda \in \operatorname{Spec}(M)$. On appelle multiplicité de la valeur propre λ et on note m_{λ} , son ordre de multiplicité en tant que racine du polynôme caractéristique de χ_M , i.e. :

$$m_{\lambda} = \operatorname{mult}(\chi_M, \lambda)$$

Soit $\lambda \in \operatorname{Spec}(u)$. On appelle multiplicité de la valeur propre λ et on note m_{λ} , son ordre de multiplicité en tant que racine du polynôme caractéristique de χ_u , i.e. :

$$m_{\lambda} = \text{mult}(\chi_u, \lambda)$$

4.12. Dimension d'un sous-espace propre et ordre de multiplicité de la valeur propre correspondante

Proposition 82. — Soient $M \in \mathcal{M}_n(K)$ et $u \in \mathcal{L}(E)$.

Pour tout $\lambda \in \operatorname{Spec}(M)$:

$$1 \leq \dim(E_{\lambda}(M)) \leq m_{\lambda}$$

Pour tout
$$\lambda \in \text{Spec}(u)$$
 :

$$1 \leq \dim(E_{\lambda}(u)) \leq m_{\lambda}$$

• Une démonstration de la proposition 82 est à connaître.

La dimension d'un sous-espace propre n'égale pas nécessairement la multiplicité de la valeur propre correspondante, comme l'illustre l'exemple ci-dessous.

Exercice 83. — Soient (e_1, \ldots, e_n) la base canonique de \mathbb{K}^n , $r \in [1, n-1]$ et u l'unique endomorphisme de \mathbb{K}^n tel que :

$$u(e_1) = e_2$$
 , ... , $u(e_r) = e_{r+1}$, $u(e_{r+1}) = 0_{\mathbf{K}^n}$, ... , $u(e_n) = 0_{\mathbf{K}^n}$

Démontrer que 0 est la seule valeur propre de u, puis calculer la dimension dim $(E_0(u))$ et la multiplicité m_0 .

4.13. Matrices compagnon

Exercice 84. — Soit $P = a_0 + a_1 X + ... + a_{n-1} X^{n-1} + X^n \in \mathbf{K}[X]$. Définissons la matrice compagnon de P par :

$$C(P) = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \dots & 0 & 1 & -a_{n-1} \end{pmatrix} \in \mathcal{M}_n(K).$$

Calculer le polynôme caractéristique de la matrice compagnon de P.

Remarque 85. — Posons:

$$\Pi_n := \{ P \in \mathbf{K}[X] : P \text{ est unitaire, de degré } n \}.$$

D'après l'exercice précédent, l'application :

$$\chi \mid \mathcal{M}_n(\mathbf{K}) \longrightarrow \Pi_n \\
M \longmapsto \chi_M$$

qui est bien définie, admet pour inverse à droite l'application :

$$C \mid \begin{array}{ccc} \Pi_n & \longrightarrow & \mathcal{M}_n(\mathbf{K}) \\ P & \longmapsto & C(P) \end{array}$$

i.e. pour tout $P \in \Pi_n$:

$$\chi \circ C(P) = \chi_{C(P)} = P = \mathrm{id}_{\Pi_n}(P).$$

L'application χ est donc surjective.

4.14. Polynôme caractéristique de l'inverse d'une matrice inversible

Exercice 86. — Soit $M \in GL_n(K)$.

- 1. Quel lien existe-t-il entre χ_M et $\chi_{M^{-1}}$?
- 2. En déduire un lien entre les valeurs propres de M et celle de M^{-1} .
- 3. Que dire des sous-espaces propres de M et de ceux de M^{-1} ?

4.15. Polynôme caractéristique du produit de deux matrices carrées

Exercice 87. — Soit $(A, B) \in \mathcal{M}_n(\mathbf{K})^2$.

- 1. On suppose que la matrice A est inversible. Démontrer que $\chi_{AB} = \chi_{BA}$.
- 2. En déduire que $\chi_{AB} = \chi_{BA}$. On pourra appliquer le résultat de la question 1 aux matrices $A \lambda I_n$ et B, où $\lambda \in K \setminus \operatorname{Spec}_K(A)$.

5. Diagonalisabilité

Notation. — Dans cette partie, **K** désigne un corps infini, *n* désigne un nombre entier supérieur ou égal à 2 et *E* est un **K**-espace vectoriel de dimension finie *n*.

5.1. Définition d'une matrice carrée diagonalisable

Définition 88. — Une matrice $M \in \mathcal{M}_n(\mathbf{K})$ est dite diagonalisable sur \mathbf{K} si elle est semblable à une matrice diagonale dans $\mathcal{M}_n(\mathbf{K})$, i.e. s'il existe une matrice diagonale $D \in \mathcal{M}_n(\mathbf{K})$ et une matrice $P \in \mathbf{GL}_n(\mathbf{K})$ telles que :

$$M = P D P^{-1}.$$

Exercice 89. — Soit $M \in \mathcal{M}_n(K)$. On suppose que M possède une unique valeur propre dans K. Démontrer l'équivalence :

M est diagonalisable sur K
$$\iff$$
 $M = \lambda I_n$

5.2. Une condition nécessaire (non suffisante) de diagonalisabilité

Remarque 90. — Si $M \in \mathcal{M}_n(\mathbf{K})$ est diagonalisable sur \mathbf{K} , alors elle a le même polynôme caractéristique qu'une matrice diagonale de $\mathcal{M}_n(\mathbf{K})$. Son polynôme caractéristique χ_M est donc scindé sur \mathbf{K} . Cette observation livre la condition nécessaire (non suffisante, cf. exercice suivant) de diagonalisabilité suivante.

$$M$$
 est diagonalisable sur K \Longrightarrow χ_M est scindé sur K .

Une matrice $M \in \mathcal{M}_n(\mathbf{K})$, telle que χ_M est scindé sur \mathbf{K} , n'est pas nécessairement diagonalisable. En effet, la matrice :

$$M = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

a pour polynôme caractéristique $\chi_M = (X-1)^2$ mais elle n'est pas diagonalisable sur K. Si elle l'était, comme 1 est sa seule valeur propre, M serait semblable à la matrice I_2 , donc égale à la matrice I_2 .

5.3. Influence du corps de base sur la diagonalisabilité d'une matrice

Remarque 91. — Une matrice $M \in \mathcal{M}_n(\mathbf{K})$ peut être non diagonalisable sur \mathbf{K} , mais diagonalisable sur un sur-corps \mathbf{L} de \mathbf{K} . Par exemple $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ n'est pas diagonalisable sur \mathbf{R} (son polynôme caractéristique est $X^2 + 1$ non scindé sur \mathbf{R}) mais M est diagonalisable sur \mathbf{C} puisque :

$$M = P \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} P^{-1}$$
 où $P = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$

5.4. Définition d'un endomorphisme diagonalisable

Définition 92. — Soit $u \in \mathcal{L}(E)$. On dit que u est diagonalisable s'il existe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E telle que l'une des deux propriétés équivalentes ci-dessous soit vérifiée.

- 1. La matrice $Mat_{\mathcal{B}}(u)$ est une matrice diagonale.
- 2. Les vecteurs e_1, \ldots, e_n sont propres pour u.

Remarque 93. — Soient u ∈ $\mathcal{L}(E)$ et \mathcal{B} est une base quelconque de E. Du théorème de changement de base, il découle :

$$u$$
 est diagonalisable \iff Mat _{\mathscr{B}} (u) est diagonalisable sur **K**

Nous en tirons deux conséquences.

- 1. Une matrice $M \in \mathcal{M}_n(\mathbf{K})$ est diagonalisable si et seulement si l'endomorphisme de \mathbf{K}^n canoniquement associé est diagonalisable.
- 2. On dispose de la condition nécessaire (non suffisante) de diagonalisabilité pour un endomorphisme :

u diagonalisable
$$\implies$$
 χ_u est scindé sur **K**.

5.5. Projecteurs et symétries sont diagonalisables

Proposition 94. — Soit p un projecteur de E, i.e. soit p un endomorphisme de E tel que $p \circ p = p$. On suppose que p est non trivial, i.e. $p \neq id_E$ et $p \neq 0_{\mathcal{L}(E)}$.

1. Pour tout $x \in E$:

$$x = \underbrace{x - p(x)}_{\in \text{Ker}(p)} + \underbrace{p(x)}_{\in \text{Im}(p)}$$

- 2. $E = \text{Ker}(p) \oplus \text{Im}(p)$
- 3. Spec $(p) = \{0, 1\}$
- 4. $E_0(p) = \text{Ker}(p)$ et $E_1(p) = \text{Im}(p)$
- 5. p est diagonalisable.
- Une démonstration de la proposition 94 est à connaître.

Proposition 95. — Soit s une symétrie de E, i.e. soit s un endomorphisme de E tel que $s \circ s = \mathrm{id}_E$. On suppose que s est non triviale, i.e. $s \neq id_E$ et $s \neq -id_E$.

1. Pour tout $x \in E$:

$$x = \underbrace{\frac{1}{2}(x + p(x))}_{\in \text{Ker}(s - \text{id}_E)} + \underbrace{\frac{1}{2}(x - p(x))}_{\in \text{Ker}(s + \text{id}_E)}$$

- 2. $E = \text{Ker}(s \text{id}_F) \oplus \text{Ker}(s + \text{id}_F)$
- 3. Spec(s) = $\{-1, 1\}$
- 4. s est diagonalisable.
- Une démonstration de la proposition 95 est à connaître.
- 5.6. Caractérisation de la diagonalisabilité via la somme directe de sous-espaces propres

Théorème 96. — Soient $M \in \mathcal{M}_n(\mathbf{K})$ et $u \in \mathcal{L}(E)$.

Notons $\lambda_1, \dots, \lambda_r$ les valeurs propres deux à deux distinctes

M est diagonalisable sur $\mathbf{K} \Longleftrightarrow \bigoplus_{k=1}^{r} E_{\lambda_k}(M) = \mathcal{M}_{n,1}(\mathbf{K})$ u est diagonalisable $\Longleftrightarrow \bigoplus_{k=1}^{r} E_{\lambda_k}(u) = E$

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes

$$u$$
 est diagonalisable $\iff \bigoplus_{k=1}^r E_{\lambda_k}(u) = E$

Une démonstration du théorème 96 est à connaître.

Remarque 97. — Soit $u \in \mathcal{L}(E)$ diagonalisable. Notons $\lambda_1, \dots, \lambda_r$ les valeurs propres deux à deux distinctes de u. Pour tout $k \in [1, r]$, soit p_k le projecteur de E sur $E_{\lambda_k}(u)$ parallèlement à $\bigoplus E_{\lambda_\ell}(u)$, i.e. :

$$p_k \mid E = \bigoplus_{\ell=1}^r E_{\lambda_\ell}(u) \longrightarrow E$$

$$x = \sum_{\ell=1}^r \underbrace{x_\ell}_{\in E_{\lambda_\ell}(u)} \longmapsto x_k$$

Alors
$$u = \sum_{k=1}^{r} \lambda_k p_k$$
.

5.7. Caractérisation de la diagonalisabilité via la somme des dimensions des sous-espaces propres

Corollaire 98. — Soient $M \in \mathcal{M}_n(\mathbf{K})$ et $u \in \mathcal{L}(E)$.

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes de M. Alors:

 $M \text{ est diagonalisable sur } \mathbf{K} \Longleftrightarrow \sum_{k=1}^{r} \dim \left(E_{\lambda_k}(M) \right) = n$ $u \text{ est diagonalisable } \Longleftrightarrow \sum_{k=1}^{r} \dim \left(E_{\lambda_k}(u) \right) = \dim (E).$

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes

Exercice 99. — Démontrer que l'endomorphisme u de K^n défini par :

$$u \mid (x_1, \dots, x_n) \longmapsto \left(\sum_{i=1}^n x_i, \dots, \sum_{i=1}^n x_i\right)$$

est diagonalisable.

Exercice 100. — L'endormorphisme de \mathbb{R}^n dont la matrice dans la base canonique est

$$\left(\begin{array}{ccc} 1 & \dots & 1 \\ & \ddots & \vdots \\ 0 & & 1 \end{array}\right)$$

est-il diagonalisable?

5.8. Une condition suffisante (non nécessaire) de la diagonalisabilité

Corollaire 101. — Soient $M \in \mathcal{M}_n(\mathbf{K})$ et $u \in \mathcal{L}(E)$.

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes

 $|\operatorname{Spec}_{\mathbf{K}}(M)| = n \Longrightarrow M \text{ est diagonalisable sur } \mathbf{K}$

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes

 $|\operatorname{Spec}(u)| = \dim(E) \Longrightarrow u \text{ est diagonalisable}$

Si E est de dimension $n \ge 2$, alors id_E est diagonalisable (sa matrice dans toute base de E est I_n , qui est diagonale) mais $Spec(id_E) = \{1\}$. Ceci fournit un contre-exemple à la réciproque du précédent corollaire 101.

Exercice 102. — Soit $M \in \mathcal{M}_2(\mathbf{R})$ telle que tr $(M)^2 > 4$ det(M). Démontrer que la matrice M est diagonalisable sur \mathbf{R} .

5.9. Caractérisation de la diagonalisabilité via le scindage de χ et les ordres de multiplicité des racines

Corollaire 103. — *Soient* $M \in \mathcal{M}_n(\mathbf{K})$ *et* $u \in \mathcal{L}(E)$.

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes de M et $m_{\lambda_1}, \ldots, m_{\lambda_n}$ leurs multiplicités respectives. La matrice M est diagonalisable sur K si et seulement si :

$$\begin{cases} & \chi_M \text{ est scind\'e sur } \mathbf{K} \\ & \text{et} \end{cases} \text{ pour tout } k \in \llbracket 1, r \rrbracket, \dim \left(E_{\lambda_k}(M) \right) = m_{\lambda_k}.$$

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes de u et $m_{\lambda_1}, \ldots, m_{\lambda_r}$ leurs multiplicités respectives. L'endomorphisme u est diagonalisable sur K si et seulement si :

$$\begin{cases} &\chi_u \text{ est scind\'e sur } \mathbf{K}\\ &\text{et}\\ &\text{pour tout } k\in [\![1,r]\!], \dim \left(E_{\lambda_k}(u)\right)=m_{\lambda_k}. \end{cases}$$

Une démonstration du corollaire 103 est à connaître.

Exercice 104. — La matrice :

$$A := \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

est-elle diagonalisable sur R? sur C?

5.10. Trace, déterminant et valeurs propres d'un endomorphisme/une matrice diagonalisable

Proposition 105. — Soient $M \in \mathcal{M}_n(K)$ une matrice diagonalisable sur K et u un endomorphisme diagonalisable de E.

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes de M et $m_{\lambda_1}, \ldots, m_{\lambda_r}$ leurs multiplicités respectives.

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes de u et $m_{\lambda_1}, \ldots, m_{\lambda_r}$ leurs multiplicités respectives.

$$\operatorname{tr}(M) = \sum_{k=1}^{r} m_k \lambda_k \quad et \quad \det(M) = \prod_{k=1}^{r} \lambda_k^{m_k}$$

$$\operatorname{tr}(u) = \sum_{k=1}^{r} m_k \lambda_k \quad et \quad \det(u) = \prod_{k=1}^{r} \lambda_k^{m_k}$$

Exercice 106. — Soit $M \in \mathcal{M}_n(\mathbf{R})$. On suppose que M est diagonalisable sur \mathbf{R} et que toutes ses valeurs propres sont strictement positives. Démontrer :

$$\det(M) > 0$$
 et $\sqrt[n]{\det(M)} \le \frac{1}{n} \operatorname{tr}(M)$.

5.11. Un exemple de calcul des puissances d'une matrice diagonalisable

Exercice 107. — Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A := \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

- 1. Démontrer que *u* est diagonalisable.
- 2. Déterminer une base de \mathbb{R}^3 formée de vecteurs propres de u.
- 3. En déduire la forme explicite de A^n , pour tout $n \in \mathbb{N}^*$.

5.12. Matrices à coefficients réels diagonalisables sur C

Exercice 108. — Soit $M \in \mathcal{M}_n(\mathbf{R})$. On suppose M diagonalisable dans $\mathcal{M}_n(\mathbf{C})$. Démontrer que M est semblable dans $\mathcal{M}_n(\mathbf{R})$ à une matrice diagonale par blocs, dont les blocs diagonaux ont un format (1,1) ou (2,2).

6. Trigonalisabilité

Notation. — Dans cette partie, **K** désigne un corps infini, *n* désigne un nombre entier supérieur ou égal à 2 et *E* est un **K**-espace vectoriel de dimension finie *n*.

6.1. Définition d'une matrice carrée trigonalisable

Définition 109. — Une matrice $M \in \mathcal{M}_n(\mathbf{K})$ est dite trigonalisable sur \mathbf{K} si elle est semblable à une matrice triangulaire supérieure, i.e. s'il existe une matrice triangulaire supérieure $U \in \mathcal{M}_n(\mathbf{K})$ et $P \in GL_n(\mathbf{K})$ telles que :

$$M = P U P^{-1}.$$

Remarque 110. — Dans la définition 109, on peut remplacer « triangulaire supérieure » par « triangulaire inférieure », comme on l'explique ci-dessous. Considérons une matrice $U \in \mathcal{M}_n(\mathbf{K})$ triangulaire supérieure :

$$U = \left(\begin{array}{ccccc} u_{1,1} & u_{1,2} & \dots & \dots & u_{1,n} \\ 0 & u_{2,2} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & u_{n-1,n} \\ 0 & \dots & \dots & 0 & u_{n,n} \end{array}\right).$$

Soit f l'endormorphisme de \mathbf{K}^n dont la matrice dans la base canonique $\mathcal{B}_0 = (e_1, \dots, e_n)$ de \mathbf{K}^n est U. Ainsi :

La famille:

$$\mathcal{B}_1 := (e_n, e_{n-1}, \dots, e_2, e_1)$$

obtenue en « écrivant les vecteurs de la base \mathcal{B}_0 dans l'ordre inverse » est une base de \mathbf{K}^n

$$L := \operatorname{Mat}_{\mathscr{B}_{1}}(f) \left(\begin{array}{ccccc} u_{n,n} & 0 & \dots & \dots & 0 \\ u_{n-1,n} & u_{n-1,n-1} & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & u_{2,2} & 0 \\ u_{1,n} & u_{1,n-1} & \dots & u_{1,2} & u_{1,1} \end{array} \right).$$

La matrice L est triangulaire inférieure. Comme elle représente, elle aussi, l'endomorphisme f de \mathbf{R}^n , les matrices U et L sont semblables. Plus concrètement, par théorème de changement de base :

$$\underbrace{\operatorname{Mat}_{\mathscr{B}_{0}}(f)}_{U} = \underbrace{P_{\mathscr{B}_{0} \to \mathscr{B}_{1}}}_{\begin{pmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{pmatrix}} \underbrace{\operatorname{Mat}_{\mathscr{B}_{1}}(f)}_{L} \left(P_{\mathscr{B}_{0} \to \mathscr{B}_{1}}\right)^{-1}$$

6.2. Influence du corps de base sur la trigonalisabilité d'une matrice

Remarque 111. — Si **L** est un sur-corps de **K**, une matrice $M \in \mathcal{M}_n(\mathbf{K})$ peut-être trigonalisable sur **L**, sans être trigonalisable sur **K**. Considérons par exemple la matrice $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, de polynôme caractéristique $\chi_M = X^2 + 1$.

• La matrice M n'est pas trigonalisable sur \mathbf{R} . Si elle l'était, elle serait semblable à une matrice $M = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \mathcal{M}_2(\mathbf{R})$ et il viendrait :

$$X^{2} + 1 = \chi_{M} = (X - a)(X - c)$$

ce qui n'est pas (le polynôme $X^2 + 1$ n'a aucune racine réelle).

• La matrice M est trigonalisable sur \mathbf{C} . En effet, elle est de format (2,2) et possède 2 valeurs propres distinctes sur \mathbf{C} . Elle est donc diagonalisable sur \mathbf{C} et a fortiori trigonalisable sur \mathbf{C} .

6.3. Définition d'un endomorphisme trigonalisable

Définition 112. — Soit $u \in \mathcal{L}(E)$. On dit que u est trigonalisable si et seulement s'il existe une base \mathcal{B} de E telle que l'une des deux propriétés équivalentes ci-dessous soit vérifiée.

- 1. La matrice $\mathrm{Mat}_{\mathscr{B}}(u)$ est triangulaire supérieure.
- 2. Pour tout $k \in [1, n]$, le sous-espace vectoriel $\text{Vect}(e_1, \dots, e_k)$ est stable par u.

Remarque 113. — Soient $u \in \mathcal{L}(E)$ et \mathcal{B} est une base quelconque de E. Du théorème de changement de base, il découle :

u est trigonalisable \iff Mat_{\mathscr{B}}(u) est trigonalisable sur **K**

En particulier une matrice $M \in \mathcal{M}_n(\mathbf{K})$ est trigonalisable sur \mathbf{K} si et seulement si l'endomorphisme de \mathbf{K}^n canoniquement associé est trigonalisable.

6.4. Caractérisation de la trigonalisabilité via le polynôme caractéristique

Théorème 114. — Soient $M \in \mathcal{M}_n(\mathbf{K})$ et $u \in \mathcal{L}(E)$.

La matrice M est trigonalisable sur K si et seulement si le polynôme caractéristique χ_M est scindé sur K.

L'endomorphisme u est trigonalisable si et seulement si le polynôme caractéristique χ_u est scindé sur K.

Démonstration. On considère uniquement le cas des endomorphismes. L'implication directe est claire. Nous démontrons l'implication réciproque en raisonnant par récurrence sur la dimension de E. Pour tout $n \in \mathbb{N}^*$, soit $\mathcal{P}(n)$ le prédicat défini par :

 $\mathscr{P}(n)$ « pour tout **K**-espace vectoriel E de dimension n, pour tout $u \in \mathscr{L}(E)$ tel que χ_u est scindé sur **K**, u est trigonalisable ».

- (a) Initialisation à n = 1. L'assertion $\mathcal{P}(1)$ est vraie car une matrice de format (1,1) est triangulaire.
- (b) $H\acute{e}r\acute{e}dit\acute{e}$. Soit $n \in \mathbb{N}^*$ tel que l'assertion $\mathscr{P}(n)$ est vraie. Considérons un **K**-espace vectoriel E de dimension (n+1) et $u \in \mathscr{L}(E)$ tel que χ_u est scindé sur **K**.
 - i. Comme χ_u est scindé sur K, il possède une racine $\lambda \in K$. Soit e_1 un vecteur propre pour u associé à la valeur propre λ .
 - ii. Si l'on complète la famille libre (e_1) en une base $\mathcal{B} = (e_1, e_2, \dots, e_{n+1})$ de E, alors :

$$\mathrm{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} \lambda & L \\ 0 & A \end{pmatrix}$$

où $L \in \mathcal{M}_{1,n}(\mathbf{K})$ et $A \in \mathcal{M}_n(\mathbf{K})$.

iii. En développant par rapport à la première colonne, il vient :

$$\chi_u(X) = \det \begin{pmatrix} X - \lambda & L \\ 0 & X I_n - A \end{pmatrix} = (X - \lambda) \det (X I_n - A) = (X - \lambda) \chi_A(X)$$

Le polynôme $\chi_A(X)$ donc scindé sur **K** comme facteur d'un polynôme scindé sur **K**.

iv. Si nous définissons les applications i et p définies par :

$$i \mid \begin{array}{cccc} \operatorname{Vect}(e_2, \dots, e_{n+1}) & \longrightarrow & E \\ x & \longmapsto & x \end{array} \quad \text{et} \quad p \mid \begin{array}{cccc} E & \longrightarrow & \operatorname{Vect}(e_2, \dots, e_{n+1}) \\ \sum_{k=1}^{n+1} x_k \, e_k & \longmapsto & \sum_{k=2}^{n+1} x_k \, e_k \end{array}$$

alors:

$$\operatorname{Mat}_{(e_2,\ldots,e_{n+1})}(p\circ u\circ i)=A$$

v. D'après iii et iv, nous pouvons appliquer l'hypothèse de récurrence à l'endomorphisme $p \circ u \circ i$ du du **K**-espace vectoriel $\text{Vect}(e_2, \dots, e_{n+1})$ de dimension n. Il existe une base (e'_2, \dots, e'_{n+1}) de $\text{Vect}(e_2, \dots, e_{n+1})$ telle que :

$$\operatorname{Mat}_{(e'_{2},\ldots,e'_{n+1})}(p\circ u\circ i)$$

est triangulaire supérieure.

vi. La famille $\mathscr{C} := (e_1, e'_2, \dots, e'_{n+1})$ est une base de :

$$E = \text{Vect}(e_1) \oplus \text{Vect}(e_2, \dots, e_{n+1})$$

puisque génératrice de E et formée de $(n+1) = \dim(E)$ éléments.

vii. Soit $k \in [2, n]$. D'après v, nous savons que :

$$p(u(e'_k)) = p \circ u \circ i(e'_k) \in \text{Vect}(e'_2, \dots, e'_k)$$

et nous en déduisons que :

$$u(e'_k) \in \text{Vect}\left(e_1, e'_2, \dots, e'_k\right)$$

Comme d'autre part:

$$u(e_1) \in \text{Vect}(e_1)$$

la matrice $\mathrm{Mat}_{\mathscr{C}}(u)$ est triangulaire supérieure.

6.5. Trigonalisabilité dans le cas où le corps de base est C

Corollaire 115. — Dans le cas où le corps de base est C, nous disposons des deux résultats suivants.

Toute matrice $M \in \mathcal{M}_n(\mathbf{C})$ est trigonalisable sur \mathbf{C} .

Tout endomorphisme u d'un **C**-espace vectoriel de dimension finie est trigonalisable.

Démonstration. Ce résultat découle du théorème 114 et du théorème d'Alembert Gauß, qui stipule que tout polynôme à coefficients complexes, non constant, est scindé sur **C**.

6.6. Trace, déterminant et valeurs propres d'un endomorphisme/d'une matrice trigonalisable

DAVID BLOTTIÈRE 21 VERSION DU 22 SEPTEMBRE 2025

Proposition 116. — Soient $M \in \mathcal{M}_n(K)$ une matrice trigonalisable sur K et u un endomorphisme trigonalisable de E.

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes de M et $m_{\lambda_1}, \ldots, m_{\lambda_r}$ leurs multiplicités respectives.

Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes de u et $m_{\lambda_1}, \ldots, m_{\lambda_r}$ leurs multiplicités respectives.

$$\operatorname{tr}(M) = \sum_{k=1}^{r} m_k \lambda_k \quad et \quad \det(M) = \prod_{k=1}^{r} \lambda_k^{m_k}$$

$$\operatorname{tr}(u) = \sum_{k=1}^{r} m_k \lambda_k \quad et \quad \det(u) = \prod_{k=1}^{r} \lambda_k^{m_k}$$

6.7. Trigonalisation d'une matrice trigonalisable de format (2,2)

Soit une matrice $M \in \mathcal{M}_2(\mathbf{K})$ trigonalisable et non diagonalisable sur \mathbf{K} . Notons f l'endomorphisme de $\mathcal{M}_{2,1}(\mathbf{K})$ canoniquement associé à M:

$$f \mid \begin{array}{ccc} \mathcal{M}_{2,1}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{2,1}(\mathbf{K}) \\ X & \longmapsto & MX \end{array}$$

Si $\mathcal{B}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ désigne la base canonique de $\mathcal{M}_{2,1}(\mathbf{K})$:

$$\operatorname{Mat}_{\mathscr{B}_0}(f) = M$$

Nécessairement :

$$\chi_f = (X - \lambda)^2$$
 et $\dim(E_{\lambda}(f)) = 1$

où λ est un scalaire dans K.

Soit X_1 un vecteur propre de f pour la valeur propre λ .

On complète la famille libre (X_1) en une base $\mathcal{B} = (X_1, X_2)$ de $\mathcal{M}_{2,1}(\mathbf{K})$ (cf. théorème de la base incomplète).

$$\mathrm{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$$

où $a \in \mathbf{K}$ et d'après le théorème de changement de base :

$$M = P \begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix} P^{-1}$$

où $P := P_{\mathcal{B}_0 \to \mathcal{B}} = (X_1 \mid X_2) \in \mathbf{GL}_2(\mathbf{R}).$

Exercice 117. — Soit la matrice $A := \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$.

- 1. Démontrer que A est trigonalisable sur **R**, puis la trigonaliser.
- 2. Déterminer les couples de fonctions $(x, y) \in \mathscr{C}^{\infty}(\mathbf{R}, \mathbf{R})^2$ tels que :

$$\begin{cases} x' = 3x - y \\ y' = x + y. \end{cases}$$

6.8. Trigonalisation d'une matrice trigonalisable de format (3,3)

Soit une matrice $M \in \mathcal{M}_3(\mathbf{K})$ trigonalisable et non diagonalisable sur \mathbf{K} . Notons f l'endomorphisme de $\mathcal{M}_{3,1}(\mathbf{K})$ canoniquement associé à M:

$$f \mid \begin{array}{ccc} \mathcal{M}_{3,1}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{3,1}(\mathbf{K}) \\ X & \longmapsto & MX \end{array}$$

Si $\mathcal{B}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ désigne la base canonique de $\mathcal{M}_{3,1}(\mathbf{K})$:

$$\operatorname{Mat}_{\mathscr{B}_{o}}(f) = M$$

Une analyse des éléments propres de *M* permet de scinder l'étude de la trigonalisation de la matrice *M* en trois cas.

- 1. $\chi_f = (X \lambda)^2 (X \mu)$ où λ, μ sont deux scalaires dans **K** distincts, $\dim(E_{\lambda}(f)) = 1$ et $\dim(E_{\mu}(f)) = 1$.
- 2. $\chi_f = (X \lambda)^3$ où λ est un scalaire dans **K** et dim $(E_{\lambda}(f)) = 2$.
- 3. $\chi_f = (X \lambda)^3$ où λ est un scalaire dans **K** et dim $(E_{\lambda}(f)) = 1$.

• Cas $n^{\circ}1: \chi_f = (X - \lambda)^2 (X - \mu)$ où λ, μ sont deux scalaires dans **K** distincts, $\dim(E_{\lambda}(f)) = 1$ et $\dim(E_{\mu}(f)) = 1$. On peut démontrer que :

$$\mathcal{M}_{3,1}(\mathbf{K}) = \operatorname{Ker}((f - \lambda \operatorname{id})^2) \oplus E_{\mu}(f)$$

En outre le sous-espace vectoriel $Ker((f - \lambda id)^2)$ est de dimension 2 et stable par u.

Soit X_1 (resp. X_3) un vecteur propre pour la valeur propre λ (resp. μ).

On complète la famille libre (X_1) de $\operatorname{Ker}((f-\lambda\operatorname{id})^2)$ en une base (X_1,X_2) de $\operatorname{Ker}((f-\lambda\operatorname{id})^2)$ (cf. théorème de la base incomplète), de sorte que la famille $\mathscr{B}=(X_1,X_2,X_3)$ est une base de $\mathscr{M}_{3,1}(\mathbf{K})$.

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} \lambda & a & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix}$$

où $a \in \mathbf{K}$ et d'après le théorème de changement de base :

$$M = P \begin{pmatrix} \lambda & a & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix} P^{-1}$$

où $P := P_{\mathcal{B}_0 \to \mathcal{B}} = (X_1 | X_2 | X_3) \in GL_3(\mathbf{R}).$

• Cas $n^{\circ}2: \chi_f = (X - \lambda)^3$ où λ est un scalaire dans \mathbf{K} et $\dim(E_{\lambda}(f)) = 2$. Soit (X_1, X_2) une base de $E_{\lambda}(f)$. On complète la famille libre (X_1, X_2) en une base $\mathscr{B} = (X_1, X_2, X_3)$ de $\mathscr{M}_{3,1}(\mathbf{K})$ (cf. théorème de la base incomplète). Alors:

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} \lambda & 0 & a \\ 0 & \lambda & b \\ 0 & 0 & \lambda \end{pmatrix}$$

où $a, b \in K$ et d'après le théorème de changement de base :

$$M = P \begin{pmatrix} \lambda & 0 & a \\ 0 & \lambda & b \\ 0 & 0 & \lambda \end{pmatrix} P^{-1}$$

où $P := P_{\mathcal{B}_0 \to \mathcal{B}} = (X_1 | X_2 | X_3) \in GL_3(\mathbf{R}).$

• $Cas\ n^{\circ}3: \chi_f = (X - \lambda)^3\ où\ \lambda\ est\ un\ scalaire\ dans\ \mathbf{K}\ et\ \dim(E_{\lambda}(f)) = 1.$ On peut démontrer que le sous-espace vectoriel $\operatorname{Ker}\left((f - \lambda\ \mathrm{id})^2\right)$ est de dimension 2 et stable par u. Soit X_1 un vecteur propre pour la valeur propre λ .

On complète la famille libre (X_1) de $\operatorname{Ker} ((f-\lambda \operatorname{id})^2)$ en une base (X_1,X_2) de $\operatorname{Ker} ((f-\lambda \operatorname{id})^2)$ (cf. théorème de la base incomplète). On complète ensuite la famille libre (X_1,X_2) en une base $\mathscr{B} = (X_1,X_2,X_3)$ est une base de $\mathscr{M}_{3,1}(\mathbf{K})$. Alors :

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} \lambda & a & b \\ 0 & \lambda & c \\ 0 & 0 & \lambda \end{pmatrix}$$

où $a,b,c\in K$ et d'après le théorème de changement de base :

$$M = P \begin{pmatrix} \lambda & a & b \\ 0 & \lambda & c \\ 0 & 0 & \lambda \end{pmatrix} P^{-1}$$

où $P := P_{\mathcal{B}_0 \to \mathcal{B}} = (X_1 | X_2 | X_3) \in GL_3(\mathbf{R}).$

Exercice 118. — Démontrer que $A := \begin{pmatrix} -3 & -3 & 2 \\ 1 & 1 & -2 \\ 2 & 4 & -4 \end{pmatrix}$ est trigonalisable sur **R**, puis la trigonaliser.

7. Nilpotence

Notation. — Dans cette partie, **K** désigne un corps infini, *n* désigne un nombre entier supérieur ou égal à 2 et *E* est un **K**-espace vectoriel de dimension finie *n*.

7.1. Définition d'une matrice carrée nilpotente

Définition 119. — Une matrice $M \in \mathcal{M}_n(\mathbf{K})$ est dite nilpotente s'îl existe $p \in \mathbf{N}^*$ tel que $M^p = 0$. Dans ce cas, le nilindice de la matrice M est :

$$\nu(M) := \min \{ p \in \mathbf{N}^* : M^p = 0 \} \in \mathbf{N}^*$$

Exemple 120. — Soit $M \in \mathcal{M}_n(K)$ une matrice triangulaire supérieure stricte (avec des coefficients diagonaux tous nuls). Alors :

$$M^n = 0$$

donc la matrice M est nilpotente. Pour l'établir, nous démontrons en raisonnant par récurrence finie que, pour tout $k \in [1, n]$:

$$\mathscr{P}(k)$$
: $\forall (i,j) \in [1,n]^2 \quad i \ge j+1-k \Longrightarrow [M^k]_{i,j} = 0$ »

- Initialisation à k = 1. L'assertion $\mathcal{P}(1)$ signifie que la matrice M est triangulaire stricte. Elle est donc vraie.
- *Hérédité*. Soit $k \in [1, n-1]$ tel que l'assertion $\mathcal{P}(k)$ est vraie. Soit $(i, j) \in [1, n]$ tel que :

$$i \ge i - k$$

Nous calculons:

$$[M^{k+1}]_{i,j} = \sum_{\ell=1}^{n} [M^{k}]_{i,\ell} [M]_{\ell,j}$$
(7)

Soit $\ell \in [1, n]$.

- Si $i \ge \ell + 1 k$ alors $[M^k]_{i,\ell} = 0$ (hypothèse de récurrence).
- Sinon $i \le \ell k$ et, comme $i \ge j k$, il vient $\ell \ge j$, ce qui implique que $[M]_{\ell,j} = 0$ (A est triangulaire supérieure stricte).

Tous les termes de la somme (7) étant nuls, nous en déduisons que $[M^{k+1}]_{i,j} = 0$.

L'assertion $\mathcal{P}(n)$ étant vraie, nous savons que :

$$\forall (i,j) \in [1,n]^2 \quad i \geqslant j+1-n \Longrightarrow [M^n]_{i,j} = 0$$
(8)

Comme, pour tout $(i, j) \in [1, n]^2$, $i \ge j + 1 - n$, nous déduisons de (8) que la matrice M^n est nulle.

7.2. Définition d'un endomorphisme nilpotent

Définition 121. — Un endomorphisme u de E est dit nilpotent s'îl existe $p \in \mathbb{N}^*$ tel que $u^p = 0$ (la puissance est prise relativement au produit de composition). Dans ce cas, le nilindice de l'endomorphisme u est :

$$\nu(u) := \min \{ p \in \mathbf{N}^* : u^p = 0 \} \in \mathbf{N}^*$$

Remarque 122. — Soient $u \in \mathcal{L}(E)$ et \mathcal{B} est une base quelconque de E. L'application :

$$\operatorname{Mat}_{\mathscr{B}}(\cdot) \left| \begin{array}{ccc} (\mathscr{L}(E), \cdot, +, \circ) & \longrightarrow & (\mathscr{M}_n(\mathbf{K}), \cdot, +, \times) \\ \nu & \longmapsto & \operatorname{Mat}_{\mathscr{B}}(\nu) \end{array} \right|$$

étant un isomorphisme de K-algèbres (un isomorphisme d'anneaux qui est K-linéaire) :

u est nilpotent \iff Mat_{\mathscr{B}}(u) est nilpotente

et, dans le cas où u est nilpotent :

$$v(u) = v(\text{Mat}_{\mathcal{B}}(u))$$

En particulier une matrice $M \in \mathcal{M}_n(\mathbf{K})$ est nilpotente si et seulement si l'endomorphisme de \mathbf{K}^n canoniquement associé est nilpotente.

7.3. Majoration du nilindice

Proposition 123. — Soient $M \in \mathcal{M}_n(\mathbf{K})$ et $u \in \mathcal{L}(E)$.

Si M est nilpotente, alors son nilindice vérifie :

$$\nu(M) \leq n$$

Si u est nilpotent, alors son nilindice vérifie :

$$v(u) \leq \dim(E)$$

 $D\acute{e}monstration$. Nous ne considérons que le cas des endomorphismes. Soit u un endomorphisme nilpotent de nilindice noté v. Alors :

$$u^{\nu-1} \neq 0_{\mathscr{L}(E)}$$
 et $u^{\nu} = 0_{\mathscr{L}(E)}$

Comme $u^{\nu-1} \neq 0_{\mathcal{L}(E)}$, il existe $x \in E$ tel que $u^{\nu-1}(x) \neq 0_E$. Nous démontrons que la famille :

$$(x,u(x),\ldots,u^{\nu-1}(x))$$

de ν vecteurs de E est libre, en raisonnant par l'absurde. Nous en déduirons que $\nu \le \dim(E)$. Supposons donc qu'il existe des scalaires $\lambda_0, \dots, \lambda_{\nu-1}$ non tous nuls tels que :

$$\sum_{j=0}^{\nu-1} \lambda_j u^j(x) = 0_E \tag{9}$$

Considérons:

$$i := \min \left\{ j \in \llbracket 0, \nu - 1 \rrbracket \ : \ \lambda_j \neq 0_{\mathbf{K}} \right\}$$

Nous pouvons écrire l'identité (9) sous la forme :

$$\sum_{j=i}^{\nu-1} \lambda_j u^j(x) = 0_E$$

En appliquant $u^{\nu-1-i}$ (licite car $\nu-1-i \ge 0$), il vient :

$$\sum_{j=i}^{\nu-1} \lambda_j u^{\nu-1+j-i}(x) = 0_E$$
 (10)

Soit $j \ge i+1$. Comme $v-1+j-i \ge v$, il vient $u^{v-1+j-i}(x)=0_E$. L'identité (10) se simplifie donc pour donner :

$$\underbrace{\lambda_i}_{\neq 0_K} \underbrace{u^{\nu-1}(x)}_{\neq 0_F} = 0_E$$

7.4. Caractérisation de la nilpotence via le polynôme caractéristique

Théorème 124. — Soient $M \in \mathcal{M}_n(\mathbf{K})$ et $u \in \mathcal{L}(E)$.

Les trois assertions suivantes sont équivalentes.

- 1. La matrice M est nilpotente.
- 2. La matrice M est trigonalisable sur K, avec pour seule valeur propre 0.
- 3. $\chi_M = X^n$

Les trois assertions suivantes sont équivalentes.

- 1. L'endomorphisme u est nilpotent.
- 2. L'endomorphisme u est trigonalisable avec pour seule valeur propre 0.

3. $\chi_u = X^{\dim(E)}$

Démonstration. Nous ne considérons que le cas des endomorphismes.

• $1 \Longrightarrow 3$. Nous démontrons cette implication en raisonnant par récurrence sur la dimension de E. Pour tout $n \in \mathbb{N}^*$, soit $\mathscr{P}(n)$ le prédicat défini par :

 $\mathscr{P}(n)$: « pour tout K-espace vectoriel E de dimension n, pour tout $u \in \mathscr{L}(E)$ nilpotent, $\chi_u = X^n$ »

- *Initialisation* à n = 1. Un endomorphisme nilpotent d'un K-espace vectoriel de dimension 1 est nul. Son polynôme caractéristique égale donc X.
- *Hérédité*. Soit $n \in \mathbb{N}^*$ tel que l'assertion $\mathscr{P}(n)$ est vraie. Considérons un K-espace vectoriel de dimension (n+1) et u un endomorphisme nilpotent de E, de nilindice noté v.
 - i. Comme:

$$\det(u)^{\nu} = \det(u^{\nu}) = 0$$

le déterminant de u est nul. Le noyau de u est donc distinct de $\{0_E\}$. Soit e_1 un vecteur non nul du noyau de u.

ii. Si l'on complète la famille libre (e_1) en une base (e_1,e_2,\ldots,e_{n+1}) de E, alors :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 0 & L \\ 0 & A \end{pmatrix}$$

où $L \in \mathcal{M}_{n,1}(\mathbf{K})$ et $A \in \mathcal{M}_n(\mathbf{K})$.

iii. En développant par rapport à la première colonne, il vient :

$$\chi_u(X) = \det \begin{pmatrix} X & L \\ 0 & X I_n - A \end{pmatrix} = X \det(X I_n - A) = X \chi_A(X)$$

Il nous reste à établir que $\chi_A(X) = X^n$.

iv. Nous calculons par blocs:

$$0_{\mathcal{M}_{n+1}(\mathbf{K})} = \operatorname{Mat}_{\mathscr{B}}(u^{\nu}) = \operatorname{Mat}_{\mathscr{B}}(u)^{\nu} = \begin{pmatrix} 0 & L' \\ 0 & A^{\nu} \end{pmatrix}$$

où $L' \in \mathcal{M}_{n,1}(\mathbf{K})$. La matrice A est donc nilpotente.

v. Notons φ_A l'endomorphisme de $\mathcal{M}_{n,1}(\mathbf{K})$ canoniquement associé à la matrice $A \in \mathcal{M}_n(\mathbf{K})$. Il est nilpotent donc, d'après l'hypothèse de récurrence :

$$\chi_A = \chi_{\varphi(A)} = X^n$$

• $3 \Longrightarrow 2$. Supposons que $\chi_u = X^{\dim(E)}$. Alors :

Spec
$$(u) = {\lambda \in \mathbf{K} : \chi_u(\lambda) = 0} = {0}$$

et, comme le polynôme χ_u est scindé sur K, le théorème 114 livre la trigonalisabilité de u.

• $2 \Longrightarrow 1$. Nous notons n la dimension de E et nous supposons que u est trigonalisable avec comme seule valeur propre 0. Alors il existe une base \mathcal{B} de E tel que la matrice $\operatorname{Mat}_{\mathcal{B}}(u)$ soit triangulaire stricte. Nous savons alors que :

$$\operatorname{Mat}_{\mathscr{B}}(u^n) = \operatorname{Mat}_{\mathscr{B}}(u)^n = 0$$

Ainsi $u^n = 0_{\mathcal{L}(E)}$.

Exercice 125. — Que dire d'une matrice $M \in \mathcal{M}_n(K)$ qui est à la fois diagonalisable et nilpotente?

Exercice 126. — Soit $A \in \mathcal{M}_n(\mathbf{C})$. Démontrer que les deux assertions suivantes sont équivalentes.

- 1. La matrice A est nilpotente.
- 2. Pour tout $k \in \mathbf{N}^*$, $\operatorname{tr}(A^k) = 0$.

David Blottière 26 version du 22 septembre 2025