Espaces vectoriels normés 1

1.	Normes et espaces vectoriels normés	. 2
	1.1. Définition d'une norme	
	1.2. Norme associée à un produit scalaire sur un espace préhilbertien réel (norme euclidienne)	
	1.3. L'identité du parallélogramme caractérise les normes euclidiennes (HP)	. 4
	1.4. Normes usuelles sur \mathbf{K}^n	. 4
	1.5. Normes usuelles sur $\mathcal{M}_{n,p}(\mathbf{K})$ (HP)	
	1.6. Normes usuelles sur $\mathbf{K}[X]$ (HP)	
	1.7. Norme de la convergence uniforme sur un espace de fonctions bornées	
	1.8. Norme de la convergence en moyenne sur les espaces de fonctions continues sur $[a, b]$	
	1.9. Norme de la convergence en moyenne quadratique sur les espaces de fonctions continues sur $[a, b]$	
	1.10. Normes usuelles sur des espaces de suites (HP)	
	1.11. Distance associée à une norme	
	1.12. Boules ouvertes, boules fermées et sphères	
	1.13. Partie convexe d'un R -espace vectoriel	
	1.14. Parties convexes de R et caractérisation des fonctions convexes par leur épigraphe (HP)	
	1.15. Parties et suites bornées	
	1.16. Produit d'un nombre fini d'espaces vectoriels normés	
า	Suite d'éléments d'un K-espace vectoriel normé	
۷.	2.1. Définition d'une suite convergente	
	2.2. Unicité de la limite d'une suite convergente	
	2.3. Une suite convergente est bornée	
	2.4. Opérations algébriques sur les suites	
	2.5. Convergence d'une suite à valeurs dans un espace produit	16
	2.6. Suites extraites et valeurs d'adhérence	
_	2.7. Une suite bornée ne possède pas nécessairement de valeur d'adhérence	
3.	Topologie d'un espace vectoriel normé	
	3.1. Ouverts et fermés d'un espace vectoriel normé	
	3.2. Propriétés topologiques des boules	
	3.3. Opérations sur les ouverts et les fermés	
	3.4. Voisinages d'un point	
	3.5. Définition de l'adhérence d'une partie	
	3.6. Propriété de minimalité de l'adhérence et caractérisation des fermés via l'adhérence	. 23
	3.7. Caractérisations séquentielles de l'adhérence et des fermés	
	3.8. Densité d'une partie	
	3.9. Intérieur d'une partie	
	3.10. Frontière d'une partie	
	3.11. Topologie induite	
4.	Étude locale d'une application, continuité	. 29
	4.1. Notion de limite de fonction	. 29
	4.2. Unicité de la limite d'une fonction en un point adhérent à l'ensemble de définition	29
	4.3. Caractérisation séquentielle de la notion de limite	
	4.4. Composition de limites	
	4.5. Limite d'une fonction à valeurs dans un espace produit	
	4.6. Opérations algébriques sur les limites de fonctions	
	4.7. Continuité d'une fonction	
	4.8. Opérations algébriques sur les fonctions continues	
	4.9. Composition d'applications continues	
	4.10. Continuité d'une application à valeurs dans un espace produit	
	4.11. Caractérisation séquentielle de la continuité	
	4.12. Prolongement d'identités par densité et continuité	
	4.13. Caractérisation de la continuité <i>via</i> les ouverts	. 3⊿
	4.14. Caractérisation de la continuité <i>via</i> les fermés	
	4.15. Applications uniformément continues	
	4.16. Applications lipschitziennes	
	1.10. 1 pp. catton upocintalennes	. 50

Notation. — Dans tout ce chapitre, la lettre K désigne le corps R ou C.

1. Normes et espaces vectoriels normés

1.1. Définition d'une norme

Définition 1. — *Une norme sur un* **K**-espace vectoriel *E* est une application :

$$||\cdot||:E\longrightarrow \mathbf{R}_{+}$$

vérifiant les trois propriétés suivantes.

- 1. $\forall x \in E \mid |x|| = 0_R \implies x = 0_E \quad [séparation]$
- 2. $\forall x \in E \quad \forall \lambda \in K \quad ||\lambda x|| = |\lambda| ||x|| \quad [homogénéité]$
- 3. $\forall (x,y) \in E^2 \quad ||x+y|| \le ||x|| + ||y||$ [inégalité triangulaire]

Un K-espace vectoriel normé est un K-espace vectoriel muni d'une norme.

Remarque 2. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé.

- 1. $||0_E|| = 0_R$ [norme du vecteur nul]
- 2. $\forall x \in E \quad ||-x|| = ||x||$ [norme de l'opposé]
- 3. $\forall (x, y) \in E^2$ $|||x|| ||y||| \le ||x y||$ [seconde inégalité triangulaire]

La norme nous fournit un outil pour démontrer que deux vecteurs d'un K-espace vectoriel normé sont égaux. Précisément, si $(E, ||\cdot||)$ est un K-espace vectoriel normé alors, pour tout $(x, y) \in E^2$:

$$x = y \iff ||x - y|| = 0_R$$
.

Exemple 3. — L'application $|\cdot|: K \longrightarrow R_+$ (« valeur absolue » si K = R et « module » si K = C) est une norme sur K.

1.2. Norme associée à un produit scalaire sur un espace préhilbertien réel (norme euclidienne)

Notation. — Dans cette partie, $(E, \langle \cdot, \cdot \rangle)$ désigne un espace préhilbertien réel. On définit l'application $||\cdot||$ par :

$$||\cdot|| \mid E \longrightarrow \mathbf{R}_{+}$$

 $x \longmapsto \sqrt{\langle x, x \rangle}$.

Proposition 4. — *Soit* $(x, y) \in E^2$.

- 1. $|\langle x, y \rangle| \le ||x|| ||y||$ [inégalité de Cauchy-Schwarz]
- 2. $|\langle x, y \rangle| = ||x|| ||y|| \iff (\exists \lambda \in \mathbb{R} \ x = \lambda y \ ou \ y = \lambda x)$ [cas d'égalité pour l'inégalité de Cauchy-Schwarz]

Démonstration. Les deux assertions sont claires si $y=0_E$. Nous supposons donc que $y\neq 0_E$.

1. Considérons les valeurs de l'application $||\cdot||^2$ le long de la droite affine passant par x et dirigée par le vecteur y, en introduisant la fonction :

$$f \mid \mathbf{R} \longrightarrow \mathbf{R}$$

$$t \longmapsto ||x + ty||^2 = ||y||^2 t^2 + 2\langle x, y \rangle t + ||x||^2.$$

La fonction f est polynomiale, de degré 2 et ne prend que des valeurs positives ou nulles. Elle ne possède donc pas deux racines réelles distinctes, d'où :

$$4 \langle x, y \rangle^2 - 4 ||x||^2 ||y||^2 = \Delta(f) \le 0$$
.

Avec la croissance de la fonction racine carrée sur R₊, nous en déduisons l'inégalité de Cauchy-Schwarz.

2. \Longrightarrow . Supposons que $|\langle x, y \rangle| = ||x|| ||y||$. Alors $\Delta(f) = 0$. La fonction polynomiale f possède donc une racine réelle double t_0 . Ainsi :

$$0 = f(t_0) = ||x + t_0 y||^2 = \langle x + t_0 y, x + t_0 y \rangle.$$

Par séparation du produit scalaire, il vient $x = -t_0 y$.

 \Leftarrow Supposons qu'il existe $\lambda \in \mathbf{R}$ tel que $x = \lambda y$ (le cas $y = \lambda x$ se traite de manière analogue). Nous calculons :

$$\begin{array}{lll} |\langle x,y\rangle| &=& |\langle \lambda y,y\rangle| \\ &=& |\lambda \langle y,y\rangle| \\ &=& |\lambda| \langle y,y\rangle \end{array} \qquad \begin{array}{lll} ||x|| \, ||y|| &=& \sqrt{\langle \lambda y,\lambda y\rangle} \, \sqrt{\langle y,y\rangle} \\ &=& \sqrt{\lambda^2 \, \langle y,y\rangle} \, \sqrt{\langle y,y\rangle} \\ &=& |\lambda| \, \sqrt{\langle y,y\rangle} \, \sqrt{\langle y,y\rangle} \end{array}$$

pour en déduire $|\langle x, y \rangle| = ||x|| ||y||$.

Proposition 5. — *Soit* $(x, y) \in E^2$.

- 1. $||x + y|| \le ||x|| + ||y||$ [inégalité de Minkowski]
- 2. $||x + y|| = ||x|| + ||y|| \iff (\exists \lambda \in \mathbf{R}_+ \ x = \lambda y \text{ ou } y = \lambda x)$ [cas d'égalité pour l'inégalité de Minkowski]

Démonstration. Les deux assertions sont claires si $y = 0_E$. Nous supposons donc que $y \neq 0_E$.

1. La bilinéairité et la symétrie du produit scalaire nous livrent :

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2 + 2 \langle x, y \rangle.$$
 (1)

Nous observons que :

$$||x+y|| \le ||x|| + ||y|| \iff ||x+y||^2 \le (||x|| + ||y||)^2 \qquad [x \mapsto x^2 \text{ est strictement croissante sur } \mathbf{R}_+]$$

 $\iff ||x||^2 + ||y||^2 + 2\langle x, y \rangle \le ||x||^2 + ||y||^2 + 2||x|| ||y|| \qquad [cf. (1)]$
 $\iff \langle x, y \rangle \le ||x|| ||y||.$

L'inégalité de Cauchy-Schwarz nous permet de conclure.

2. En reprenant les arguments donnés en 1, nous établissons :

$$||x+y|| = ||x|| + ||y|| \iff \langle x, y \rangle = ||x|| ||y||.$$
 (2)

 \implies . Supposons que ||x+y|| = ||x|| + ||y||, i.e. que $\langle x, y \rangle = ||x|| \, ||y||$ (cf. (2)). Le cas d'égalité dans l'inégalité de Cauchy-Schwarz livre l'existence d'un réel λ tel que $x = \lambda y$. Ainsi :

$$\underbrace{||x|| ||y||}_{\geqslant 0} = \langle x, y \rangle = \langle \lambda y, y \rangle = \lambda \underbrace{\langle y, y \rangle}_{> 0}$$

d'où $\lambda \in \mathbf{R}_+$.

 \Leftarrow Supposons qu'il existe $\lambda \in \mathbf{R}_+$ tel que $x = \lambda y$ (le cas $y = \lambda x$ se traite de manière analogue). Grâce au cas d'égalité dans l'inégalité de Cauchy-Schwarz :

$$||x|| ||y|| = |\langle x, y \rangle|. \tag{3}$$

Nous déterminons le signe de $\langle x, y \rangle$:

$$\langle x, y \rangle = \langle \lambda y, y \rangle = \underbrace{\lambda}_{\geqslant 0} \underbrace{\langle y, y \rangle}_{\geqslant 0} \geqslant 0.$$
 (4)

De (3) et (4) nous déduisons que $||x|| ||y|| = \langle x, y \rangle$. Nous en concluons que ||x + y|| = ||x|| + ||y|| grâce à (2).

Proposition 6. — L'application $||\cdot||: E \longrightarrow \mathbf{R}_+$ définie par :

$$\forall x \in E, \quad ||x|| = \sqrt{\langle x, x \rangle}$$

est une norme sur E.

Démonstration.

1. *Séparation*. Soit $x \in E$ tel que $0_R = ||x|| = \sqrt{\langle x, x \rangle}$. Nous en déduisons que $\langle x, x \rangle = 0$, puis que $x = 0_E$ d'après la propriété de séparation du produit scalaire.

David Blottière 3 version du 9 octobre 2025

2. Homogénéité. Soit $(\lambda, x) \in \mathbf{K} \times \mathbf{R}$. Nous calculons :

$$||\lambda x|| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = \sqrt{\lambda^2} \sqrt{\langle x, x \rangle} = |\lambda| ||x||.$$

3. Inégalité triangulaire. Il s'agit de l'inégalité de Minkowski.

Terminologie 7. — On dit qu'une norme || · || sur un **R**-espace vectoriel *F* est une « norme euclidienne » s'il existe un produit scalaire $\langle \cdot, \cdot \rangle$ sur *F* tel que, pour tout $x \in F$, $||x|| = \sqrt{\langle x, x \rangle}$.

1.3. L'identité du parallélogramme caractérise les normes euclidiennes (HP)

Exercice 8. — Soit $(E, ||\cdot||)$ un **R**-espace vectoriel normé. Démontrer que la norme $||\cdot||$ est euclidienne si et seulement si :

$$\forall (x, y) \in E^2 \quad ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$
 [identité du parallélogramme].

1.4. Normes usuelles sur Kⁿ

Proposition 9. — Soit $n \in \mathbb{N}^*$. Les applications :

$$||\cdot||_1: \mathbf{K}^n \longrightarrow \mathbf{R}_+ \qquad \qquad ||\cdot||_2: \mathbf{K}^n \longrightarrow \mathbf{R}_+ \qquad \qquad ||\cdot||_{\infty}: \mathbf{K}^n \longrightarrow \mathbf{R}_+$$

définies par, pour tout $x = (x_1, ..., x_n) \in \mathbf{K}^n$:

$$||x||_1 := \sum_{i=1}^n |x_i| \qquad \qquad ||x||_2 := \sqrt{\sum_{i=1}^n |x_i|^2} \qquad \qquad ||x||_\infty := \max\{|x_i| \ : \ i \in [\![1,n]\!]\}$$

sont des normes sur \mathbf{K}^n . Lorsque $\mathbf{K} = \mathbf{R}$, la norme $||\cdot||_2$ est euclidienne, associée au produit scalaire canonique sur \mathbf{R}^n défini par, pour tout $x = (x_1, \dots, x_n) \in \mathbf{R}^n$, $y = (y_1, \dots, y_n) \in \mathbf{R}^n$:

$$\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i.$$

Éléments de démonstration. Nous démontrons que l'application $||\cdot||_1$ est une norme sur \mathbf{K}^n .

1. *Séparation*. Soit $x = (x_1, ..., x_n) \in \mathbf{K}^n$ tel que :

$$||x||_1 := \sum_{i=1}^n \underbrace{|x_i|}_{\geqslant 0} = 0.$$

Comme une somme de réels positifs ou nuls est nulle si et seulement si tous ses termes sont nuls, il vient :

$$\forall i \in [1, n] \quad |x_i| = 0_{\mathbf{R}} .$$

Par séparation de $|\cdot|$ sur **K**, nous en déduisons que :

$$\forall i \in [[1, n]] \quad x_i = 0_{\mathbf{K}}.$$

Le vecteur *x* est donc nul.

2. Homogénéité. Soient $\lambda \in \mathbf{K}$ et $x = (x_1, \dots, x_n) \in \mathbf{K}^n$. Nous calculons :

$$||\lambda x||_1 = ||(\lambda x_1, \dots, \lambda x_n)||_1 = \sum_{i=1}^n |\lambda x_i| = \sum_{i=1}^n |\lambda| |x_i| = |\lambda| \sum_{i=1}^n |x_i| = |\lambda| ||x||_1.$$

3. *Inégalité triangulaire*. Soient $x = (x_1, ..., x_n) \in \mathbf{K}^n$ et $y = (y_1, ..., y_n) \in \mathbf{K}^n$. D'après l'inégalité triangulaire vérifiée par l'application $|\cdot|$:

$$||x+y||_1 = ||(x_1+y_1,...,x_n+y_n)||_1 = \sum_{i=1}^n |x_i+y_i| \le \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = ||x||_1 + ||y||_1$$

DAVID BLOTTIÈRE 4 VERSION DU 9 OCTOBRE 2025

Exercice 10. — Soit $n \in \mathbb{N}^*$. On se propose de comparer les trois normes $||\cdot||_1$, $||\cdot||_2$ et $||\cdot||_{\infty}$ sur \mathbb{R}^n .

1. Démontrer que :

$$\forall x \in \mathbf{R}^n \quad ||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$$

et que ces inégalités sont optimales.

2. Démontrer que :

$$\forall x \in \mathbf{R}^n \quad ||x||_{\infty} \le ||x||_1 \le n ||x||_{\infty}$$

et que ces inégalités sont optimales.

3. Démontrer que :

$$\forall x \in \mathbb{R}^n \quad ||x||_{\infty} \le ||x||_2 \le \sqrt{n} \, ||x||_{\infty}$$

et que ces inégalités sont optimales.

1.5. Normes usuelles sur $\mathcal{M}_{n,p}(K)$ (HP)

Exercice 11. — Soient n et p des entiers naturels non nuls. Démontrer que les applications :

$$||\cdot||_1: \mathcal{M}_{n,n}(\mathbf{K}) \longrightarrow \mathbf{R}_1$$

$$||\cdot||_2:\mathcal{M}_{n,p}(\mathbf{K})\longrightarrow \mathbf{R}_+$$

$$||\cdot||_1: \mathscr{M}_{n,p}(\mathbf{K}) \longrightarrow \mathbf{R}_+ \qquad \qquad ||\cdot||_2: \mathscr{M}_{n,p}(\mathbf{K}) \longrightarrow \mathbf{R}_+ \qquad \qquad ||\cdot||_{\infty}: \mathscr{M}_{n,p}(\mathbf{K}) \longrightarrow \mathbf{R}_+$$

définies par, pour tout $A \in \mathcal{M}_{n,p}(\mathbf{K})$:

$$||A||_1 := \sum_{(i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,n \rrbracket} \left| \left[A \right]_{i,j} \right|$$

$$||A||_2 := \sqrt{\operatorname{tr}\left(A\overline{A}^{\top}\right)} = \sqrt{\sum_{(i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket} \left| \, \llbracket A \rrbracket_{i,j} \, \right|^2}$$

$$||A||_{\infty} := \max\{ |[A]_{i,j}| : (i,j) \in [[1,n]] \times [[1,p]] \}$$

où \overline{A} est la matrice conjuguée de A, sont des normes sur $\mathcal{M}_{n,p}(\mathbf{K})$. Lorsque $\mathbf{K} = \mathbf{R}$, que dire de la norme $||\cdot||_2$?

Exercice **12.** — Soit un entier $n \ge 2$.

- 1. Donner une matrice $A \in \mathcal{M}_n(\mathbf{R}) \setminus \{0_{\mathcal{M}_n(\mathbf{R})}\}$ telle que les matrices A et 2A sont semblables.
- 2. Démontrer qu'il n'existe pas de norme N sur $\mathcal{M}_n(\mathbf{R})$ telle que, pour tout $(A,B) \in \mathcal{M}_n(\mathbf{R})^2$:

$$N(AB) = N(A)N(B)$$
.

3. Démontrer que l'application $||\cdot||: \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathbf{R}_+$ définie par, pour tout $A \in \mathcal{M}_n(\mathbf{R})$:

$$||A|| = \max \left\{ \sum_{i=1}^{n} |[A]_{i,j}| : j \in [1, n] \right\}.$$

est une norme sur $\mathcal{M}_n(\mathbf{R})$ et que, pour tout $(A,B) \in \mathcal{M}_n(\mathbf{R})^2$:

$$||AB|| \le ||A|| ||B||$$
.

1.6. Normes usuelles sur K[X] (HP)

Exercice 13. — Démontrer que les applications :

$$||\cdot||_1: \mathbf{K}[X] \longrightarrow \mathbf{R}_+$$

$$||\cdot||_2: \mathbf{K}[X] \longrightarrow \mathbf{R}_+$$

$$||\cdot||_2: \mathbf{K}[X] \longrightarrow \mathbf{R}_+ \qquad \qquad ||\cdot||_{\infty}: \mathbf{K}[X] \longrightarrow \mathbf{R}_+$$

définies par, pour tout $P \in \mathbf{K}[X]$:

$$||P||_1 := \underbrace{\sum_{i=0}^{+\infty} |[P]_i|}_{\text{composition}}$$

$$||P||_{1} := \underbrace{\sum_{i=0}^{+\infty} |[P]_{i}|}_{\text{ensemble fini non vide}} \qquad \qquad ||P||_{2} := \underbrace{\sqrt{\sum_{i=0}^{+\infty} |[P]_{i}|^{2}}}_{\text{ensemble fini non vide}} \qquad \qquad ||P||_{\infty} := \max_{i=0}^{\infty} \underbrace{\{|[P]_{i}| : i \in \mathbf{N}\}}_{\text{ensemble fini non vide}}$$

$$||P||_{\infty} := \max\{|[P]_i| : i \in \mathbb{N}\}$$

sont des normes sur K[X]. Lorsque $K = \mathbb{R}$, que dire de la norme $||\cdot||_2$?

Exercice 14. — On se propose de comparer les trois normes $||\cdot||_1$, $||\cdot||_2$ et $||\cdot||_{\infty}$ sur $\mathbb{R}[X]$.

1. Démontrer que :

$$\forall P \in \mathbf{R}[X] \qquad ||P||_2 \leqslant ||P||_1$$

et que cette inégalité est optimale.

2. Démontrer qu'il n'existe aucune constante $C \in \mathbb{R}_+$ telle que :

$$\forall P \in \mathbf{R}[X] \qquad ||P||_1 \leq C ||P||_2.$$

3. Démontrer que :

$$\forall P \in \mathbf{R}[X]$$
 $||P||_{\infty} \leq ||P||_{1}$

et que cette inégalité est optimale.

4. Démontrer qu'il n'existe aucune constante $C \in \mathbb{R}_+$ telle que :

$$\forall P \in \mathbf{R}[X] \qquad ||P||_1 \leqslant C ||P||_{\infty} .$$

5. Démontrer que :

$$\forall P \in \mathbf{R}[X]$$
 $||P||_{\infty} \leq ||P||_{2}$

et que cette inégalité est optimale.

6. Démontrer qu'il n'existe aucune constante $C \in \mathbb{R}_+$ telle que :

$$\forall P \in \mathbf{R}[X] \qquad ||P||_2 \leq C ||P||_{\infty}.$$

Exercice 15. — Soit $n \in \mathbb{N}^*$. Démontrer que l'application $||\cdot||: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_+$ définie par, pour tout $P \in \mathbb{R}_n[X]:$

$$||P|| = \sqrt{\sum_{i=0}^{n} P(i)^2}$$

est une norme sur $\mathbf{R}_n[X]$.

1.7. Norme de la convergence uniforme sur un espace de fonctions bornées

Notation. — Dans cette partie, A désigne un ensemble non vide.

Définition 16. — Une application f de A dans K est dite bornée si:

$$\exists M \in \mathbf{R}_+ \quad \forall a \in A \quad |f(a)| \leq M$$
.

On note $\mathcal{B}(A, \mathbf{K})$ l'ensemble des fonctions de A dans \mathbf{K} qui sont bornées, i.e. :

$$\mathscr{B}(A, \mathbf{K}) = \{ f \in \mathbf{K}^A : f \text{ est bornée} \}$$
.

Exercice 17. — Soit une fonction $f: \mathbf{R}_+ \longrightarrow \mathbf{R}$ continue sur \mathbf{R}_+ et possédant une limite $\ell \in \mathbf{R}$ en $+\infty$. Démontrer que la fonction f est bornée sur \mathbf{R}_+ .

Proposition 18. — L'ensemble $\mathscr{B}(A, \mathbf{K})$ est un sous-espace vectoriel de \mathbf{K}^A .

Démonstration.

- 1. La fonction nulle sur *A* est clairement bornée sur *A*.
- 2. Soient $(\lambda_1, \lambda_2) \in \mathbb{K}^2$ et $(f_1, f_2) \in \mathcal{B}(A, \mathbb{K})^2$. Il existe $M_1 \in \mathbb{R}_+$ et $M_2 \in \mathbb{R}_+$ tels que, pour tout $a \in A$:

$$|f_1(a)| \le M_1$$
 et $|f_2(a)| \le M_2$.

Soit $a \in A$. D'après l'inégalité triangulaire dans **K** :

$$|(\lambda_1 f_1 + \lambda_2 f_2)(a)| = |\lambda_1 f_1(a) + \lambda_2 f_2(a)| \leqslant |\lambda_1| \ |f_1(a)| + |\lambda_2| \ |f_2(a)| \leqslant \underbrace{|\lambda_1| \ M_1 + |\lambda_2| \ M_1}_{\text{indépendant de } a}.$$

шаер

La fonction $\lambda_1 f_1 + \lambda_2 f_2$ est donc bornée sur A.

Considérons une partie non vide X de \mathbb{R} . On suppose qu'il existe une constante réelle M telle que :

$$\forall x \in X \quad x \leq M$$
 [la constante M est indépendante de x].

Alors la partie X de \mathbb{R} est majorée et M est un majorant de X. Le nombre M est donc plus grand que le plus petit des majorants de X, noté $\sup(X)$, i.e. :

$$\sup(X) \leq M$$
.

Cet argument, que nous appellerons « passage à la borne supérieure sur tous les $x \in X$ », est commode pour établir des inégalités mettant en jeu une borne supérieure.

David Blottière 6 version du 9 octobre 2025

Proposition 19. — L'application :

$$\|\cdot\|_{\infty}$$
 $\mid \mathcal{B}(A, \mathbf{K}) \longrightarrow \mathbf{R}_{+}$
 $f \longmapsto \sup\{|f(a)| : a \in A\}$

est une norme sur $\mathcal{B}(A, \mathbf{K})$, appelée norme de la convergence uniforme.

Démonstration.

1. *Séparation*. Soit $f \in \mathcal{B}(A, \mathbf{K})$ telle que $||f||_{\infty} = 0$. Soit $a \in A$. Comme :

$$0 \le |f(a)| \le ||f||_{\infty} = 0$$

nous savons que |f(a)| = 0. Par séparation de $|\cdot|$, il vient f(a) = 0. L'application f est donc identiquement nulle.

- 2. Homogénéité. Soit $(\lambda, f) \in \mathbb{K} \times \mathcal{B}(A, \mathbb{K})$.
 - Si $\lambda = 0$, alors l'identité $||\lambda f||_{\infty} = |\lambda| ||f||_{\infty}$ est claire (les deux termes sont nuls). Nous supposons donc que $\lambda \neq 0$.
 - Soit $a \in A$. Comme l'application $|\cdot|$ est multiplicative :

$$|(\lambda f)(a)| = |\lambda f(a)| = |\lambda| |f(a)| \le \underbrace{|\lambda| ||f||_{\infty}}_{\text{constante indépendante de } a}.$$

Par passage à la borne supérieure sur tous les éléments $a \in A$, il vient :

$$\|\lambda f\|_{\infty} \le |\lambda| \|f\|_{\infty} . \tag{5}$$

L'inégalité (5) vaut pour tout $\lambda \neq 0$ et pour tout $f \in \mathcal{B}(A, \mathbf{K})$.

— En spécialisant (5) à $\lambda \leftarrow 1/\lambda$ et $f \leftarrow \lambda f$, nous obtenons :

$$||f||_{\infty} = \left|\left|\frac{1}{\lambda}(\lambda f)\right|\right| \le \frac{1}{|\lambda|} ||\lambda f||_{\infty}$$

puis, en multipliant membre à membre par $|\lambda| > 0$ que :

$$|\lambda| ||f||_{\infty} \le ||\lambda f||_{\infty} . \tag{6}$$

- De (5) et (6), nous concluons à $||\lambda f||_{\infty} = |\lambda| ||f||_{\infty}$.
- 3. *Inégalité triangulaire*. Soit $(f,g) \in \mathcal{B}(A,\mathbb{K})^2$. Soit $a \in A$. L'inégalité triangulaire pour $|\cdot|$ nous livre :

$$|(f+g)(a)| = |f(a)+g(a)| \le |f(a)|+|g(a)| \le \underbrace{||f||_{\infty} + ||g||_{\infty}}_{\text{constante indépendante de } a}.$$

Par passage à la borne supérieure sur tous les éléments $a \in A$, il vient :

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$
.

1.8. Norme de la convergence en moyenne sur les espaces de fonctions continues sur [a, b]

Notation. — Dans cette partie, a et b désignent des réels tels que a < b.

Proposition 20. — L'application :

$$||\cdot||_1 \mid \mathscr{C}^0([a,b],K) \longrightarrow R_+$$

$$f \longmapsto \int_a^b |f(t)| dt$$

est une norme sur $\mathscr{C}^0([a,b],\mathbf{K})$, appelée norme de la convergence en moyenne.

David Blottière 7 version du 9 octobre 2025

Démonstration.

1. *Séparation*. Soit $f \in \mathcal{C}^0([a,b], \mathbf{K})$ telle que $||f||_1 = 0$. La fonction :

$$\begin{vmatrix}
[a,b] & \longrightarrow & \mathbf{K} \\
t & \longmapsto & |f(t)|
\end{vmatrix}$$

est continue sur [a, b], positive ou nulle sur [a, b] et d'intégrale nulle sur [a, b]. D'après la propriété de séparation des intégrales de fonctions continues, nous savons que :

$$\forall t \in [a, b] \quad |f(t)| = 0.$$

La propriété de séparation de $|\cdot|$ nous livre alors que la fonction f est identiquement nulle sur [a,b].

2. Homogénéité. Soit $(\lambda, f) \in \mathbb{K} \times \mathscr{C}^0([a, b], \mathbb{K})$. Grâce à la multiplicativité de $|\cdot|$ et à la linéarité de l'intégrale :

$$||\lambda f||_1 = \int_a^b |(\lambda f)(t)| dt = \int_a^b |\lambda f(t)| dt = \int_a^b |\lambda| |f(t)| dt = |\lambda| ||f||_1.$$

3. *Inégalité triangulaire*. Soit $(f,g) \in \mathscr{C}^0([a,b],\mathbf{K})^2$. L'inégalité triangulaire pour $|\cdot|$, la croissance et la linéarité de l'intégrale nous permettent de calculer :

$$||f+g||_1 = \int_a^b |(f+g)(t)| \, dt = \int_a^b |f(t)+g(t)| \, dt \le \int_a^b |f(t)| + |g(t)| \, dt = ||f||_1 + ||g||_1.$$

Notons $\mathscr{C}^0_{pm}([a,b],\mathbf{K})$ l'ensemble des fonctions de [a,b] à valeurs dans \mathbf{K} qui sont continues par morceaux sur [a,b]. L'application :

$$\begin{array}{c|ccc}
N & \mathscr{C}^0_{\mathrm{pm}}([a,b],\mathbf{K}) & \longrightarrow & \mathbf{R}_+ \\
f & \longmapsto & \int_0^1 |f(t)| \; \mathrm{d}t
\end{array}$$

\$

n'est pas une norme sur $\mathscr{C}^0_{\mathrm{pm}}([a,b],\mathbf{K})$ car elle ne vérifie pas la propriété de séparation. En effet la fonction :

$$\begin{array}{c|ccc}
f & [a,b] & \longrightarrow & \mathbf{K} \\
t & \longmapsto & \begin{cases} 1 & \text{si } t = (a+b)/2 \\
0 & \text{sinon}
\end{cases}$$

est continue par morceaux (elle est même en escalier) sur [a, b] et vérifie N(f) = 0 sans que la fonction f ne soit identiquement nulle sur [a, b].

1.9. Norme de la convergence en moyenne quadratique sur les espaces de fonctions continues sur [a, b]

Notation. — Dans cette partie, a et b désignent des réels tels que a < b.

Proposition 21. — *L'application* :

$$||\cdot||_2 \left| \begin{array}{ccc} \mathscr{C}^0([a,b],\mathbf{K}) & \longrightarrow & \mathbf{R}_+ \\ f & \longmapsto & \sqrt{\int_a^b |f(t)|^2 \ \mathrm{d}t} \end{array} \right|$$

est une norme sur $\mathcal{C}^0([a,b],\mathbf{K})$, appelée norme de la convergence en moyenne quadratique.

Éléments de démonstration. Dans le cas où K = R, la norme $||\cdot||_2$ est la norme euclidienne associé au produit scalaire sur $\mathscr{C}^0([a,b],R)$ défini par, pour tout $(f,g) \in \mathscr{C}^0([a,b],R)^2$:

$$\langle f, g \rangle = \int_a^b f(t)g(t) dt$$
.

David Blottière 8 version du 9 octobre 2025

Exercice 22. — D'après le théorème des bornes atteintes :

$$\mathscr{C}^0([a,b],\mathbf{R})\subset \mathscr{B}([a,b],\mathbf{R})$$
.

On se propose de comparer les trois normes $||\cdot||_1$, $||\cdot||_2$ et $||\cdot||_{\infty}$ sur $\mathscr{C}^0([a,b],\mathbf{R})$.

1. Démontrer que :

$$\forall f \in \mathscr{C}^0([a,b],\mathbf{R}) \qquad ||f||_1 \leqslant \sqrt{b-a} ||f||_2.$$

et que cette inégalité est optimale.

2. Démontrer qu'il n'existe aucune constante $C \in \mathbb{R}_+$ telle que :

$$\forall f \in \mathscr{C}^{0}([a, b], \mathbf{R}) \qquad ||f||_{2} \leq C ||f||_{1}.$$

3. Démontrer que :

$$\forall f \in \mathscr{C}^0([a,b],\mathbf{R}) \qquad ||f||_1 \leq (b-a) ||f||_{\infty}$$

et que cette inégalité est optimale.

4. Démontrer qu'il n'existe aucune constante $C \in \mathbf{R}_+$ telle que :

$$\forall f \in \mathscr{C}^0([a,b],\mathbf{R}) \qquad ||f||_{\infty} \leq C ||f||_1.$$

5. Démontrer que :

$$\forall f \in \mathscr{C}^0([a,b],\mathbf{R}) \qquad ||f||_2 \leq \sqrt{b-a} ||f||_{\infty}$$

et que cette inégalité est optimale.

6. Démontrer qu'il n'existe aucune constante $C \in \mathbb{R}_+$ telle que :

$$\forall f \in \mathcal{C}^0([a,b],\mathbf{R}) \qquad ||f||_{\infty} \leq C ||f||_2.$$

1.10. Normes usuelles sur des espaces de suites (HP)

Exercice 23. — On considère l'ensemble K^N des suites $u = (u_n)_{n \in \mathbb{N}}$ d'éléments de K indexées par N. On pose :

$$L^1 := \left\{ u \in \mathbf{K^N} \ : \ \sum_{n \geqslant 0} |u_n| \ \text{converge} \right\} \quad \text{,} \quad L^2 := \left\{ u \in \mathbf{K^N} \ : \ \sum_{n \geqslant 0} |u_n|^2 \ \text{converge} \right\} \quad \text{,} \quad L^\infty := \left\{ u \in \mathbf{K^N} \ : \ u \ \text{est born\'ee} \right\} \ .$$

- 1. Démontrer les inclusions $L^1 \subset L^2 \subset L^\infty$.
- 2. Démontrer que L^1 , L^2 , L^∞ sont des sous-espaces vectoriels de K^N .
- 3. Démontrer que l'application $||\cdot||_1:L^1\longrightarrow \mathbf{R}_+$ définie par :

$$\forall u \in L^1 \quad ||u||_1 = \sum_{n=0}^{+\infty} |u_n|$$

est une norme sur L^1 .

4. Démontrer que l'application $||\cdot||_2:L^2\longrightarrow \mathbf{R}_+$ définie par :

$$\forall u \in L^2 \quad ||u||_2 = \sqrt{\sum_{n=0}^{+\infty} |u_n|^2}$$

est une norme sur L^2 . Que dire de la norme $||\cdot||_2$ lorsque $K = \mathbb{R}$?

5. Justifier que l'application $||\cdot||_{\infty}:L^{\infty}\longrightarrow \mathbf{R}_{+}$ définie par :

$$\forall u \in L^{\infty} \quad ||u||_{\infty} = \sup\{|u_n| : n \in \mathbb{N}\}\$$

est une norme sur L^{∞} .

1.11. Distance associée à une norme

Définition 24. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé. La distance associée à la norme $||\cdot||$ est l'application :

$$d \mid E \times E \longrightarrow R_{+} (x,y) \longmapsto d(x,y) := ||x-y||.$$

Proposition 25. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé. La distance d vérifie les propriétés suivantes.

- 1. $\forall (x, y) \in E^2$ d(x, y) = d(y, x) [symétrie]
- 2. $\forall (x,y) \in E^2$ $d(x,y) = 0 \iff x = y$ [séparation]
- 3. $\forall (x, y, z) \in E^3$ $d(x, z) \leq d(x, y) + d(y, z)$ [inégalité triangulaire]

Démonstration.

1. Soit $(x, y) \in E^2$. Comme la norme d'un vecteur égale celle de son opposée :

$$d(x, y) = ||x - y|| = ||-(x - y)|| = ||y - x|| = d(y, x)$$
.

- 2. Conséquence immédiate de la nullité de la norme du vecteur nul et de la séparation de la norme.
- 3. Soit $(x, y, z) \in E^3$. D'après l'inégalité triangulaire de la norme :

$$d(x,z) = ||x-z|| = ||(x-y)+(y-z)|| \le ||x-y|| + ||y-z|| = d(x,y) + d(y,z).$$

1.12. Boules ouvertes, boules fermées et sphères

Définition 26. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé. Notons d la distance associée à la norme $||\cdot||$ et fixons $(a, r) \in E \times \mathbb{R}_+^*$.

1. La « boule ouverte de centre a et de rayon r », notée B(a,r), est l'ensemble des éléments de E dont la distance à a est strictement inférieure à r, soit :

$$B(a,r) := \{ x \in E : ||x-a|| < r \} = \{ x \in E : d(x,a) < r \}.$$

2. La « boule fermée de centre a et de rayon r », notée $B_f(a,r)$, est l'ensemble des éléments de E dont la distance à a est inférieure ou égale à r, soit :

$$B_f(a,r) := \{ x \in E : ||x - a|| \le r \} = \{ x \in E : d(x,a) \le r \} .$$

3. La « sphère de centre a et de rayon r », notée S(a, r), est l'ensemble des éléments de E dont la distance à a est égale à r, soit :

$$S(a,r) := \{x \in E : ||x-a|| = r\} = \{x \in E : d(x,a) = r\}.$$

On a donc $B_f(a,r) = B(a,r) \sqcup S(a,r)$.

Terminologie 27. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé. Lorsque le centre de la boule/sphère est le vecteur 0_E et le rayon vaut 1, on qualifie la boule/sphère du mot « unité ».

- 1. La « boule unité ouverte » est la boule ouverte $B(0_E, 1) := \{x \in E : ||x|| < 1\}$.
- 2. La « boule unité fermée » est la boule fermée $B_f(0_E, 1) := \{x \in E : ||x|| \le 1\}$.
- 3. La « sphère unité » est la sphère $S(0_E, 1) := \{x \in E : ||x|| = 1\}$.

Example 28. — Dans l'espace vectoriel **R** muni de la valeur absolue $|\cdot|$, pour $a \in \mathbf{R}$ et r > 0, on a :

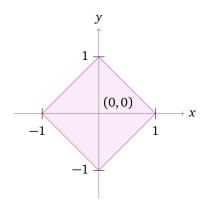
$$B(a,r) =]a-r, a+r[$$
 $B_f(a,r) = [a-r, a+r]$ $S(a,r) = \{a-r, a+r\}$.

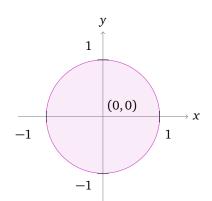
Exemple 29. — boules unité fermées dans \mathbb{R}^2 pour les trois normes usuelles Dans l'espace vectoriel \mathbb{R}^2 , l'allure des boules dépend de la norme. Déterminer, puis représenter, la boule unité fermée pour les normes $||\cdot||_1$, $||\cdot||_2$ et $||\cdot||_{\infty}$.

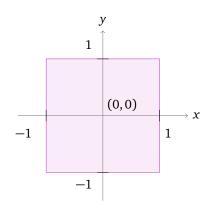
$$B_f(0,1)$$
 pour $||\cdot||_1$

$$B_f(0,1)$$
 pour $||\cdot||_2$

$$B_f(0,1)$$
 pour $||\cdot||_{\infty}$



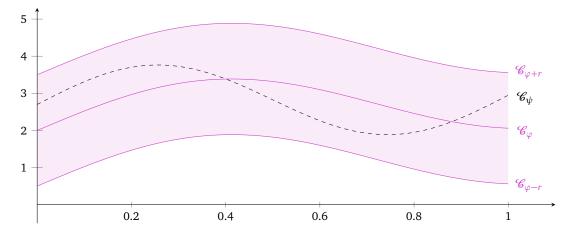




Exemple 30. — Soit $(\varphi, r) \in \mathscr{C}^0([0, 1], \mathbb{R}) \times \mathbb{R}_+^*$. Alors, pour toute function $\psi \in \mathscr{C}^0([0, 1], \mathbb{R})$:

$$\begin{split} \psi \in B_f(\varphi,r) &\iff ||\varphi - \psi||_{\infty} \leqslant r \\ &\iff \forall \, x \in [0,1], \quad |\varphi(x) - \psi(x)| \leqslant r \\ &\iff \forall \, x \in [0,1], \quad \varphi(x) - r \leqslant \psi(x) \leqslant \varphi(x) + r \\ &\iff \varphi - r \leqslant \psi \leqslant \varphi + r \; . \end{split}$$

Les fonctions ψ de $B_f(\varphi, r)$ sont donc celles qui ont leur courbe représentative dans le « tube » ci-dessous délimité par les courbes des fonctions $\varphi - r$, $\varphi + r$ et les droites d'équations x = 0 et x = 1.



Exercice 31. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé tel que $E \neq \{0_E\}$. Soit $(a_1, a_2, r_1, r_2) \in E \times E \times \mathbb{R}_+^* \times \mathbb{R}_+^*$ tel que $B(a_1, r_1) = B(a_2, r_2)$. Démontrer que $a_1 = a_2$ et $r_1 = r_2$.

1.13. Partie convexe d'un R-espace vectoriel

Notation. — La lettre *E* désigne un **R**-espace vectoriel.

Lemme 32. — Soit $(x, y) \in E^2$. Les quatre parties de E suivantes :

(a) $\{x + k(y - x) : k \in [0, 1]\};$ (b) $\{y + k(x - y) : k \in [0, 1]\};$ (c) $\{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\};$

(*d*) $\{\lambda y + (1 - \lambda)x : \lambda \in [0, 1]\};$

sont égales.

Définition 33. — Soit $(x, y) \in E^2$. Le segment d'extrémités x, y est défini par :

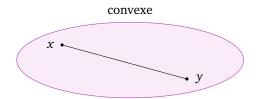
$$[x, y] = {\lambda x + (1 - \lambda) y : \lambda \in [0, 1]}.$$

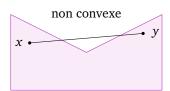
Remarque 34. — D'après le lemme 32, pour tout $(x, y) \in E^2$, [x, y] = [y, x].

Définition 35. — Une partie C de E est dite convexe si :

$$\forall (x,y) \in C^2 \quad [x,y] \subset C$$
.

Exemple 36. — Nous représentons ci-dessous une partie convexe et une partie non convexe de \mathbb{R}^2 .





Exercice 37. — Démontrer qu'une partie C de E est convexe si et seulement si :

$$\forall n \in \mathbb{N}_{\geq 2} \quad \forall (x_1, x_2, \dots, x_n) \in \mathbb{C}^n \quad \forall (\lambda_1, \lambda_2, \dots, \lambda_n) \in (\mathbb{R}_+)^n \quad \sum_{k=1}^n \lambda_k = 1 \implies \sum_{k=1}^n \lambda_k x_k \in \mathbb{C}.$$

Proposition 38. — Soient $(E, ||\cdot||)$ un **R**-espace vectoriel normé et $(a, r) \in E \times \mathbf{R}^*_{\perp}$. Les boules :

$$B(a,r) := \{x \in E : ||x-a|| < r\}$$
 et $B_f(a,r) := \{x \in E : ||x-a|| \le r\}$

sont des parties convexes de E.

Exercice 39. — Soient $(E, ||\cdot||)$ un **R**-espace vectoriel normé et $(a, r) \in E \times \mathbf{R}_+^*$. On considère la sphère de centre a et de rayon r:

$$S(a,r) = \{x \in E : ||x-a|| = r\}.$$

Démontrer que $B_f(a,r)$ est la plus petite partie convexe de E (au sens de l'inclusion) qui contient la sphère S(a,r).

1.14. Parties convexes de R et caractérisation des fonctions convexes par leur épigraphe (HP)

Rappel 40. — On rappelle qu'une partie I de \mathbb{R} est un intervalle si :

$$\forall (x, y) \in I^2 \quad \forall z \in \mathbf{R} \quad x \le z \le y \Longrightarrow z \in I$$
.

Exercice 41. — Démontrer qu'une partie C de R est convexe si et seulement si C est un intervalle.

Rappel 42. — Soient I un intervalle et $f: I \longrightarrow \mathbf{R}$ une fonction. On dit que la fonction f est convexe si:

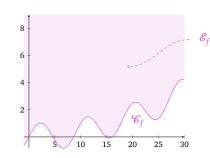
$$\forall (x,y) \in I^2 \quad \forall \lambda \in [0,1] \quad f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(x).$$

Exercice 43. — Soient I un intervalle de \mathbb{R} et $f: I \longrightarrow \mathbb{R}$ une fonction. L'épigraphe de la fonction f est la partie du plan définie par

$$\mathscr{E}_f := \{(x, y) \in I \times \mathbf{R} : f(x) \leq y\} .$$

La partie \mathcal{E}_f du plan est donc la réunion du graphe \mathcal{C}_f de f et de la partie du plan située au-dessus \mathcal{C}_f . Démontrer que :

la fonction f est convexe \iff la partie \mathscr{E}_f de \mathbf{R}^2 est convexe.



VERSION DU 9 OCTOBRE 2025

1.15. Parties et suites bornées

Définition 44. — Soient $(E, ||\cdot||)$ un **K**-espace vectoriel normé et X une partie de E. On dit que X est une partie bornée de E pour la norme $||\cdot||$ si :

$$\exists M \in \mathbf{R}_+ \quad \forall x \in X \quad ||x|| \leq M$$
.

Exercice 45. — Soient $(E, ||\cdot||)$ un **K**-espace vectoriel normé et X une partie de E. Démontrer que la partie X est bornée si et seulement si elle est incluse dans une boule fermée.

Exercice 46. — On munit \mathbb{R}^2 de la norme $||\cdot||_2$. Les parties :

$$A := \{(x, y) \in \mathbb{R}^2 : x^2 + 2y^2 \le 1\}$$
 et $B := \{(x, y) \in \mathbb{R}^2 : x^2 - 2y^2 \le 1\}$

sont-elles bornées?

Exercice 47. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé.

1. Soit A une partie non vide et bornée de E. Justifier que le diamètre de A, défini par :

$$\delta(A) := \sup \{ ||a_1 - a_2|| : (a_1, a_2) \in A^2 \}$$

est bien défini.

2. Soit $(a, r) \in E \times \mathbf{R}^*_{\perp}$. Calculer le diamètre de la boule ouverte B(a, r).

Définition 48. — Soient $(E, ||\cdot||)$ un **K**-espace vectoriel normé et $x = (x_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$. On dit que x est une suite bornée de E pour la norme $||\cdot||$ si :

$$\exists M \in \mathbf{R}_+ \quad \forall n \in \mathbf{N} \quad ||x_n|| \leq M$$

i.e. si la partie $\{x_n : n \in \mathbb{N}\}\$ de E est bornée pour la norme $||\cdot||$.

Le caractère borné d'une suite d'éléments d'un K-espace vectoriel normé $(E, ||\cdot||)$ dépend de la norme $||\cdot||$ placée sur E, comme l'illustre l'exercice suivant.

Exercice 49. — Pour tout $n \in \mathbb{N}$, on définit la fonction f_n par :

$$f_n \mid \begin{bmatrix} 0,1 \end{bmatrix} \longrightarrow \mathbf{R} \\ x \longmapsto \sqrt{n} x^n.$$

- 1. La suite $(f_n)_{n\in\mathbb{N}}$ est-elle bornée pour la norme $||\cdot||_1$ sur $\mathscr{C}^0([0,1],\mathbb{R})$?
- 2. La suite $(f_n)_{n\in\mathbb{N}}$ est-elle bornée pour la norme $||\cdot||_{\infty}$ sur $\mathscr{C}^0([0,1],\mathbb{R})$?

1.16. Produit d'un nombre fini d'espaces vectoriels normés

Proposition 50. — Soient un entier $n \ge 2$ et une famille de n espaces vectoriels normés $(E_i, N_i)_{i \in [1, n]}$. L'application :

$$\begin{array}{c|ccc}
N & \prod_{i=1}^{n} E_{i} & \longrightarrow & \mathbf{R}_{+} \\
x = (x_{1}, \dots, x_{n}) & \longmapsto & N(x) = \max\{N_{i}(x_{i}) : i \in \llbracket 1, n \rrbracket\}
\end{array}$$

est une norme sur $\prod_{i=1}^n E_i$, appelée norme produit.

Démonstration.

- 1. Positivité et séparation. Soit $x = (x_1, ..., x_n) \in E := \prod_{i=1}^n E_i$ et soit $i \in [1, n]$.
 - Comme pour tout $i \in [1, n]$, $N_i(x_i) \ge 0$, nous savons $N(x) \ge 0$.

— Supposons N(x) = 0 et considérons $i \in [1, n]$. Nous obtenons :

$$0 \le N_i(x_i) \le N(x) = 0$$

puis $x_i = 0_{E_i}$ par propriété de séparation de la norme N_i . D'où $x = (0_{E_1}, \dots, 0_{E_n}) = 0_E$.

- 2. Homogénéité. Soient $x = (x_1, ..., x_n) \in E$ et $\lambda \in \mathbf{K}$.
 - Si $\lambda = 0$ alors $N(\lambda x) = 0 = |\lambda| N(x)$. Nous supposons désormais $\lambda \neq 0$.
 - Soit $i \in [[1, n]]$.

$$N_i(\lambda \cdot x_i) = |\lambda| \ N_i(x_i) \leq \underbrace{|\lambda| \ N(x)}_{\text{indépendant de } i}.$$

Par passage au maximum sur tous les éléments $i \in [1, n]$, il vient :

$$N(\lambda x) \le |\lambda| \, N(x) \,. \tag{7}$$

L'inégalité (7) vaut pour tout $\lambda \neq 0$ et pour tout $x \in E$.

— En spécialisant à $\lambda \leftarrow 1/\lambda$ et à $x \leftarrow \lambda x$, il vient :

$$N(x) \leq \frac{1}{|\lambda|} N(\lambda x)$$
.

puis, en multipliant membre à membre par $|\lambda| > 0$, nous obtenons :

$$|\lambda| N(x) \le N(\lambda x) \,. \tag{8}$$

- De (7) et (8), on déduit que $N(\lambda x) = |\lambda| N(x)$.
- 3. *Inégalité triangulaire*. Soient $x = (x_1, ..., x_n) \in E$ et $y = (y_1, ..., y_n) \in E$. Soit $i \in [1, n]$. L'inégalité triangulaire pour la norme N_i livre :

$$N_i(x_i + y_i) \le N_i(x_i) + N_i(y_i) \le \underbrace{N(x) + N(y)}_{\text{indépendant de } i}.$$

En passant au maximum sur tous les $i \in [1, n]$, il vient $N(x + y) \le N(x) + N(y)$.

Remarque 51. — Soient un entier $n \ge 2$ et une famille de n espaces vectoriels normés $(E_i, N_i)_{i \in [\![1,n]\!]}$. On note (E, N) leur espace produit. Alors, pour tout $(a = (a_1, \dots, a_n), r) \in E \times \mathbf{R}_+^*$:

$$B_E(a,r) = \prod_{i=1}^n B_{E_i}(a_i,r)$$
.

2. Suite d'éléments d'un K-espace vectoriel normé

Notation. — Soit $(E, ||\cdot||)$ un K-espace vectoriel normé fixé.

2.1. Définition d'une suite convergente

Définition 52. — Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite d'éléments de vecteurs de E.

1. Soit $a \in E$ un vecteur. On dit que la suite u converge vers a pour la norme $||\cdot||$ si :

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} \in \mathbf{N} \quad \forall n \geqslant N_{\varepsilon} \quad ||u_n - a|| \leq \varepsilon.$$

Si c'est le cas, on écrit :

$$u_n \xrightarrow[n \to +\infty]{\|\cdot\|} a$$
.

2. Si la suite u ne converge vers aucun point, on dit qu'elle diverge.

Si $(E, ||\cdot||)$ est un espace vectoriel normé, $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ et $a\in E$, alors :

$$u_n \xrightarrow[n \to +\infty]{\| u_n - a \|} a \iff \underbrace{\| u_n - a \|}_{n \to +\infty} 0_R.$$

Cette équivalence nous permet de réduire l'étude d'une suite d'éléments de E à une étude de suite de réels, pour laquelle nous disposons de nombreux outils (e.g. le théorème d'encadrement, le théorème de la limite monotone).

Exercice 53. — On munit \mathbf{R}^2 de la norme $||\cdot||_{\infty}$. Étudier la convergence de la suite $\left(\left(\frac{\ln(n)}{n},\left(1+\frac{1}{n}\right)^n\right)\right)_{n\in\mathbf{N}^*}$.

Exercice 54. — On munit $\mathbb{R}[X]$ de la norme $||\cdot||_{\infty}$. Démontrer que la suite $(X^n)_{n\in\mathbb{N}}$ diverge.

Exercice **55.** — Soit *X* un ensemble non vide.

1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\mathscr{B}(X,\mathbf{K})$, convergente pour la norme $||\cdot||$ de la convergence uniforme. On note $f\in\mathscr{B}(X,\mathbf{K})$ sa limite. Démontrer que, pour tout $x\in X$:

$$f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$
 [limite d'une suite de nombres réels].

2. Pour tout $n \in \mathbb{N}$, on définit la fonction f_n par :

$$f_n \mid [0,1] \longrightarrow \mathbf{R}$$

 $x \longmapsto x^n$.

Démontrer que, pour tout $x \in [0, 1]$, la suite $(f_n(x))_{n \in \mathbb{N}}$ de nombres réels converge, mais que la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ diverge pour la norme $||\cdot||_{\infty}$ de la convergence uniforme.

Le caractère convergent d'une suite d'éléments d'un K-espace vectoriel normé $(E, ||\cdot||)$ dépend de la norme $||\cdot||$ placée sur E, comme l'illustre l'exercice suivant.

Exercice 56. — Pour tout entier $n \in \mathbb{N}^*$, soit $f_n : [0,1] \longrightarrow \mathbb{R}$ l'unique fonction affine sur chacun des intervalles $\left[0,\frac{1}{2n}\right]$, $\left[\frac{1}{2n},\frac{1}{n}\right]$, $\left[\frac{1}{n},1\right]$ qui vérifie $f(0)=f\left(\frac{1}{n}\right)=f(1)=0$ et $f\left(\frac{1}{2n}\right)=1$.

- 1. Démontrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}\in\mathscr{C}^0([0,1],\mathbb{R})^{\mathbb{N}^*}$ converge pour la norme $||\cdot||_1$ de la convergence en moyenne.
- 2. Démontrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}\in\mathscr{C}^0([0,1],\mathbf{R})^{\mathbb{N}^*}$ diverge pour la norme $||\cdot||_{\infty}$ de la convergence uniforme.

2.2. Unicité de la limite d'une suite convergente

Proposition 57. — Soient $(E, ||\cdot||)$ un **K**-espace vectoriel normé et $u = (u_n)_{n \in \mathbb{N}}$ une suite de vecteurs de E. Si la suite u converge vers un vecteur a de E, alors ce vecteur a est unique. On le nomme limite de la suite u et on le note $\lim_{n \to +\infty} u_n$.

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente, soient $(a_1,a_2)\in E^2$ tels que :

$$u_n \xrightarrow[n \to +\infty]{\|\cdot\|} a_1$$
 et $u_n \xrightarrow[n \to +\infty]{\|\cdot\|} a_2$.

Raisonnons par l'absurde et supposons $a_1 \neq a_2$, i.e. $\varepsilon := ||a_1 - a_2|| > 0$. Par hypothèse, il existe $N_1 \in \mathbb{N}$ et $N_2 \in \mathbb{N}$ tels que :

$$\forall \, n \geqslant N_1 \quad ||\, u_n - a_1\,|| \leqslant \frac{\varepsilon}{3} \qquad \text{et} \qquad \forall \, n \geqslant N_2 \quad ||\, u_n - a_2\,|| \leqslant \frac{\varepsilon}{3} \;.$$

En particulier pour $n := \max(N_1, N_2)$, nous obtenons :

$$||u_n - a_1|| \le \frac{\varepsilon}{3}$$
 et $||u_n - a_2|| \le \frac{\varepsilon}{3}$.

Par suite:

$$\varepsilon = ||a_1 - a_2|| = ||a_1 - u_n + u_n - a_2|| \leq ||a_1 - u_n|| + ||u_n - a_2|| = ||u_n - a_1|| + ||u_n - a_2|| \leq \frac{2\varepsilon}{3} \; .$$

Comme $\varepsilon > 0$, nous en déduisons $1 \le \frac{2}{3}$, ce qui n'est pas.

2.3. Une suite convergente est bornée

Proposition 58. — Soient $(E, ||\cdot||)$ un **K**-espace vectoriel normé et $u = (u_n)_{n \in \mathbb{N}}$ une suite de vecteurs de E. Si la suite u converge, alors elle est bornée, i.e. :

$$\exists\,M\in\mathbf{R}_{+}^{*}\quad\forall\,n\in\mathbf{N}\quad||\,u_{n}\,||\leqslant M\;.$$

Une démonstration de la proposition 58 doit être connue

Exercice 59. — Soient $(E, ||\cdot||)$ un **K**-espace vectoriel normé et $x \in E$.

- 1. Démontrer que la suite de terme général $u_n = \frac{1}{n}x$ converge.
- 2. Étudier la nature de la suite de terme général $v_n = n x$.

2.4. Opérations algébriques sur les suites

Théorème 60. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé.

1. L'ensemble:

$$\mathscr{S}_{c}(E) = \{ u \in E^{\mathbb{N}} : \text{ la suite } u \text{ converge pour la norme } || \cdot || \}$$

est un sous-espace vectoriel de l'ensemble E^{N} .

2. De plus, l'application:

$$\begin{array}{cccc} & \mathscr{S}_c(E) & \longrightarrow & E \\ & (u_n)_{n \in \mathbb{N}} & \longmapsto & \lim_{n \to +\infty} u_n \end{array}$$

est linéaire.

Démonstration.

- 1. Remarquons d'abord que la suite nulle converge vers 0 et donc $\mathscr{C}(E, ||\cdot||)$ est non vide.
- 2. Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes de limites respectives a,b et $(\lambda,\mu)\in\mathbb{K}^2$. Nous allons montrer que la suite $(\lambda u_n + \mu v_n)_{n\in\mathbb{N}}$ converge vers $\lambda a + \mu b$, ce qui d'une part achèvera de montrer que l'ensemble des suites convergentes est un sous-espace vectoriel de $E^\mathbb{N}$ et, d'autre part, établira que l'application qui à une suite convergente associe sa limite est linéaire.

Supposons que $|\lambda| + |\mu| \neq 0$ (dans le cas contraire, $\lambda = \mu = 0$ et le résultat voulu est immédiat). Soit $\varepsilon > 0$. Posons :

$$\varepsilon' = \frac{\varepsilon}{|\lambda| + |\mu|} > 0.$$

Par hypothèse, il existe deux entiers N_1, N_2 tels que :

- pour tout $n \ge N_1$, $||u_n a|| \le \varepsilon'$;
- pour tout $n \ge N_2$, $||v_n b|| \le \varepsilon'$.

Posons alors $N_3 = \max(N_1, N_2)$ et considérons un entier $n \ge N_3$.

$$\begin{split} ||(\lambda u_n + \mu v_n) - (\lambda a + \mu b)|| &= ||\lambda (u_n - a) + \mu (v_n - b)|| \\ &\leq |\lambda| ||u_n - a|| + |\mu| ||v_n - b|| \\ &\leq (|\lambda| + |\mu|) \varepsilon' = \varepsilon. \end{split}$$

П

Ainsi, $\lambda u_n + \mu v_n \xrightarrow[n \to +\infty]{} \lambda a + \mu b$.

2.5. Convergence d'une suite à valeurs dans un espace produit

David Blottière 16 version du 9 octobre 2025

Théorème 61. — Considérons une famille $(E_1, N_1), \ldots, (E_p, N_p)$ de p espaces vectoriels normés et munissons $E = \prod_{i=1}^p E_i$ de la norme produit N (cf. proposition 50). Soient $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ et $a = (a_1, \ldots, a_p) \in E$. Alors :

$$u_n = (u_{1,n}, \dots, u_{p,n}) \xrightarrow[n \to +\infty]{N} a = (a_1, \dots, a_p) \iff \begin{cases} u_{1,n} \xrightarrow[n \to +\infty]{N_1} a_1 \\ \vdots \\ u_{p,n} \xrightarrow[n \to +\infty]{N_p} a_p \end{cases}.$$

Démonstration. On démontre le résultat en raisonnant par double implication, grâce à l'observation suivante.

$$\forall x = (x_1, ..., x_p) \in E \qquad \forall i \in [1, p] \qquad N_i(x_i) \le N(x) = \max_{1 \le j \le p} N_j(x_j) \le N_1(x_1) + ... + N_p(x_p). \tag{9}$$

$$\Longrightarrow$$
. Supposons que $(u_{1,n},\ldots,u_{p,n}) \xrightarrow[n \to +\infty]{N} a = (a_1,\ldots,a_p)$, i.e. que :

$$N\left(u_{1,n}-a_1,\ldots,u_{p,n}-a_p\right)\xrightarrow[n\to+\infty]{}0_{\mathbf{R}}.$$

Soit $i \in [1, n]$. D'après (9):

$$0 \le N_i (u_{i,n} - a_i) \le N (u_{1,n} - a_1, \dots, u_{p,n} - a_p)$$
.

Le théorème d'encadrement livre alors :

$$N_i \left(u_{i,n} - a_i \right) \xrightarrow[n \to +\infty]{} 0_{\mathbf{R}}$$

i.e.
$$u_{i,n} \xrightarrow[n \to +\infty]{N_i} a_i$$
.

$$\iff$$
 Supposons que $a_{1,n} \xrightarrow[n \to +\infty]{N_1} a_1, \ldots, a_{p,n} \xrightarrow[n \to +\infty]{N_p} a_p$, i.e. que :

$$N_1(u_{1,n}-a_1) \xrightarrow[n \to +\infty]{} 0_{\mathbf{R}}$$
 , ... , $N_p(u_{p,n}-a_p) \xrightarrow[n \to +\infty]{} 0_{\mathbf{R}}$

D'après (9):

$$0 \leq N\left(u_{1,n}-a_1,\ldots,u_{p,n}-a_p\right) \leq N_1\left(u_{1,n}-a_1\right)+\ldots+N_p\left(u_{p,n}-a_p\right)$$

Le théorème d'encadrement livre alors :

$$N\left(u_{1,n}-a_1,\ldots,u_{p,n}-a_p\right)\xrightarrow[n\to+\infty]{}0_{\mathbb{R}}$$

i.e.
$$(u_{1,n},\ldots,u_{p,n}) \xrightarrow[n \to +\infty]{N} a = (a_1,\ldots,a_p).$$

Exercice 62. — Soit un entier $n \ge 2$. On munit $\mathcal{M}_n(\mathbf{K})$ de la norme $||\cdot||$ définie par :

$$\|\cdot\|_{\infty} \left| \begin{array}{ccc} \mathscr{M}_{n}(\mathbf{K}) & \longrightarrow & \mathbf{R}_{+} \\ M & \longmapsto & \max_{1 \leq i, j \leq n} \left| \left[M \right]_{i,j} \right|. \end{array} \right|$$

Soit A une matrice de $\mathcal{M}_n(\mathbf{K})$, diagonalisable sur \mathbf{C} et telle que, pour tout $\lambda \in \operatorname{Spec}_{\mathbf{C}}(A)$, $|\lambda| < 1$. Démontrer que :

$$A^k \xrightarrow[k \to +\infty]{} 0_{\mathcal{M}_n(\mathbf{K})}$$
.

2.6. Suites extraites et valeurs d'adhérence

Définition 63. — Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites d'éléments d'un K-espace vectoriel E. On dit que $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de $(u_n)_{n\in\mathbb{N}}$ s'il existe une application $\varphi \colon \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que :

$$\forall n \in \mathbb{N} \quad v_n = u_{\varphi(n)}$$
.

Si $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de $(u_n)_{n\in\mathbb{N}}$ et si $(w_n)_{n\in\mathbb{N}}$ est une suite extraite de $(v_n)_{n\in\mathbb{N}}$, alors $(w_n)_{n\in\mathbb{N}}$ est une suite extraite de $(u_n)_{n\in\mathbb{N}}$. En effet, il existe deux applications $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ et $\psi:\mathbb{N}\longrightarrow\mathbb{N}$ strictement croissantes telles que pour tout $n\in\mathbb{N}$, $w_n=v_{\psi(n)}$. Nous en déduisons que :

 $w_n = u_{\varphi \circ \psi(n)}$ [prendre garde à la manière de composer φ et ψ]

et l'application $\varphi \circ \psi \colon \mathbf{N} \longrightarrow \mathbf{N}$ est strictement croissante.

\$

Définition 64. — Soit $(E, ||\cdot||)$ un **K**-espace vectoriel normé. Un vecteur $a \in E$ est valeur d'adhérence d'une suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de E, s'il existe une suite extraite de $(u_n)_{n\in\mathbb{N}}$ convergeant vers a.

Lemme 65. — Soit $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante. Alors:

$$\forall n \in \mathbb{N} \quad \varphi(n) \geqslant n.$$

Démonstration. On raisonne par récurrence sur l'entier naturel n, en observant que la distance entre deux entiers distincts est d'au moins 1.

- *Initialisation* à n = 0. Comme $\varphi(0) \in \mathbb{N}$, $\varphi(0) \ge 0$.
- *Hérédité*. Soit un entier naturel *n* tel que :

$$\varphi(n) \geqslant n \tag{10}$$

Comme φ est strictement croissante :

$$\varphi(n+1) > \varphi(n) \tag{11}$$

Les nombres $\varphi(n+1)$ et $\varphi(n)$ étant entiers, (11) nous apprend que :

$$\varphi(n+1) \geqslant \varphi(n) + 1 \tag{12}$$

D'après (10) et (12):

$$\varphi(n+1) \geqslant \varphi(n) + 1 \geqslant n+1$$

Proposition 66. — Soient $(E, ||\cdot||)$ un K-espace vectoriel normé et $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E.

- 1. Si $(u_n)_{n\in\mathbb{N}}$ converge vers $a\in E$, alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers a, donc a est l'unique valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$.
- 2. En particulier, si la suite $(u_n)_{n\in\mathbb{N}}$ possède deux valeurs d'adhérence alors elle diverge.

Démonstration.

- L'assertion 2 est conséquence de la première.
- Supposons que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un vecteur $a\in E$. Considérons une application strictement croissante $\varphi: \mathbf{N} \longrightarrow \mathbf{N}$ et démontrons que la suite $(u_{\varphi(n)})_{n \in \mathbf{N}}$ converge vers a. Soit $\varepsilon > 0$. Comme la suite $(u_n)_{n \in \mathbf{N}}$ converge vers a, il existe $N \in \mathbf{N}$ tel que :

$$\forall n \geqslant N \quad ||u_n - a|| \leqslant \varepsilon . \tag{13}$$

Soit $n \in \mathbb{N}$ tel que $n \ge N$. D'après le lemme 65 :

$$\varphi(n) \geqslant \varphi(N) \geqslant N \ . \tag{14}$$

De (13) et (14) nous déduisons que $\left|\left|u_{\varphi(n)}-a\right|\right| \leq \varepsilon$. Ainsi avons nous établi que $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} a$.

La proposition 66 est commode pour prouver la divergence d'une suite.

Exemple 67. — La suite réelle de terme général $(-1)^n$ admet deux valeurs d'adhérence distinctes, 1 et -1. Elle est donc divergente.

2.7. Une suite bornée ne possède pas nécessairement de valeur d'adhérence

Rappel 68. — Nous savons que toute suite réelle bornée possède une valeur d'adhérence (théorème de Bolzano-Weierstraß).

Exercice 69. — Démontrer que toute suite bornée de $(\mathbb{R}^2, ||\cdot||_{\infty})$ possède une valeur d'adhérence.

Le théorème de Bolzano-Weierstraß, initialement établi pour l'espace vectoriel normé $(\mathbf{R},|\cdot|)$ se généralise à l'espace vectoriel normé $(R^2, ||\cdot||_{\infty})$ (cf. exercice 69) et plus généralement à tout espace vectoriel normé de dimension finie (nous le démontrerons plus tard). Cependant, lorsque l'espace vectoriel normé n'est pas de dimension finie, il ne vaut

Exercice 70. — Munissons l'espace vectoriel $\mathbf{R}[X]$ de la norme $||\cdot||$. Démontrer que la suite $(X^n)_{n\in\mathbb{N}}$ est bornée, mais qu'elle ne possède aucune valeur d'adhérence.

3. Topologie d'un espace vectoriel normé

Notation. — Dans toute cette partie, on fixe un **K**-espace vectoriel normé $(E, ||\cdot||)$.

3.1. Ouverts et fermés d'un espace vectoriel normé

Définition 71. — *Une partie U* \subset *E est un ouvert de* $(E, ||\cdot||)$ *si* :

$$\forall x \in U \quad \exists r_x \in \mathbf{R}^*_{\perp} \quad B(x, r_x) \subset U$$
.

Une partie F \subset *E est un fermé de* $(E, ||\cdot||)$ *si son complémentaire E* \setminus *F est un ouvert.*

Exemple 72. — Les parties E et \emptyset sont des ouverts et des fermés de $(E, ||\cdot||)$.

Exemple 73. — Si $a \in E$ alors le singleton $\{a\}$ est un fermé de $(E, ||\cdot||)$.

Exemple 74. — Si $E = \mathbf{R}$ alors :

- 1. l'ensemble]0, 1[est un ouvert;
- 2. l'ensemble [0, 1] est un fermé.

Une partie de E qui n'est pas ouverte n'est pas nécessairement fermée et une partie de E qui n'est pas fermée n'est pas nécessairement ouverte. En effet, la partie [0,1[de \mathbf{R} n'est ni ouverte ni fermée.

• Si [0,1[était une partie ouverte de **R**, alors il existerait un réel $r_0 > 0$ tel que :

$$]-r_0,r_0[=B(0,r_0)\subset [0,1[$$

ce qui n'est pas, puisque le réel $-\frac{r_0}{2}$ appartient à $B(0,r_0)$ mais pas à [0,1[.

• Si [0, 1[était une partie fermée de R, alors :

$$\mathbb{R} \setminus [0,1] =]-\infty,0[\cup[1,+\infty[$$

serait une partie ouverte de R. Ainsi il existerait un réel $0 < r_1 \le 2$ tel que :

$$]1-r_1, 1+r_1[=B(1,r_1)\subset]-\infty, 0[\cup[1,+\infty[$$

ce qui n'est pas puisque le réel $1-\frac{r_1}{2}$ appartient à $B(1,r_1)$ mais pas à $]-\infty,0[\,\cup\,[1,+\infty[$.

3.2. Propriétés topologiques des boules

Proposition 75. — Une boule ouverte est un ouvert de $(E, ||\cdot||)$ et une boule fermée est un fermé de $(E, ||\cdot||)$.

Démonstration. Soient $(a, r) \in E \times \mathbf{R}_{\perp}^*$.

1. Démontrons que la boule ouverte B(a,r) est un ouvert de $(E,||\cdot||)$. Considérons $x \in B(a,r)$ et démontrons qu'il existe une boule ouverte centrée en x contenue dans B(a,r). Posons :

$$r_x := r - ||\, a - x\,|| > 0 \qquad \left[\text{faire une figure dans} \left(\mathbf{R}^2, ||\, \cdot\, ||_2 \right) \text{pour comprendre ce choix} \right]$$

et démontrons que $B(x, r_x) \subset B(a, r)$.

Soit $y \in B(x, r_x)$. Par l'inégalité triangulaire :

$$||y-a|| = ||y-x+x-a|| \le ||y-x|| + ||x-a|| < r_x + ||a-x|| = r$$

donc $y \in B(a,r)$ et $B(x,r_x) \subset B(a,r)$.

Ceci étant vrai pour tout $x \in B(a, r)$, la boule B(a, r) est un ouvert de $(E, ||\cdot||)$.

2. Démontrons que la boule fermée $B_f(a,r)$ est un fermé de $(E,||\cdot||)$, i.e. que $E\setminus B_f(a,r)$ est un ouvert. Considérons $x\in E\setminus B_f(a,r)$ et démontrons qu'il existe une boule ouverte de centre x contenue dans $E\setminus B_f(a,r)$. Posons :

$$r_x = ||x - a|| - r > 0$$
 [faire une figure dans $(\mathbf{R}^2, ||\cdot||_2)$ pour comprendre ce choix]

et démontrons que $B(x, r_x) \subset E \setminus B_f(a, r)$.

Soit $y \in B(x, r_x)$. Par la deuxième inégalité triangulaire :

$$||y-a|| = ||y-x+x-a|| \ge ||x-a|| - ||y-x|| > ||x-a|| - r_x = r$$
.

donc $y \in E \setminus B_f(a, r)$. Ainsi, $B(x, r_x) \subset E \setminus B_f(a, r)$.

Ceci étant vrai pour tout $x \in E \setminus B_f(a, r)$, la boule $E \setminus B_f(a, r)$ est un ouvert de $(E, ||\cdot||)$.

3.3. Opérations sur les ouverts et les fermés

Proposition 76. — Les parties ouvertes de **R** possèdent les deux propriétés de stabilité suivantes.

- 1. Une réunion quelconque d'ouverts de $(E, ||\cdot||)$ est un ouvert de $(E, ||\cdot||)$.
- 2. Une intersection finie d'ouverts de $(E, ||\cdot||)$ est un ouvert de $(E, ||\cdot||)$.

Démonstration.

1. Soient $(U_i)_{i \in I}$ une famille d'ouverts de $(E, ||\cdot||)$ et $x \in \bigcup_{i \in I} U_i$. Par définition d'une réunion, il existe $i_x \in I$ tel que $x \in U_{i_x}$. Comme U_{i_x} est un ouvert de $(E, ||\cdot||)$ contenant x, il existe $r_x \in \mathbf{R}_+^*$ tel que :

$$B(x,r_x)\subset U_{i_x}\subset\bigcup_{i\in I}U_i$$
.

Ceci étant vrai pour tout $x \in \bigcup_{i \in I} U_i$, $\bigcup_{i \in I} U_i$ est un ouvert de $(E, ||\cdot||)$.

2. Soient un entier $p \ge 2$ et U_1, \ldots, U_p des ouverts de $(E, ||\cdot||)$. Soit $x \in \bigcap_{i=1}^p U_i$. Comme, pour tout $i \in [1, p]$, U_i est un ouvert de $(E, ||\cdot||)$ contenant x, il existe $r_{x,i} \in \mathbf{R}_+^*$ tel que $B(x, r_{x,i}) \subset U_i$. Si l'on pose :

 $r_x := \min\{r_{x_1}, \dots, r_{x_n}\} \in \mathbb{R}^*_{\perp}$ [le minimum d'une partie finie non vide de **R** est bien défini]

alors, pour tout $i \in [1, r]$:

$$B(x, r_x) \subset B(x, r_{x,i}) \subset U_i$$

donc:

$$B(x,r_x)\subset\bigcap_{i=1}^p U_i$$
.

Ceci étant vrai pour tout $x \in \bigcap_{i=1}^{p} U_i, \bigcap_{i=1}^{p} U_i$ est bien un ouvert.

Corollaire 77. — Les parties fermées de R possèdent les deux propriétés de stabilité suivantes.

- 1. Une réunion finie de fermés de $(E, ||\cdot||)$ est un fermé de $(E, ||\cdot||)$.
- 2. Une intersection de fermés de $(E, ||\cdot||)$ est un fermé de $(E, ||\cdot||)$.

Démonstration. Nous déduisons les deux assertions de la proposition 76 par « passage au complémentaire ».

1. Soient un entier $r \ge 2$ et F_1, \dots, F_r des fermés de $(E, ||\cdot||)$. Alors pour tout $i \in [1, r]$, $E \setminus F_i$ est un ouvert de $(E, ||\cdot||)$. Donc d'après la proposition précédente :

$$\bigcap_{i=1}^{r} (E \setminus F_i) = E \setminus \left(\bigcup_{i=1}^{r} F_i\right)$$

est un ouvert de $(E, ||\cdot||)$. Donc :

$$E \setminus \left(E \setminus \left(\bigcup_{i=1}^{r} F_i \right) \right) = \bigcup_{i=1}^{r} F_i$$

est un fermé de $(E, ||\cdot||)$.

2. Soit $(F_i)_{i \in I}$ une famille de fermés de $(E, ||\cdot||)$. Alors pour tout $i \in I$, $E \setminus F_i$ est un ouvert de $(E, ||\cdot||)$. Donc, d'après la proposition précédente :

$$\bigcup_{i \in I} (E \setminus F_i) = E \setminus \bigcap_{i \in I} F$$

est un ouvert de $(E, ||\cdot||)$. Donc :

$$E \setminus \left(E \setminus \left(\bigcap_{i \in I} F_i \right) \right) = \bigcap_{i \in I} F_i$$

est un fermé de $(E, ||\cdot||)$.

1. Une intersection infinie d'ouverts n'est pas nécessairement un ouvert. Par exemple :

$$\bigcap_{n \in \mathbb{N}^*} \underbrace{\left[-\frac{1}{n}, \frac{1}{n} \right]}_{\text{ouvert de R}} = \{0\}$$

n'est pas une partie ouverte de R.

2. Une réunion infinie de fermés n'est pas nécessairement un fermé. Par exemple :

$$\bigcup_{n \in \mathbf{N}^*} \left[\underbrace{-1 + \frac{1}{n}, 1 - \frac{1}{n}}_{\text{fermé de R}} \right] =] - 1, 1[$$

n'est pas une partie fermée de R.

Proposition 78. — Une sphère de $(E, ||\cdot||)$ est une partie fermée de $(E, ||\cdot||)$.

Démonstration. Si $(a, r) \in E \times \mathbf{R}^*_{\perp}$ alors :

$$S(a,r) = B_f(a,r) \cap (E \setminus B(a,r))$$

est une partie fermée de $(E, ||\cdot||)$ comme intersection de deux fermés de $(E, ||\cdot||)$.

Proposition 79. — Considérons une famille $(E_1, N_1), \ldots, (E_p, N_p)$ de p espaces vectoriels normés et munissons $E = \prod_{i=1}^p E_i$ de la norme produit N (cf. proposition 50).

- 1. Considérons, pour tout $i \in [1, p]$, un ouvert U_i de (E_i, N_i) . Alors $\prod_{i=1}^p U_i$ est un ouvert de (E, N).
- 2. Considérons, pour tout $i \in [1, p]$, un fermé F_i de (E_i, N_i) . Alors $\prod_{i=1}^p F_i$ est un fermé de (E, N).

Éléments de démonstration.

- 1. Nous savons que, si pour tout $i \in [1, p]$, B_i est une boule ouverte de (E_i, N_i) , alors $\prod_{i=1}^p B_i$ est une boule ouverte de (E, N) (cf. remarque 51). L'assertion 1 en découle.
- 2. L'assertion 2 est conséquence de la première. En effet :

$$E \setminus \prod_{i=1}^{p} F_{i} = \underbrace{(E_{1} \setminus F_{1}) \times E_{2} \times \ldots \times E_{p}}_{\text{produit d'ouverts}} \cup \underbrace{E_{1} \times (E_{2} \setminus F_{2}) \times E_{3} \times \ldots \times E_{p}}_{\text{produit d'ouverts}} \cup \underbrace{E_{1} \times \ldots \times E_{p-1} \times (E_{p} \setminus F_{p})}_{\text{produit d'ouverts}}.$$

David Blottière 21 version du 9 octobre 2025

3.4. Voisinages d'un point

Définition 80. — Soit $a \in E$. Une partie \mathcal{V} de E est appelé voisinage de a dans $(E, ||\cdot||)$ si :

$$\exists r_a \in \mathbf{R}_+^* \quad B(a, r_a) \subset \mathcal{V} .$$

Exemple 81. — Soient des réels x, y, z tels que x < z < y. Les intervalles]x, y[, [x, y],]x, y] sont des voisinages de z dans \mathbf{R} .

Exemple 82. — Supposons que $E \neq \{0_E\}$ et considérons $a \in E$. Alors, l'ensemble $\{a\}$ n'est pas un voisinage de a dans $(E, ||\cdot||)$, puisque pour tour r > 0, $B(a, r) \not\subset \{a\}$.

Remarque 83. — Soit $a \in E$. Un ensemble contenant un voisinage de a dans $(E, ||\cdot||)$ est un voisinage de a dans $(E, ||\cdot||)$.

Proposition 84. — Une partie U de E est un ouvert de $(E, ||\cdot||)$ si et seulement si la partie U est un voisinage de chacun de ses points dans $(E, ||\cdot||)$.

Proposition 85. — *Soit* $a \in E$.

- 1. Une réunion quelconque de voisinages de a dans $(E, ||\cdot||)$ est un voisinage de a dans $(E, ||\cdot||)$.
- 2. Une intersection finie de voisinages de a dans $(E, ||\cdot||)$ est un voisinage de a dans $(E, ||\cdot||)$.

Démonstration.

1. Soit $(\mathcal{Y}_i)_{i\in I}$ une famille de voisinages de a dans $(E, ||\cdot||)$. Soit $i_0 \in I$. Comme \mathcal{Y}_{i_0} est un voisinage de a dans $(E, ||\cdot||)$, il existe $r \in \mathbf{R}_+^*$ tel que $B(a, r) \subset \mathcal{Y}_{i_0}$. Alors :

$$B(a,r)\subset\bigcup_{i\in I}\mathscr{V}_i$$
.

Donc $\bigcup_{i \in I} \mathcal{V}_i$ est un voisinage de a dans $(E, ||\cdot||)$.

2. Soient un entier $p \ge 2$ et $\mathcal{V}_1, \dots, \mathcal{V}_p$ des voisinages de a dans $(E, ||\cdot||)$. Alors :

$$\forall i \in [1, p] \quad \exists r_i > 0 \quad B(a, r_i) \subset \mathcal{V}_i$$
.

Si l'on pose :

 $r := \min\{r_1, \dots, r_n\} \in \mathbb{R}^*_{\perp}$ [le minimum d'une partie finie non vide de **R** est bien défini]

alors, pour tout $i \in [1, p]$:

$$B(a,r) \subset B(a,r_i) \subset \mathcal{V}_i$$

donc:

$$B(a,r)\subset\bigcap_{i=1}^p\mathscr{V}_i$$
.

Ainsi $\bigcap_{i=1}^{p} \mathcal{V}_i$ est un voisinage de a dans $(E, ||\cdot||)$.

Une intersection infinie de voisinages d'un point peut ne pas être un voisinage de ce point. Par exemple, posons $E = \mathbf{R}, a = 0$, et pour tout $n \in \mathbf{N}^*, \mathcal{V}_n = \left[-\frac{1}{n}, \frac{1}{n}\right]$. Pour tout $n \in \mathbf{N}^*$:

$$B\left(0,\frac{1}{n}\right) = \left[-\frac{1}{n},\frac{1}{n}\right] \subset \mathcal{V}_n$$

donc \mathcal{V}_n est un voisinage de 0. Or, $\bigcap_{n\in\mathbb{N}^*}\mathcal{V}_n=\{0\}$ n'est pas un voisinage de 0.

David Blottière 22 version du 9 octobre 2025

3.5. Définition de l'adhérence d'une partie

Définition 86. — *Soit A une partie non vide de E.*

1. Soit $x \in E$. On dit que x est adhérent à A dans $(E, ||\cdot||)$, si tout voisinage de x dans $(E, ||\cdot||)$ rencontre A, i.e. si :

$$\forall \varepsilon \in \mathbf{R}^*_{\perp} \quad B(x,\varepsilon) \cap A \neq \emptyset$$
.

2. L'ensemble des points adhérents à A est appelé adhérence de A et est noté \overline{A} .

L'adhérence de l'ensemble vide est l'ensemble vide lui-même, i.e. $\overline{\emptyset} = \emptyset$.

Remarque 87. — Une partie *A* de *E* est contenue dans son adhérence dans $(E, ||\cdot||)$, i.e. $A \subset \overline{A}$.

Exemple 88. — L'adhérence de]0,1] est [0,1] dans $(\mathbf{R},|\cdot|)$.

Exercice 89. — Démontrer que l'adhérence d'une boule ouverte est la boule fermée de même centre et de même rayon, i.e. :

$$\forall (a,r) \in E \times \mathbf{R}^*_{\perp} \quad \overline{B(a,r)} = B_f(a,r).$$

3.6. Propriété de minimalité de l'adhérence et caractérisation des fermés via l'adhérence

Théorème 90. — Soit A une partie non vide de E. Son adhérence \overline{A} est le plus petit fermé de $(E, ||\cdot||)$ contenant A, d'où :

$$\overline{A} = \bigcap_{\substack{A \subset F \\ F \text{ fermé}}} F.$$

Démonstration.

1. \overline{A} est un fermé. Nous démontrons que $E \setminus \overline{A}$ est un ouvert. Soit $x \in E \setminus \overline{A}$. Comme $x \notin \overline{A}$, il existe r > 0 tel que $B(x,r) \cap A = \emptyset$. Démontrons que $B(x,r) \subset E \setminus \overline{A}$. Soit $y \in B(x,r)$. Comme B(x,r) est une partie ouverte de E, il existe $F_{V} = 0$ tel que $F_{V} = 0$ tel que

$$B(y, r_v) \cap A \subset B(x, r) \cap A = \emptyset$$

il vient $B(y, r_y) \cap A = \emptyset$. Ainsi $y \in E \setminus \overline{A}$.

Ceci étant vrai pour tout $y \in B(x,r)$, nous savons que $B(x,r) \subset E \setminus \overline{A}$.

- 2. \overline{A} est le plus petit fermé contenant A. Nous savons déjà que \overline{A} est un fermé qui contient A. Considérons un fermé F qui contient A et démontrons que $\overline{A} \subset F$ ou plutôt $E \setminus F \subset E \setminus \overline{A}$, assertion qui lui est équivalente. Soit $x \in E \setminus F$. Comme F est une partie fermée de E, $E \setminus F$ est un ouvert, donc il existe F > 0 tel que $F \setminus F$. Comme $F \setminus F \cap F$ et $F \cap F \cap F$ est un ouvert, donc il existe $F \cap F \cap F$ est un ouvert existe $F \cap F \cap F$ est un ouvert existe $F \cap F \cap F$ est un ouvert existe $F \cap F \cap F$ est un ouvert existe $F \cap F \cap F$ est un ouvert existe $F \cap F \cap F$ est un ouvert existe $F \cap F \cap F$ est un ouvert existe $F \cap F \cap F$ existe $F \cap F \cap F$ existe $F \cap$
- 3. \overline{A} est l'intersection de tous les fermés contenant A. Comme \overline{A} est un fermé contenant A:

$$\bigcap_{\substack{A \subset F \\ F \text{ form} \acute{a}}} F \subset \overline{A}.$$

Or $\bigcap_{A \subset F \atop F \text{ ferm\'e}} F$ est un fermé (comme intersection quelconque de fermés) contenant A. Comme tout fermé contenant A contient

aussi \overline{A} (cf résultat obtenu en 2), il vient :

$$\overline{A} \subset \bigcap_{\substack{A \subset F \\ F \text{ fermé}}} F$$
.

П

Corollaire 91. — Soit A une partie non vide de E. L'ensemble A est fermé dans $(E, ||\cdot||)$ si et seulement si $\overline{A} = A$.

Démonstration.

 \implies . Supposons que A est fermé. Alors A est un fermé contenant A, donc $\overline{A} \subset A$. Comme $A \subset \overline{A}$, il vient $\overline{A} = A$.

 \Leftarrow . Supposons $A = \overline{A}$. Comme \overline{A} est un fermé, A est un fermé.

3.7. Caractérisations séquentielles de l'adhérence et des fermés

Théorème 92. — Soit A une partie non vide de E.

1. Un élément $x \in E$ est adhérent à A si et seulement si x est limite d'une suite d'éléments de A, i.e. :

$$x \in \overline{A} \iff \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \quad a_n \xrightarrow[n \to +\infty]{\|\cdot\|} x.$$

2. L'ensemble A est fermé si et seulement si, toute suite d'éléments de A qui converge dans E, a sa limite dans A, i.e.

$$\forall (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \quad \forall \ell \in E \qquad a_n \xrightarrow[n \to +\infty]{\|\cdot\|} \ell \quad \Longrightarrow \quad \ell \in A.$$

Démonstration.

1. \Longrightarrow . Soit $x \in \overline{A}$. Pour tout $n \in \mathbb{N}$, $B\left(x, \frac{1}{n+1}\right) \cap A \neq \emptyset$, donc il existe $a_n \in A$ tel que :

$$0 \le ||x - a_n|| \le \frac{1}{n+1}.$$

D'après le théorème d'encadrement pour les suites réelles, $||x-a_n|| \xrightarrow[n \to +\infty]{} 0$. La suite $(a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ converge donc vers x.

 \Leftarrow Supposons qu'il existe une suite $(a_n)_{n\in\mathbb{N}}\in A^\mathbb{N}$ qui converge vers x. Soit r>0. D'après la définition de la convergence d'une suite, il existe un rang $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$, $||x-a_n||< r$. Ainsi :

$$\forall n \ge N \quad a_n \in B(x,r).$$

en particulier $a_N \in B(x,r)$ et donc $B(x,r) \cap A \neq \emptyset$.

Ceci étant vrait pour un réel r > 0 quelconque, il vient $x \in \overline{A}$.

2. Cette assertion découle du fait que A est fermé si et seulement si $\overline{A} = A$.

Exercice 93. — On munit \mathbb{R}^2 de la norme $||\cdot||_{\infty}$. Démontrer que :

$$F := \{(x, y) \in \mathbb{R}^2 : x = y\}$$
 [première bissectrice]

est une partie fermée de $(\mathbf{R}^2, ||\cdot||_{\infty})$ et que :

$$U := \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ et } y > 0\}$$
 [quart de plan au nord est]

est une partie ouverte de $(\mathbf{R}^2, ||\cdot||_{\infty})$.

Exercice 94. — Soit un entier $n \ge 2$. On munit $\mathcal{M}_n(\mathbf{R})$ de la norme :

$$||\cdot||_{\infty} \left| \begin{array}{ccc} \mathcal{M}_{n}(\mathbf{R}) & \longrightarrow & \mathbf{R}_{+} \\ A & \longmapsto & \max_{(i,j) \in [1,n]^{2}} \left| \left[A\right]_{i,j} \right| . \end{array} \right|$$

Démontrer que $\mathscr{S}_n(\mathbf{R})$ est une partie fermée de $(\mathscr{M}_n(\mathbf{R}),||\cdot||_{\infty})$ et que $\mathrm{GL}_n(\mathbf{R})$ est une partie ouverte de $(\mathscr{M}_n(\mathbf{R}),||\cdot||_{\infty})$.

Exercice 95. — On considère :

$$A := \left\{ f \in \mathcal{C}^0([0,1], \mathbf{R}) : f(1) = 1 \right\}.$$

Démontrer que A est une partie fermée de $(\mathscr{C}^0([0,1],\mathbf{R}),||\cdot||_{\infty})$ mais que A n'est pas une partie fermée de $(\mathscr{C}^0([0,1],\mathbf{R}),||\cdot||_{1})$.

3.8. Densité d'une partie

Définition 96. — Une partie A de E est dite dense dans E si $\overline{A} = E$, i.e. si :

$$\forall x \in E, \quad \forall \varepsilon > 0, \quad \exists a_{\varepsilon} \in A \cap B(x, \varepsilon).$$

Exemple 97. — **Q** est dense dans $(\mathbf{R}, |\cdot|)$.

Exercice 98. — Démontrer que l'ensemble :

$$\mathscr{D} := \left\{ \frac{p}{2q} : (p,q) \in \mathbf{Z} \times \mathbf{N} \right\}$$
 [ensemble des nombres dyadiques]

est dense dans $(\mathbf{R}, |\cdot|)$.

Exercice 99. — Démontrer que \mathbf{Q}^n est dense dans $(\mathbf{R}^n, ||\cdot||_{\infty})$.

Corollaire 100. — Une partie $A \subset E$ est dense dans E si et seulement si tout élément de E est limite d'une suite d'éléments de E, i.e. si et seulement si :

$$\forall x \in E \quad \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \quad a_n \xrightarrow[n \to +\infty]{\|\cdot\|} x$$

Démonstration. Cette assertion découle de la définition 96 d'une partie dense dans E et de la caractérisation séquentielle de l'adhérence (cf. théorème 92).

Exercice 101. — Munissons $E = \mathbf{R}[X]$ de la norme N définie par :

$$\begin{array}{c|ccc}
N & R[X] & \longrightarrow & R_+ \\
P & \longmapsto & \sum_{n=0}^{+\infty} \frac{|a_n|}{n+1} .
\end{array}$$

Démontrer que l'ensemble $A = \left\{ \sum_{k=0}^{\infty} a_k X^k \in \mathbf{R}[X] : \sum_{k=0}^{\infty} a_k = 0 \right\}$ est dense dans (E, N).

Exercice 102. — Soit un entier $n \ge 2$. On munit $\mathcal{M}_n(\mathbf{R})$ de la norme :

$$\|\cdot\|_{\infty} \mid \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathbf{R}_+ \\ A \longmapsto \max_{(i,j) \in [\![1,n]\!]^2} |[A]_{i,j}|.$$

Démontrer que $GL_n(\mathbf{R})$ est une partie dense de $(\mathcal{M}_n(\mathbf{R}), ||\cdot||_{\infty})$.

Exercice 103. — Nous établissons une alternative topologique pour les hyperplans.

- 1. Démontrer que l'adhérence \overline{F} d'un sous-espace vectoriel F de E est encore un sous-espace vectoriel de E.
- 2. En déduire qu'un hyperplan *H* de *E* est soit fermé dans *E*, soit dense dans *E*.

Exercice 104. — Soient $E := \mathcal{C}([0,1], \mathbb{R})$ et :

$$A := \{ f \in E : f(0) = 0 \} .$$

- 1. Démontrer que *A* est dense dans *E* pour la norme $||\cdot||_1$.
- 2. Démontrer que *A* est fermé dans *E* pour la norme $||\cdot||_{\infty}$.

3.9. Intérieur d'une partie

Définition 105. — Soit A une partie non vide de E, soit $a \in E$.

1. Le point a est intérieur à A si A est un voisinage de a. De manière équivalente, a est intérieur à A si :

$$\exists r_a > 0 \quad B(a, r_a) \subset A$$
.

2. L'ensemble des points intérieurs à A est appelé intérieur de A et noté Å.

Par convention, l'intérieur de l'ensemble vide est l'ensemble vide lui-même, i.e. $\overset{\circ}{\varnothing} = \varnothing$.

Remarque 106. — Pour toute partie *A* de *E*, $\stackrel{\circ}{A} \subset A$.

Théorème 107. — Soit A une partie non vide de E. Son intérieur $\overset{\circ}{A}$ est le plus grand ouvert contenu dans A, de sorte que :

$$\overset{\circ}{A} = \bigcup_{\begin{subarray}{c} U \subset A \\ U \ ouvert\end{subarray}} U \ .$$

Démonstration.

1. $\stackrel{\circ}{A}$ est un ouvert. Soit $a \in \stackrel{\circ}{A}$. Alors il existe $r_a > 0$ tel que $B(a, r_a) \subset A$. Nous allons démontrer que $B(a, r_a) \subset \stackrel{\circ}{A}$, ce qui assurera que $\stackrel{\circ}{A}$ est un ouvert.

Soit $y \in B(a, r_a)$. Comme $B(a, r_a)$ est un ouvert, il existe $r_y > 0$ tel que :

$$B(y, r_y) \subset B(a, r_a) \subset A$$

donc $y \in \stackrel{\circ}{A}$.

Ceci étant vrai pour tout $y \in B(a, r_a)$, nous en déduisons que $B(a, r_a) \subset \overset{\circ}{A}$.

2. $\overset{\circ}{A}$ est le plus grand ouvert contenu dans A. Considérons un ouvert U contenu dans A et démontrons que $U \subset \overset{\circ}{A}$. Soit $a \in U$. Comme U est un ouvert, il existe $r_a > 0$ tel que :

$$B(a, r_a) \subset U \subset A$$
.

Ainsi $a \in \overset{\circ}{A}$.

Ceci étant vrai pour tout $a \in U$, il vient $U \subset \stackrel{\circ}{A}$.

3. $\stackrel{\circ}{A}$ est la réunion de tous les ouverts contenus dans A. La partie $\stackrel{\circ}{A}$ est un ouvert contenu dans A, donc :

$$\overset{o}{A} \subset \bigcup_{\begin{subarray}{c} U \subset A \\ U \ \text{ouvert} \end{subarray}} U \ .$$

Or, $\bigcup_{U \subset A, \ U \text{ ouvert}} U$ est un ouvert (comme réunion d'ouverts) qui est contenu dans A. Comme tout ouvert contenu dans A

est contenu dans \mathring{A} :

$$\bigcup_{\substack{U \subset A \\ U \text{ ouvert}}} U \subset \overset{\circ}{A} .$$

П

Corollaire 108. — Soit A une partie de E. A est ouvert dans $(E, ||\cdot||)$ si et seulement si $\overset{\circ}{A} = A$.

Démonstration.

- \implies . Supposons que A est un ouvert. Alors A est un ouvert contenu dans A, donc $A \subset \stackrel{\circ}{A}$. Comme $\stackrel{\circ}{A} \subset A$, il vient $\stackrel{\circ}{A} = A$.
- \Leftarrow Supposons que $A = \overset{\circ}{A}$. Comme $\overset{\circ}{A}$ est un ouvert, A est un ouvert.

Théorème 109. — Soit A une partie non vide de E.

1. Le complémentaire de l'intérieur de A est égal à l'adhérence du complémentaire de A, i.e. :

$$E \setminus \overset{\circ}{A} = \overline{E \setminus A} .$$

2. Le complémentaire de l'adhérence de A est égal à l'intérieur du complémentaire de A, i.e. :

$$E \setminus \overline{A} = \widehat{E \setminus A}$$
.

Démonstration.

1. \supset . Comme $E \setminus \stackrel{\circ}{A}$ est un fermé contenant $E \setminus A$, il vient $\overline{E \setminus A} \subset E \setminus \stackrel{\circ}{A}$.

- C. Soit $x \in E \setminus \mathring{A}$. Comme $x \notin \mathring{A}$, pour tout r > 0, $B(x,r) \not\subset A$ donc $B(x,r) \cap (E \setminus A) \neq \emptyset$. Ainsi, $x \in \overline{E \setminus A}$. Ceci étant vrai pour tout $x \in E \setminus \mathring{A}$, nous en déduisons que $E \setminus \mathring{A} \subset \overline{E \setminus A}$.
- 2. \subset . Comme $E \setminus \overline{A}$ est un ouvert contenu dans $E \setminus A$, il vient $E \setminus \overline{A} \subset \widehat{E \setminus A}$.
 - ⊃. Soit $x \in \widehat{E \setminus A}$. Il existe r > 0 tel que $B(x,r) \subset E \setminus A$. Donc $B(x,r) \cap A = \emptyset$ et $x \notin \overline{A}$, i.e. $x \in E \setminus \overline{A}$. Ceci étant vrai pour tout $x \in \widehat{E \setminus A}$, nous en déduisons $\widehat{E \setminus A} \subset E \setminus \overline{A}$.

Exercice 110. — Soit $(a,r) \in E \times \mathbb{R}_+^*$. Démontrer que $\widehat{B_f(a,r)} = B(a,r)$.

Exercice 111. — Soit A une partie de E d'intérieur non vide. Démontrer que Vect(A) = E.

Exercice 112. — On munit $E := \mathbf{R}[X]$ de la norme $||\cdot||_1$.

- 1. Démontrer que $A = \left\{ \sum_{k=0}^{\infty} a_k X^k : \sum_{k=0}^{\infty} a_k > 0 \right\}$ est un ouvert. Déterminer \overline{A} .
- 2. Démontrer que $B = \left\{ \sum_{k=0}^{\infty} a_k X^k : \sum_{k=0}^{\infty} a_k = 0 \right\}$ est un fermé. Déterminer B.

Exercice 113. — On munit $E := \mathcal{C}([0,1], \mathbb{R})$ de la norme $||\cdot||_{\infty}$.

- 1. Montrer que $A = \{ f \in E : f > 0 \}$ est un ouvert. Déterminer \overline{A} .
- 2. Montrer que $B = \{ f \in E : f(0) = 0 \}$ est un fermé. Déterminer B.

3.10. Frontière d'une partie

Définition 114. — Soit A une partie non vide de E.

- 1. Soit $a \in E$. On dit que a est un point frontière à A si a appartient à l'adhérence de A mais pas à l'intérieur de A.
- 2. L'ensemble des points frontière de A est appelé frontière de A, et noté ∂A . Ainsi :

$$\partial A = \overline{A} \setminus \overset{\circ}{A}$$
.

Exemple 115. — La frontière d'un intervalle [a, b] vaut $\{a, b\}$. Il en est de même pour les frontières de]a, b[, de]a, b[ou de [a, b[.

Exemple 116. — Soit $(a, r) \in E \times \mathbb{R}_+^*$. Soit *A* une partie de *E* telle que :

$$B(a,r) \subset A \subset B_f(a,r)$$
.

Alors $\partial A = S(a, r)$.

3.11. Topologie induite

Définition 117. — Soit A une partie non vide de E.

1. Soit $a \in A$. Une partie $\mathcal{V}_{A,a}$ de A est appelée voisinage relatif de a dans A s'il existe un voisinage $\mathcal{V}_{E,a}$ de a dans E tel que:

$$\mathcal{V}_{A,a} = \mathcal{V}_{E,a} \cap A$$
.

2. Une partie U_A de A est appelée ouvert relatif de A s'il existe un ouvert U_E de E tel que :

$$U_A = U_E \cap A$$
.

3. Une partie F_A de A est appelée fermé relatif de A s'il existe un fermé F_E de E tel que :

$$F_A = F_E \cap A$$
.

Soit A est une partie non vide de A et $a \in A$.

- 1. un voisinage de relatif de a dans A n'est pas nécessairement un voisinage de a dans E;
- 2. un ouvert relatif de A n'est pas nécessairement un ouvert de E; 3. un fermé relatif de A n'est pas nécessairement un fermé de Ecomme l'illustre l'exemple suivant.

Exemple 118. — Considérons la partie A = [0, 2[de \mathbb{R} .

1. la partie:

$$[0,1[=\underbrace{]-1,1[}_{\mathit{B}(0,1) \text{ voisinage de 0 dans }\mathbf{R}}\cap \mathit{A}$$

est un voisinage relatif de 0 dans A, mais n'est pas un voisinage de 0 dans R;

2. la partie:

$$[0,1[=\underbrace{]-1,1[}_{B(0,1) \text{ ouvert de } \mathbf{R}} \cap A$$

est un ouvert relatif de A, mais n'est pas un ouvert de R;

3. La partie :

$$[1,2[=\underbrace{[1,3]}_{B_f(2,1) \text{ ferm\'e de } \mathbf{R}} \cap A$$

est un fermé relatif de A, mais n'est pas un fermé de R

Soit A une partie de E. Le concept de fermé relatif de A met en jeu un fermé de E, ce qui le rend parfois délicat à manier (e.g. le fermé de E qui apparaît n'est pas unique a priori). Nous disposons cependant de la caractérisation séquentielle suivante des fermés relatifs de A, qui est plus intrinsèque à la partie A (E n'intervient qu'au travers de sa

Proposition 119. — Soit A une partie non vide de E. Une partie F_A de A est un fermé relatif de A si et seulement si :

$$\forall (x_n)_{n \in \mathbb{N}} \in F_A^{\mathbb{N}} \quad \forall a \in A \qquad x_n \xrightarrow[n \to +\infty]{\|\cdot\|} a \quad \Longrightarrow \quad a \in F_A.$$

Démonstration.

 \implies . Supposons qu'il existe un fermé F_E de E tel que $F_A = F_E \cap A$. Considérons une suite $(x_n)_{n \in \mathbb{N}} \in F_A^{\mathbb{N}}$ et un élément $a \in A$ tel

$$x_n \xrightarrow[n \to +\infty]{||\cdot||} a$$
.

Comme $(x_n)_{n\in\mathbb{N}}$ est une suite de vecteurs de $F_E\supset F_A$ et F_E est fermé dans E, nous savons que la limite a de la suite $(x_n)_{n\in\mathbb{N}}$ appartient à F_E . Ainsi $a \in F_E \cap A = F_A$.

 ← Supposons que :

$$\forall (x_n)_{n \in \mathbb{N}} \in F_A^{\mathbb{N}} \quad \forall a \in A \qquad x_n \xrightarrow[n \to +\infty]{\|\cdot\|} a \quad \Longrightarrow \quad a \in F_A.$$
 (15)

Considérons $\overline{F_A}$ (adhérence de F_A dans E, qui est un fermée de E) et démontrons $F_A = \overline{F_A} \cap A$.

 \subset . Comme $F_A \subset A$ et $F_A \subset \overline{F_A}$, il vient :

$$F_A = F_A \cap A \subset \overline{F_A} \cap A.$$

 \supset . Soit $a \in \overline{F_A} \cap A$. Comme $a \in \overline{F_A}$, il existe une suite $(x_n)_{n \in \mathbb{N}} \in F_A^{\mathbb{N}}$ telle que $x_n \xrightarrow[n \to +\infty]{\|\cdot\|} a$. Comme a appartient également à A, nous déduisons de (15) que $a \in F_A$. Ceci étant vrai pout tout $a \in \overline{F_A} \cap A$, il vient $\overline{F_A} \cap A \subset F_A$.

4. Étude locale d'une application, continuité

Notation. — Dans toute cette partie, $(E, ||\cdot||_E)$ et $(F, ||\cdot||_F)$ désignent deux espaces vectoriels normés et A une partie non vide de E.

4.1. Notion de limite de fonction

Définition 120. — Soient $a \in \overline{A}$, $b \in F$ et $f \in F^A$. On dit que f a pour limite b en a si :

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x \in A \quad ||x - a||_{\varepsilon} < \eta \implies ||f(x) - b||_{\varepsilon} < \varepsilon$$
.

On écrit alors $f(x) \xrightarrow[x \to a]{} b$.

Remarque 121. — Avec les notations de la définition 120, la fonction f a pour limite b en a si et seulement si :

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x \in B_{\varepsilon}(a, \eta) \cap A \quad f(x) \in B_{\varepsilon}(b, \varepsilon)$$

ou encore si et seulement si :

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad f(B_E(a, \eta) \cap A) \subset B_F(b, \varepsilon).$$

4.2. Unicité de la limite d'une fonction en un point adhérent à l'ensemble de définition

Proposition 122. — Soient
$$a \in \overline{A}$$
, $(b_1, b_2) \in F^2$ et $f \in F^A$. Si $f(x) \xrightarrow[x \to a]{} b_1$ et $f(x) \xrightarrow[x \to a]{} b_2$, alors $b_1 = b_2$.

Démonstration. Raisonnons par l'absurde et supposons $b_1 \neq b_2$, i.e. $\varepsilon := ||b_1 - b_2||_F > 0$. Il existe $\eta_1 > 0$ et $\eta_2 > 0$ tels que :

$$f(B_E(a,\eta_1)\cap A)\subset B_F\left(b_1,\frac{\varepsilon}{3}\right) \quad \text{et} \quad f(B_E(a,\eta_2)\cap A)\subset B_F\left(b_2,\frac{\varepsilon}{3}\right).$$

Posons alors $\eta := \min(\eta_1, \eta_2) > 0$. Comme $B(a, \eta) = B(a, \eta_1) \cap B(a, \eta_2)$, il vient :

$$f(B_E(a,\eta)\cap A)\subset f(B_E(a,\eta_1)\cap A)\cap f(B_E(a,\eta_2)\cap A)\subset B_F\left(b_1,\frac{\varepsilon}{3}\right)\cap B_F\left(b_2,\frac{\varepsilon}{3}\right)\subset\varnothing$$
.

Ainsi $B_E(a, \eta) \cap A = \emptyset$, ce qui contredit l'appartenance de a à \overline{A} .

Définition 123. — Soient $a \in \overline{A}$, $b \in F$ et $f \in F^A$. Si f a pour limite b en a, on dit que b est la limite de f en a, et on note $\lim_{x \to a} f(x) = b$.

4.3. Caractérisation séquentielle de la notion de limite

Théorème 124. — Soient $a \in \overline{A}$, $b \in F$ et $f \in F^A$. Alors $f(x) \xrightarrow[x \to a]{} b$ si et seulement si :

$$\forall (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \qquad x_n \xrightarrow[n \to +\infty]{\|\cdot\|_E} a \implies f(x_n) \xrightarrow[n \to +\infty]{\|\cdot\|_F} b.$$

Démonstration. Procédons par double implication.

 \Longrightarrow . Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de A convergeant vers a. Soit $\varepsilon>0$. De $f(x)\xrightarrow[x\to a]{}b$ nous déduisons :

$$\exists \eta > 0 \quad f(B_E(a,\eta) \cap A) \subset B_E(b,\varepsilon). \tag{16}$$

Comme $x_n \xrightarrow[n \to +\infty]{||\cdot||_E} a$:

$$\exists N \in \mathbf{N} \quad \forall \, n \geqslant N \quad ||x_n - a||_E < \eta \,. \tag{17}$$

Soit $n \ge N$. D'après (17), $x_n \in B_E(a, \eta) \cap A$. Alors (16) livre $f(x_n) \in B_F(b, \varepsilon)$, soit $||f(x_n) - b||_F < \varepsilon$. Ceci étant vrai pour tout $n \ge N$, nous en déduisons que $f(x_n) \xrightarrow[n \to +\infty]{} b$.

 \Leftarrow . Raisonnons par contraposée et supposons que f(x) ne tende pas vers b quand x tend vers a.

$$\exists \varepsilon > 0 \quad \forall \eta > 0 \quad f(B_{\varepsilon}(a, \eta) \cap A) \not\subset B_{\varepsilon}(b, \varepsilon). \tag{18}$$

Soit $n \in \mathbb{N}^*$. D'après (17), il existe $x_n \in B_E\left(a, \frac{1}{n}\right) \cap A$ tel que $f(x_n) \notin B_F(b, \varepsilon)$, i.e. $||f(x_n) - b||_F \ge \varepsilon$.

• La suite $(x_n)_{n \in \mathbb{N}^*}$ converge vers a, puisque :

$$\forall n \in \mathbb{N}^* \quad 0 \le ||x_n - a||_E < \frac{1}{n}$$
 [théorème d'encadrement pour les suites réelles].

• La suite $(f(x_n))_{n\in\mathbb{N}^*}$ ne converge pas vers b. En effet, comme

$$\forall n \in \mathbf{N}^* \quad ||f(x_n) - b||_F \ge \varepsilon$$

la suite numérique $\left(||f(x_n)-b||_F\right)_{n\in\mathbb{N}^*}$ est minorée par $\varepsilon>0$. Elle ne peut pas converger vers $0_{\mathbb{R}}$.

Remarque 125. — Soient $a \in \overline{A}$, $b \in F$ et $f \in F^A$. Si f a pour limite b en $a \in A$, alors pour toute suite $(x_n)_{n \in \mathbb{N}}$ convergeant vers a, la suite $(f(x_n))_{n \in \mathbb{N}}$ converge et :

$$f\left(\lim_{n\to+\infty}x_n\right) = \lim_{n\to+\infty}f(x_n) \qquad \left[\text{\'echange des symboles }f\text{ et }\lim_{n\to+\infty}\right].$$

0

Le théorème 124 est un outil précieux pour établir que des applications n'ont pas de limite, cf. exercice suivant.

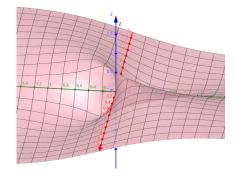
Exercice 126. — On munit \mathbb{R}^2 de la norme $||\cdot||_{\infty}$. On considère la fonction

$$f \mid \begin{array}{ccc} \mathbf{R}^2 \setminus \{(0,0)\} & \longrightarrow & \mathbf{R} \\ (x,y) & \longmapsto & \frac{xy}{x^2 + y^2} \end{array}$$

dont le graphe

$$\Gamma := \left\{ (x, y, f(x, y)) : (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\} \right\}$$

est (partiellement) représenté ci-contre. Démontrer que la fonction f n'admet pas de limite en (0,0).



П

4.4. Composition de limites

Proposition 127. — Soient $(G, ||\cdot||_G)$ un **K**-espace vectoriel normé, $B \subset F$, $f \in F^A$ et $g \in G^B$. Supposons que $f(A) \subset B$. L'application $g \circ f$ est bien définie et, pour tout $a \in \overline{A}$, $b \in \overline{B}$ et $c \in G$:

$$\begin{cases}
f(x) \xrightarrow[x \to a]{} b \\
g(y) \xrightarrow[y \to b]{} c
\end{cases} \implies g \circ f(x) \xrightarrow[x \to a]{} c.$$

Démonstration. Soit $\varepsilon > 0$. De $g(x) \xrightarrow[x \to b]{} c$ nous déduisons :

$$\exists \eta > 0 \quad g(B_F(b,\eta) \cap B) \subset B_G(c,\varepsilon). \tag{19}$$

Comme $f(x) \xrightarrow[x \to a]{} b$:

$$\exists \alpha > 0 \quad f(B_E(a,\alpha) \cap A) \subset B_F(b,\eta) \cap B \qquad \text{[ici, nous utilisons l'hypothèse } f(A) \subset B \text{]}. \tag{20}$$

Donc:

$$g \circ f(B_E(a,\alpha) \cap A) = g(f(B_E(a,\alpha) \cap A)) \underset{(20)}{\subset} g(B_F(b,\eta) \cap B) \underset{(19)}{\subset} B_G(c,\varepsilon).$$

Ceci étant vrai pour tout $\varepsilon > 0$, il vient $g \circ f(x) \xrightarrow[x \to a]{} c$.

4.5. Limite d'une fonction à valeurs dans un espace produit

Proposition 128. — Soient $(F_1, N_1), \ldots, (F_i, N_p)$ des espaces vectoriels normés. On munit l'espace vectoriel $F := \prod_{i=1}^p F_i$ de la norme produit N (cf. proposition 50). Soient $a \in \overline{A}$, $b = (b_1, \ldots, b_p) \in F$ et une application :

$$f \mid A \longrightarrow F$$

 $x \longmapsto (f_1(x), \dots, f_p(x)).$

Alors:

$$f(x) \xrightarrow[x \to a]{} b \iff \begin{cases} f_1(x) \xrightarrow[x \to a]{} b_1 \\ \vdots \\ f_p(x) \xrightarrow[x \to a]{} b_p \end{cases}$$

Démonstration. Soit une suite $(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ telle que $x_n\xrightarrow[n\to+\infty]{}a$. D'après le théorème 124, il nous suffit d'établir que :

$$f(x_n) \xrightarrow[n \to +\infty]{N} b \iff \begin{cases} f_1(x_n) \xrightarrow[n \to +\infty]{N_1} b_1 \\ \vdots \\ f_p(x_n) \xrightarrow[n \to +\infty]{N_p} b_p \end{cases}.$$

Ce résultat est conséquence du théorème 61 sur les limites de suites dans un espace produit.

4.6. Opérations algébriques sur les limites de fonctions

Proposition 129. — Soient $a \in \overline{A}$, $\lambda_1, \lambda_2 \in K$, $f_1, f_2 \in F^A$ et $b_1, b_2 \in F$. Alors:

$$\begin{cases}
f_1(x) \xrightarrow[x \to a]{} b_1 \\
f_2(x) \xrightarrow[x \to a]{} b_2
\end{cases} \implies \lambda_1 f_1(x) + \lambda_2 f_2(x) \xrightarrow[x \to a]{} \lambda_1 b_1 + \lambda_2 b_2.$$

Démonstration. Supposons que :

$$f_1(x) \xrightarrow[x \to a]{} b_1$$
 et $f_2(x) \xrightarrow[x \to a]{} b_2$.

Soit une suite $(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ telle que $x_n\xrightarrow[n\to+\infty]{\|\cdot\|_E}x$. D'après le théorème 124, il nous suffit d'établir que :

$$\lambda_1 f_1(x_n) + \lambda_2 f_2(x_n) \xrightarrow[n \to +\infty]{\parallel \cdot \parallel_F} \lambda_1 b_1 + \lambda_2 b_2.$$
 (21)

Comme nous savons que:

$$f_1(x_n) \xrightarrow[n \to +\infty]{\|\cdot\|_F} b_1$$
 et $f_2(x_n) \xrightarrow[n \to +\infty]{\|\cdot\|_F} b_2$ [théorème 124]

l'assertion (21) découle de la propriété 60 sur les opérations sur les limites de suites.

4.7. Continuité d'une fonction

Définition 130. — Soient $a \in A$ et $f \in F^A$.

1. On dit que f est continue en a si :

$$f(x) \xrightarrow[x \to a]{} f(a).$$

2. On dit que f est continue sur A si f est continue en tout point de A.

4.8. Opérations algébriques sur les fonctions continues

Proposition 131. — *L'ensemble*

$$\mathscr{C}^0(A,F) := \{ f \in F^A : la fonction f est continue sur A \}$$

est un sous-espace vectoriel de F^A .

Démonstration.

- 1. Remarquons tout d'abord que la fonction nulle sur *A* est continue sur *A*.
- 2. Soient $f, g \in \mathcal{C}^0(A, F)$, $\lambda, \mu \in K$ et $a \in A$. Puisque les applications f et g sont continues en a:

$$f(x) \xrightarrow[x \to a]{} f(a)$$
 et $g(x) \xrightarrow[x \to a]{} g(a)$.

D'après le théorème 129 sur les opérations sur les limites de fonctions, il vient

$$(\lambda f + \mu g)(x) \xrightarrow[x \to a]{} (\lambda f + \mu g)(a)$$
.

La fonction $\lambda f + \mu g$ est donc continue en a.

4.9. Composition d'applications continues

Proposition 132. — Soient $(G, ||\cdot||_G)$ un **K**-espace vectoriel normé, $B \subset F$, $f \in \mathscr{C}^0(A, F)$ et $g \in \mathscr{C}^0(B, G)$ telles que $f(A) \subset B$. Alors $g \circ f \in \mathscr{C}^0(A, G)$.

Démonstration. Soit $a \in A$. Puisque l'application f est continue en a et l'application g est continue en $f(a) \in B$:

$$f(x) \xrightarrow[x \to a]{} f(a)$$
 et $g(y) \xrightarrow[y \to f(a)]{} g(f(a))$.

D'après la proposition 127 sur la composition des limites de fonctions, nous en déduisons :

$$g(f(x)) \xrightarrow[x \to a]{} g(f(a))$$
.

L'application $g \circ f$ est donc continue en a.

4.10. Continuité d'une application à valeurs dans un espace produit

Proposition 133. — Soient $(F_1, N_1), \ldots, (F_i, N_p)$ des espaces vectoriels normés. On munit l'espace vectoriel $F := \prod_{i=1}^n F_i$ de la norme produit N (cf. proposition 50). Soient $a \in A$, et une application :

$$f \mid A \longrightarrow F \\ x \longmapsto (f_1(x), \dots, f_n(x)).$$

Alors l'application f est continue en a si et seulement si les applications :

$$f_1: A \longrightarrow F_1$$
 , ... , $f_n: A \longrightarrow F_n$

sont continues en a.

Démonstration. D'après la proposition 128 sur les limites de fonctions à valeurs dans un espace produit :

$$\underbrace{f(x) \xrightarrow[x \to a]{} f(a) = (f_1(a), \dots, f_n(a))}_{\text{la fonction } f \text{ est continue en } a} \iff \underbrace{\left\{ \begin{array}{c} f_1(x) \xrightarrow[x \to a]{} f_1(a) \\ \vdots \\ f_p(x) \xrightarrow[x \to a]{} f_p(a). \end{array} \right.}_{\text{les fonctions } f_1, \dots, f_p \text{ sont continues en } a$$

П

Exercice 134. — Justifier que l'application :

$$f \left| \begin{array}{ccc} (\mathbf{R}, |\cdot|) & \longrightarrow & \left(\mathbf{R}^3, ||\cdot||_{\infty} \right) \\ t & \longmapsto & \left(\cos(t) + t, \frac{\arctan(t)}{t^2 + t + 1}, \frac{e^t}{2 + \sin(t)} \right) \end{array} \right|$$

est continue sur R.

4.11. Caractérisation séquentielle de la continuité

Théorème 135. — Soit $a \in A$ et $f \in F^A$. L'application f est continue en a si et seulement si :

$$\forall (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \quad x_n \xrightarrow[n \to +\infty]{\|\cdot\|_E} a \implies f(x_n) \xrightarrow[n \to +\infty]{\|\cdot\|_F} f(a).$$

Démonstration. D'après le théorème 124 sur la caractérisation séquentielle de la notion de limite :

$$\underbrace{f(x) \xrightarrow[x \to a]{} f(a)}_{\text{la fonction } f \text{ est continue en } a} \iff \left(\forall (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \quad x_n \xrightarrow[n \to +\infty]{} a \implies f(x_n) \xrightarrow[n \to +\infty]{} f(a) \right).$$

Exemple 136. — L'application :

$$\det \left| \begin{array}{ccc} (\mathscr{M}_n(\mathbf{R}), || \cdot ||_{\infty}) & \longrightarrow & (\mathbf{R}, |\cdot|) \\ A & \longmapsto & \det(A) \end{array} \right|$$

est continue sur $\mathcal{M}_n(\mathbf{R})$. En effet, considérons une matrice $A \in \mathcal{M}_n(\mathbf{R})$ et vérifions à l'aide du théorème 135 sur la caractérisation séquentielle de la continuité que :

$$\forall (A_k)_{k \in \mathbb{N}} \in \mathcal{M}_n(\mathbb{R})^{\mathbb{N}} \quad A_k \xrightarrow[k \to +\infty]{\| \cdot \|_{\infty}} A \quad \Longrightarrow \quad \det(A_k) \xrightarrow[k \to +\infty]{\mathbb{R}} \det(A) \ .$$

Soit une suite $(A_k)_{k\in\mathbb{N}}\in\mathcal{M}_n(\mathbf{R})^{\mathbb{N}}$ telle que $A_k\xrightarrow[k\to+\infty]{||\cdot||_\infty}A$. Comme la norme $||\cdot||_\infty$ sur $\mathcal{M}_n(\mathbf{R})$ est une norme produit nous savons que :

$$\forall (i,j) \in [1,n]^2 \quad [A_k]_{i,j} \xrightarrow[k \to +\infty]{\mathbf{R}} [A]_{i,j}.$$

Par opérations sur les limites de suites réelles, nous en déduisons :

$$\det(A_k) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n [A_k]_{i,\sigma(i)} \xrightarrow[k \to +\infty]{R} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n [A]_{i,\sigma(i)} = \det(A) .$$

Exercice 137. — Soit une application $f:(E,||\cdot||) \longrightarrow (\mathbf{R},|\cdot|)$. On considère son graphe :

$$\Gamma := \{(x, f(x)) : x \in E\} \subset E \times \mathbf{R}$$

et on munit $E \times \mathbf{R}$ de la norme produit

$$N \mid E \times \mathbf{R} \longrightarrow \mathbf{R}_{+}$$

$$(x,t) \longmapsto \max\{||x||_{E},|t|\}.$$

- 1. On suppose que la fonction f est continue sur E. Démontrer que Γ est une partie fermée de $(E \times \mathbf{R}, N)$.
- 2. On suppose que Γ une partie fermée de (*E* × **R**, *N*) et que l'application *f* est bornée. Démontrer que l'application *f* est continue sur *E*. On pourra commencer par démontrer qu'une suite réelle bornée ayant une unique valeur d'adhérence est convergente.
- 3. Si Γ une partie fermée de $(E \times \mathbf{R}, N)$, l'application f est-elle nécessairement continue sur E? On pourra considérer la fonction inverse prolongée en 0 par la valeur 0.

4.12. Prolongement d'identités par densité et continuité

Théorème 138. — Soient $f, g \in \mathcal{C}^0(A, F)$ et B une partie de A qui est dense dans A, i.e. $\overline{B} = A$. Alors:

$$f_{|B} = g_{|B} \implies f = g$$
 [prolongement de l'identité de B à A].

Démonstration. Supposons que $f_{|B} = g_{|B}$ et considérons $a \in A$. Par densité de B dans A, il existe une suite $(b_n)_{n \in \mathbb{N}}$ d'éléments de B telle que :

$$b_n \xrightarrow[n \to +\infty]{||\cdot||_E} a$$
.

Les applications f et g étant continues en a, nous en déduisons :

$$f(b_n) \xrightarrow[n \to +\infty]{\|\cdot\|_F} f(a)$$
 et $g(b_n) \xrightarrow[n \to +\infty]{\|\cdot\|_F} g(a)$ [cf. théorème 135]. (22)

Or par hypothèse:

$$\forall n \in \mathbb{N} \quad f(b_n) = g(b_n) \qquad \left[b_n \in B \text{ et } f_{|B} = g_{|B} \right].$$

Par unicité de la limite de la suite $(f(b_n))_{n\in\mathbb{N}} = (g(b_n))_{n\in\mathbb{N}}$, nous déduisons de (22) que f(a) = g(a). Ceci étant vrai pour tout $a \in A$, f = g.

Exercice 139. — Soit une application $f : \mathbf{R} \longrightarrow \mathbf{R}$ continue sur \mathbf{R} et vérifiant :

$$\forall (x,y) \in \mathbf{R}^2 \quad f(x+y) = f(x) + f(y).$$

- 1. Justifier que f(0) = 0.
- 2. Démontrer que, pour tout $n \in \mathbb{N}$, f(n) = f(1)n.
- 3. En déduire que, pour tout $n \in \mathbb{Z}$, f(n) = f(1)n.
- 4. En déduire que, pour tout $x \in \mathbb{Q}$, f(x) = f(1)x.
- 5. En conclure que, pour tout $x \in \mathbb{R}$, f(x) = f(1)x.

4.13. Caractérisation de la continuité via les ouverts

Théorème 140. — Soit $f \in \mathcal{F}(A, F)$. L'application f est continue sur A si et seulement si, pour tout ouvert U de F, $f^{-1}(U)$ est un ouvert relatif de A.

Démonstration. Procédons par double implication.

- \implies . Supposons que l'application f est continue sur A. Soit U un ouvert de F. Démontrons que $f^{-1}(U)$ est un ouvert relatif de A.
 - Soit $x \in f^{-1}(U)$. Comme $f(x) \in U$ et U est un ouvert de F:

$$\exists \varepsilon_x > 0 \quad B_F(f(x), \varepsilon_x) \subset U$$
.

Comme f est continue en x:

$$\exists \eta_x > 0 \quad f(A \cap B_E(x, \eta_x)) \subset B_F(f(x), \varepsilon_x) \subset U$$
.

Nous en déduisons :

$$A \cap B_E(x, \eta_x) \subset f^{-1}(U). \tag{23}$$

• Les inclusions (23) sont établies pour tout $x \in f^{-1}(U)$. Nous en déduisons que :

$$\bigcup_{x \in f^{-1}(U)} A \cap B_E(x, \eta_x) \subset f^{-1}(U).$$
(24)

L'inclusion réciproque de l'inclusion (24) étant claire, il vient :

$$f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} A \cap B_E(x, \eta_x) = A \cap \left(\bigcup_{x \in f^{-1}(U)} B_E(x, \eta_x) \right).$$

Ainsi $f^{-1}(U)$ est un ouvert relatif de A.

 \leftarrow Supposons que, pour tout ouvert U de F, $f^{-1}(U)$ est un ouvert relatif de A.

Soit $x \in A$. Soit $\varepsilon > 0$. Posons $U = B_F(f(x), \varepsilon)$. Comme U est un ouvert de F, $f^{-1}(U)$ est un ouvert relatif de A, i.e. il existe un ouvert V de E tel que :

$$f^{-1}(U) = V \cap A$$
.

 $Comme: x \in f^{-1}(U) \subset V$

$$\exists \eta > 0 \quad B_E(x,\eta) \subset V$$

d'où:

$$B_E(x,\eta) \cap A \subset V \cap A = f^{-1}(U)$$
.

Nous en déduisons

$$f(B_E(x,\eta) \cap A) \subset U = B_F(f(x),\varepsilon)$$
.

Ainsi, f est continue en x.

Ceci étant vrai pour tout $x \in A$, l'application f est continue sur A.

Si $f: A \longrightarrow F$ est une application continue et U_A est un ouvert relatif de A alors $f(U_A)$ n'est pas nécessairement un ouvert de F. En effet, l'application

$$f \mid \begin{matrix} \mathbf{R} & \longrightarrow & \mathbf{R} \\ x & \longmapsto & 1 \end{matrix}$$

est continue sur \mathbf{R} ,]-1, $1[=B_{\mathbf{R}}(0,1)$ est un ouvert de \mathbf{R} , mais f(]-1, $1[)=\{1\}$ n'est pas un ouvert de \mathbf{R} .

Exercice 141. — Justifier que l'application

$$f \left| \begin{array}{ccc} \left(\mathbf{R}^2, || \cdot ||_{\infty} \right) & \longrightarrow & (\mathbf{R}, |\cdot|) \\ (x, y) & \longmapsto & y^2 + xy + y - x^3 - x^2 - x - 1 \end{array} \right|$$

est continue et en déduire une propriété topologique de chacune des parties

$$A = \{(x, y) \in \mathbb{R}^2 : y^2 + xy + y = x^3 + x^2 + x + 1\}$$
 et
$$B = \{(x, y) \in \mathbb{R}^2 : y^2 + xy + y > x^3 + x^2 + x + 1\}$$

de \mathbb{R}^2 .

Exercice 142. — Soit une fonction $f \in \mathcal{C}^1(\mathbf{R}, \mathbf{R})$ telle que sa dérivée f' ne s'annule en aucun point. Démontrer que, pour tout ouvert U de \mathbf{R} , f(U) est un ouvert de \mathbf{R} .

4.14. Caractérisation de la continuité via les fermés

Corollaire 143. — Soit $f \in \mathcal{F}(A, F)$. Alors f est continue sur A si et seulement si pour tout fermé B de F, $f^{-1}(B)$ est un fermé relatif de A.

Éléments de démonstration. Le résultat de se déduit du théorème 140, en remarquant que, pour toute partie B de F

$$f^{-1}(F \setminus B) = A \setminus f^{-1}(B).$$

Si $f: A \longrightarrow F$ est une application continue et G_A est un fermé relatif de A alors $f(G_A)$ n'est pas nécessairement un fermé de F. En effet, l'application :

$$f \mid \begin{matrix} \mathbf{R} & \longrightarrow & \mathbf{R} \\ x & \longmapsto & e^{-x} \end{matrix}$$

est continue sur \mathbb{R} , $[0, +\infty[$ est un fermé de \mathbb{R} , mais $f([0, +\infty[$) =]0, 1] n'est pas un fermé de \mathbb{R} .

Exercice 144. — Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ une application polynomiale non constante. Démontrer que, pour tout fermé F de \mathbf{R} , f(F) est un fermé de \mathbf{R} .

4.15. Applications uniformément continues

Définition 145. — Soit $f \in F^A$. L'application f est uniformément continue sur A si :

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall (x, y) \in A^2 \quad ||x - y||_E < \eta \Longrightarrow ||f(x) - f(y)||_E < \varepsilon.$$

Proposition 146. — *Soit* $f \in F^A$. *Alors* :

f est uniformément continue sur $A \Longrightarrow f$ est continue sur A.

Démonstration. Soit a ∈ A. Par définition, l'application f est continue en a si :

$$\forall \varepsilon > 0 \quad \exists \eta_a > 0 \quad \forall x \in A \quad ||x - a||_E < \eta_a \Longrightarrow ||f(x) - f(a)||_F < \varepsilon. \tag{25}$$

П

Il est clair que l'assertion de la défnition 145 de l'uniforme continuité implique l'assertion (25).

La continuité n'entraîne pas l'uniforme continuité, comme l'illustre l'exercice suivant.

Exercice 147. — Démontrer que la fonction carrée :

$$f \mid \begin{matrix} \mathbf{R} & \longrightarrow & \mathbf{R} \\ x & \longmapsto & x^2 \end{matrix}$$

est continue sur R, mais non-uniformément continue sur R.

4.16. Applications lipschitziennes

Définition 148. — Soient $f \in F^A$ et $k \in \mathbb{R}^*_{\perp}$. L'application f est k-lipschitzienne sur A si :

$$\forall (x,y) \in A^2 \quad ||f(x)-f(y)||_F < k ||x-y||_E$$

Exemple 149. — D'après la deuxième inégalité triangulaire :

$$\forall (x, y) \in E \quad |||x|| - ||y||| \le ||x - y||.$$

La fonction:

$$\|\cdot\| \mid E \longrightarrow \mathbf{R} \\ x \longmapsto \|x\|$$

est donc 1-lipschitzienne, donc uniformément continue, donc continue.

Proposition 150. — Soient $f \in F^A$ et $k \in \mathbf{R}^*_{\perp}$. Alors:

f est k-lipschitzienne sur $A \Longrightarrow f$ est uniformément continue sur A.

Démonstration. Supposons que l'application f est k-lipshitzienne sur A. Fixons $\varepsilon > 0$ et posons $\eta := \frac{\varepsilon}{k} > 0$. Alors, pour tout $(x,y) \in A^2$ tel que $||x-y||_E < \eta$:

$$||f(x)-f(y)||_E \le k ||x-y||_E < k \eta = \varepsilon$$
.

La fonction f est donc uniformément continue sur A.

L'uniforme continuité n'entraîne pas le caractère lipschitzien comme l'illustre l'exercice suivant.

Exercice 151. — Démontrer que la fonction :

$$f \mid \begin{bmatrix} 0,1 \end{bmatrix} \longrightarrow \mathbf{R} \\ x \longmapsto \sqrt{x}$$

est uniformément continue sur le segment [0, 1], mais non-lipschitzienne sur [0, 1].

Exercice 152. — Soit $f:(E,||\cdot||_E) \longrightarrow (F,||\cdot||_F)$ une application linéaire. Démontrer l'équivalence des assertions suivantes.

- 1. L'application f est continue en 0_E .
- 2. L'application f est continue sur E.
- 3. Il existe une constante C > 0 telle que, pour tout $x \in \overline{B_E(0_E, 1)}$, $||f(x)||_F \le C$.
- 4. L'application f est lipschitzienne sur E.

Exercice 153. — Soit $A := B_f(0,1)$ la boule unité fermée dans $(\mathbb{R}^2, ||\cdot||_2)$. Démontrer que l'application :

$$f \mid \begin{matrix} A & \longrightarrow & \mathbb{R}^2 \\ (x_1, x_2) & \longmapsto & (x_1^2, x_2^2) \end{matrix}$$

est 2-lipschitzienne.

Exercice 154. — Soient $(E, ||\cdot||)$ un **K**-espace vectoriel normé et $A \subset E$ une partie non vide. Pour tout $x \in E$, notons :

$$d(x,A) := \inf_{a \in A} ||x - a||$$
 [la distance de x à l'ensemble A].

Démontrer que l'application « distance à A » :

$$d(\cdot,A) \mid E \longrightarrow R \\ x \longmapsto d(x,A)$$

est 1-lipschitzienne.