ENDOMORPHISMES DES ESPACES EUCLIDIENS

TD*

18

par David Blottière, le 6 février 2024 à 18h57

SOMMAIRE

§ 1.	UN MAJORANT DU DETERMINANT D'UNE MATRICE REELLE (ORAL MINES-PONTS)	1
§ 2.	DÉCOMPOSITION POLAIRE	1
§ 3.	Topologie dans $\mathscr{S}_n(\mathbf{R})$ et critère de Sylvester	1
§ 4.	MATRICES À COEFFICIENTS DIAGONAUX CONSTANTS (ORAL X)	2
§ 5.	CHANGEMENT DE PRODUIT SCALAIRE (ORAL X)	2
§ 6.	ENDOMORPHISMES NORMAUX	2

§ 1. UN MAJORANT DU DÉTERMINANT D'UNE MATRICE RÉELLE (ORAL MINES-PONTS)

Soient $n \in \mathbb{N}^*$ et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{S}_n^{++}(\mathbb{R})$.

Q1. — Démontrer que, pour tout $i \in [1, n]$, $a_{i,i} > 0$.

Q2. — Démontrer que
$$\det(A) \leqslant \left(\frac{\operatorname{Tr}(A)}{n}\right)^n$$
.

Q3. — En considérant les matrices :

$$D = \text{Diag}\left(\frac{1}{\sqrt{a_{1,1}}}, \dots, \frac{1}{\sqrt{a_{n,n}}}\right)$$
 et $B = DAD$

démontrer que $\det(A) \leqslant a_{1,1} a_{2,2} \dots a_{n,n}$.

Q4. — Soit
$$M = (m_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbf{R})$$
. Démontrer que $\det(M) \le \prod_{j=1}^n \sqrt{\sum_{i=1}^n m_{i,j}^2}$.

§ 2. DÉCOMPOSITION POLAIRE

Soient $n \in \mathbb{N}^*$ et $A \in GL_n(\mathbb{R})$.

Q5. — Démontrer que :

$$\exists (Q, S) \in \mathcal{O}_n(\mathbf{R}) \times \mathcal{S}_n^{++}(\mathbf{R}), \quad A = QS.$$

§ 3. Topologie dans $\mathcal{S}_n(\mathbf{R})$ et critère de Sylvester

Soit $n \in \mathbb{N}^*$.

Q6. — Démontrer que $\mathcal{S}_n^+(\mathbf{R})$ est une partie fermée de $\mathcal{S}_n(\mathbf{R})$.

Q7. — Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{S}_n(\mathbf{R})$. On pose, pour tout $k \in [1, n]$:

$$A_k := (a_{i,j})_{1 \leqslant i,j \leqslant k} \in \mathscr{S}_k(\mathbf{R}).$$

Démontrer que $A \in \mathscr{S}_n^{++}(\mathbf{R})$ si et seulement si, pour tout $k \in [1, n]$, $\det(A_k) > 0$. Il s'agit du critère de Sylvester.

Q8. — Déduire de la question précédente que $\mathscr{S}_n^{++}(\mathbf{R})$ est une partie ouverte de $\mathscr{S}_n(\mathbf{R})$.

Q9. — Déterminer l'adhérence de $\mathcal{S}_n^{++}(\mathbf{R})$ dense $\mathcal{S}_n(\mathbf{R})$.

§ 4. MATRICES À COEFFICIENTS DIAGONAUX CONSTANTS (ORAL X)

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$.

Démontrer qu'il existe $P \in O_n(\mathbf{R})$ telle que $P^{\top}AP$ ait tous ses coefficients diagonaux constants.

§ 5. CHANGEMENT DE PRODUIT SCALAIRE (ORAL X)

Soit $n \in \mathbb{N}^*$.

- **Q10.** Soit $P \in GL_n(\mathbf{R})$. Démontrer la la matrice $P^T P$ est symétrique définie positive.
- **Q11.** Soit $A \in \mathcal{S}_n^{++}(\mathbf{R})$. Démontrer qu'il existe $P \in GL_n(\mathbf{R})$ telle que $A = P^{\top}P$.
- **Q12.** Soit $A \in \mathcal{M}_n(\mathbf{R})$. Démontrer que les deux assertions sont équivalentes.
 - i. A est diagonalisable dans $\mathcal{M}_n(\mathbf{R})$.
 - ii. Il existe $S \in \mathcal{S}_n^{++}(\mathbf{R})$ telle que $A^{\top} = S^{-1} A S$.

§ 6. ENDOMORPHISMES NORMAUX

Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \geqslant 2$. et $u \in \mathcal{L}(E)$ tel que $u^* \circ u = u \circ u^*$ (endomorphisme normal).

- **Q13.** Supposons que u possède une valeur propre réelle λ . Démontrer que $E_{\lambda}(u)$ est stable par u^* et que $E_{\lambda}(u)^{\perp}$ est stable par u.
- **Q14.** On suppose dans cette question que $\dim(E) = 2$ et que u ne possède aucune valeur propre réelle. Démontrer qu'il existe une base orthonormée \mathcal{B} de E telle que :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \rho \underbrace{\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}}_{=:R(\theta)}$$

où $(a, b) \in \mathbf{R} \times \mathbf{R}^*$, $\rho = |a + ib|$ et $\theta = \arg(a + ib)$.

- **Q15.** On suppose que u ne possède aucune valeur propre réelle. Démontrer qu'il existe un plan vectoriel P stable par u et u^*
- **Q16.** Démontrer qu'il existe une base orthonormée \mathcal{B} de E, des réels strictement positifs $\rho_1, ..., \rho_r$, des réels $\theta_1, ..., \theta_r, \lambda_1, ..., \lambda_s$ tels que :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \left(\begin{array}{cccc} \rho_1 R(\theta_1) & & & & 0 \\ & \ddots & & & & \\ & & \rho_r R(\theta_r) & & & \\ & & & \lambda_1 & & \\ & & & & \ddots & \\ 0 & & & & \lambda_s & \end{array} \right)$$