Suites numériques

par David Blottière, le 17 octobre 2023 à 21h10

7

§ 1. Une inégalité liée à la formule de Stirling

ÉNONCÉ DE L'EXERCICE 1

Démontrer que :

$$n \cdot \ln(n) - n + 1 \leqslant \sum_{k=1}^{n} \ln(k)$$

et en déduire l'inégalité :

$$\left(\frac{n}{e}\right)^n \leqslant n!$$

où n ∈ \mathbb{N}^* .

§ 2. Une suite récurrente

ÉNONCÉ DE L'EXERCICE 2

Soit $(u_n)_{n \in \mathbb{N}}$ une suite de nombre réels vérifiant $u_0 > 0$ et, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = u_n + \frac{1}{u_n^2}.$$

Étudier le comportement asymptotique de la suite $(u_n)_{n\in\mathbb{N}}$, puis donner un équivalent de u_n .

§ 3. DA DES SOMMES PARTIELLES DE LA SÉRIE HARMONIQUE

ÉNONCÉ DE L'EXERCICE 3

Q1. — Démontrer qu'il existe une constante γ telle que :

$$H_n := \sum_{k=1}^n \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n) + \gamma + o(1).$$

Cette unique constante $\gamma \in]0,577,0,578[$ est nommée constante d'Euler.

Q2. — Démontrer que la série $\sum_{n\geqslant 1} (-1)^n \cdot \frac{\ln(n)}{n}$ converge et calculer sa somme.

§ 4. LE LEMME DE SOUS-ADDITIVITÉ DE FEKETE

ÉNONCÉ DE L'EXERCICE 4

Soit $u = (u_n)_{n \in \mathbb{N}^*}$ une suite réelle bornée. Pour tout $n \in \mathbb{N}^*$, on note $U_n = \{u_k : k \ge n\}$. On définit les suites $\underline{u} = (\underline{u}_n)_{n \in \mathbb{N}^*}$ et $\overline{u} = (\overline{u}_n)_{n \in \mathbb{N}^*}$ par, pour tout $n \in \mathbb{N}^*$:

$$\underline{u}_n = \inf(U_n)$$
 et $\overline{u}_n = \sup(U_n)$.

Q1. — Justifier que u et \overline{u} sont bien définies. Montrer qu'elles sont monotones puis qu'elles convergent.

Pour toutes suites réelles $v = (v_n)_{n \in \mathbb{N}^*}$ et $w = (w_n)_{n \in \mathbb{N}^*}$, on dit que v est plus petite que w, et on note $v \le w$, si pour tout $n \in \mathbb{N}^*$, on a $v_n \le w_n$. De facon équivalente, on dit aussi que w est plus grande que v.

Q2. — Montrer que \overline{u} est la plus petite suite (au sens de \leq) qui est décroissante et plus grande que u. Montrer de même que u est la plus grande suite (au sens de \leq) qui est croissante et plus petite que u.

Dans toute la suite du problème, on appelle limite inférieure lim et limite supérieure lim les limites suivantes :

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \underline{u}_n \quad et \quad \overline{\lim}_{n \to +\infty} u_n = \lim_{n \to +\infty} \overline{u}_n.$$

Q3. — Si $v = (v_n)_{n \in \mathbb{N}^*}$ est une autre suite réelle bornée plus grande que u, comparer les limites de \overline{u} et \overline{v} .

Q4. — Montrer que \overline{u} et \underline{u} sont adjacentes si et seulement si u converge. En ce cas, que peut-on dire des limites des trois suites u, \overline{u} et u?

On dit qu'une suite réelle $u = (u_n)_{n \in \mathbb{N}^*}$ est sous-additive si pour tous i, j dans \mathbb{N}^* , on a $u_{i+j} \leq u_i + u_j$.

Dans la suite, on ne suppose plus que la suite u est bornée, mais on suppose que u est positive et sous-additive.

Q5. — Soient m et n deux entiers naturels non nuls tels que $m \ge 2n$. On note q le quotient et r le reste de la division euclidienne de m par n. Démontrer que :

$$u_m \leq (q-1) \cdot u_n + u_{n+r}$$

et en déduire l'inégalité

$$\frac{u_m}{m} \leqslant \frac{m-n-r}{m} \cdot \frac{u_n}{n} + \frac{\max\{u_n, u_{n+1}, \dots, u_{2n-1}\}}{m}.$$

Q6. — En déduire que la suite $\left(\frac{u_m}{m}\right)_{m \in \mathbb{N}^*}$ est bornée, puis que pour tout $n \in \mathbb{N}^*$,

$$\overline{\lim}_{m\to+\infty}\frac{u_m}{m}\leqslant \frac{u_n}{n}.$$

Q7. — En conclure que la suite $\left(\frac{u_n}{n}\right)_{n\in\mathbb{N}^*}$ converge.