ESPACES DE BANACH

TD*

11

par David Blottière, le 20 décembre 2023 à 03h41

Soit $(E, ||\cdot||)$ un **R**-espace vectoriel normé. Une suite $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ est dite de Cauchy si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \geqslant N, \forall q \geqslant N ||x_p - x_q|| \leqslant \varepsilon.$$

L'espace $(E, ||\cdot||)$ est dit « complet » ou « de Banach » si toute suite de Cauchy d'éléments de E converge.

Q1. — Démontrer qu'une suite convergente d'éléments de *E* est de Cauchy.

Q2. — Démontrer que la suite $\left(S_n := \sum_{k=0}^n \frac{X^k}{k!}\right)_{n \in \mathbb{N}}$ est une suite de Cauchy de $(\mathbb{R}[X], ||\cdot||_{\infty})$ qui est divergente.

L'espace $(\mathbf{R}[X], ||\cdot||_{\infty})$ n'est donc pas complet.

Q3. — Démontrer qu'une suite de Cauchy d'éléments de *E* est bornée.

Q4. — Démontrer qu'une suite de Cauchy d'éléments de *E* possède au plus une valeur d'adhérence.

Q5. — Démontrer qu'une suite de Cauchy qui possède une unique valeur d'adhérence converge.

Q6. — Démontrer que, si E est de dimension finie, alors E est complet.

Q7. — Démontrer que E est complet si et seulement si toute série de vecteurs de E absolument convergente est convergente.

Q8. — On suppose que E est complet et on considère une application $f: E \longrightarrow E$ contractante (i.e. k-lipschitzienne pour un réel $k \in [0,1[)$. Démontrer que la suite $(x_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ définie par $x_0 \in E$ et, pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$ converge vers l'unique point fixe de f sur E (théorème de Picard-Banach).

Soient a et b des réels tels que a < b. Soit :

$$\mathscr{B}([a,b],\mathbf{R}) := \left\{ f \in \mathbf{R}^{[a,b]} : f \text{ est born\'ee} \right\}.$$

que l'on munit de la norme :

$$||\cdot||_{\infty} \mid \mathscr{B}([a,b],\mathbf{R}) \longrightarrow \mathbf{R}_{+}$$

 $f \longmapsto \sup_{x \in [a,b]} |f(x)|.$

Q9. — Démontrer que l'espace $(\mathcal{B}([a,b],\mathbf{R}),||\cdot||_{\infty})$ est complet.

Q10. — Démontrer que :

$$\mathscr{C}([a,b],\mathbf{R}) := \left\{ f \in \mathbf{R}^{[a,b]} : f \text{ est continue} \right\}$$

est fermé dans $(\mathcal{B}([a,b],\mathbf{R}),||\cdot||_{\infty})$.

Q11. — En déduire que l'espace $(\mathscr{C}^0([a,b],\mathbf{R}),||\cdot||_{\infty})$ est complet.