TOPOLOGIE III

par David Blottière, le 28 novembre 2023 à 20h33

TD*

10

Les questions sont extraites de la deuxième épreuve du concours Mines-Ponts 2017 en filière MP.

Soit E un espace vectoriel euclidien de dimension n > 0 dont le produit scalaire est noté $\langle \cdot, \cdot \rangle$ et la norme euclidienne est notée $||\cdot||$.

On rappelle qu'un sous-ensemble C de E est convexe si pour tous x, y dans C et tout $\lambda \in [0,1]$, on $a \lambda \cdot x + (1-\lambda) \cdot y \in C$. De plus, pour toute famille a_1, \ldots, a_p d'éléments de C convexe et tous nombres réels positifs ou nuls $\lambda_1, \ldots, \lambda_p$ dont la somme est égale à 1, on $a \sum_{i=1}^p \lambda_i a_i \in C$.

Si F est un sous-ensemble quelconque de E, on appelle enveloppe convexe de F, et on note Conv(F), le plus petit sous-ensemble convexe de E (au sens de l'inclusion) contenant F. On note \mathcal{H} l'ensemble des $(\lambda_1,\ldots,\lambda_{n+1})\in (\mathbf{R}^+)^{n+1}$ tels que $\sum_{i=1}^{n+1}\lambda_i=1$ et on admet que Conv(F) est l'ensemble des combinaisons linéaires de la forme $\sum_{i=1}^{n+1}\lambda_ix_i$ où $x_1,\ldots,x_{n+1}\in F$ et $(\lambda_1,\ldots,\lambda_{n+1})\in \mathcal{H}$.

Q1. — Soit K un sous-ensemble compact de E et Conv(K) son enveloppe convexe. Définir une application Φ de $\mathbf{R}^{n+1} \times E^{n+1}$ dans E telle que $Conv(K) = \Phi(\mathcal{H} \times K^{n+1})$. En déduire que Conv(K) est un sous-ensemble compact de E.

Q2. — On se place dans l'espace vectoriel euclidien $\mathcal{M}_n(\mathbf{R})$ muni du produit scalaire canonique défini par, pour tout $(A, B) \in \mathcal{M}_n(\mathbf{R})$, $\langle A, B \rangle = \text{Tr}(A^\top B)$. (On ne demande pas de vérifier que c'est bien un produit scalaire). Montrer que le groupe orthogonal $\mathcal{O}_n(\mathbf{R})$ est un sous-groupe compact du groupe linéaire $\mathrm{GL}_n(\mathbf{R})$.

Soit $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de E pour laquelle il existe un réel $\varepsilon > 0$ tel que pour tous entiers naturels $n \neq p$, on ait $||x_n - x_p|| \ge \varepsilon$.

Q3. — Démontrer que cette suite n'admet aucune suite extraite convergente.

Soit K un sous-ensemble compact de E. On note B(x,r) la boule ouverte de centre $x \in E$ et de rayon r.

Q4. — Démontrer que pour tout réel $\varepsilon > 0$, il existe un entier p > 0 et x_1, \dots, x_p éléments de E tels que $K \subseteq \bigcup_{i=1}^p B(x_i, \varepsilon)$. (On pourra raisonner par l'absurde.)

On considère une famille $(\Omega_i)_{i\in I}$ de sous-ensembles ouverts de E, I étant un ensemble quelconque, telle que $K\subseteq\bigcup_{i=1}^n\Omega_i$.

Q5. — Démontrer qu'il existe un réel $\alpha > 0$ tel que pour tout $x \in K$, il existe $i \in I$ tel que $B(x,\alpha)$ soit contenue dans l'ouvert Ω_i . (On pourra raisonner par l'absurde pour construire une suite d'éléments de K n'ayant aucune suite extraite convergente.) En déduire qu'il existe une sous-famille finie $(\Omega_{i_1}, \ldots, \Omega_{i_p})$ de la famille $(\Omega_i)_{i \in I}$ telle que $K \subseteq \bigcup_{k=1}^p \Omega_{i_k}$.

Soit $(F_i)_{i\in I}$ une famille de fermés de E contenus dans K et d'intersection vide : $\bigcap_{i\in I} F_i = \emptyset$.

Q6. — Montrer qu'il existe une sous famille finie $(F_{i_1},...,F_{i_p})$ de la famille $(F_i)_{i\in I}$ telle que $\bigcap_{k=1}^p F_{i_k} = \emptyset$.