RÉDUCTION

par David Blottière, le 30 novembre 2023 à 08h18

TD*

6

§ 1. GROUPE MULTIPLICATIF D'UN CORPS FINI

ÉNONCÉ DE L'EXERCICE 1

Soit un corps fini **K** de cardinal q (puissance de nombre premier).

Q1. — Démontrer que, pour tout $n \in \mathbb{N}^*$:

$$n = \sum_{d \mid n} \varphi(d).$$

Pour tout diviseur positif d de q-1, on note:

$$N(d) := \operatorname{Card} (\{x \in \mathbf{K}^* : \operatorname{ord}(x) = d\}).$$

- **Q2.** Soit *d* un diviseur positif de q-1 tel que $N(d) \ge 1$. Démontrer que $N(d) = \varphi(d)$.
- **Q3.** En déduire que le groupe (K^* , \times) est cyclique.

§ 2. DENSITÉ DU GROUPE LINÉAIRE

ÉNONCÉ DE L'EXERCICE 2

Soient $n \in \mathbb{N}^*$ et $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

Démontrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbf{K})$, il existe une suite $(A_k)_{n \in \mathbf{N}} \in \mathrm{GL}_n(\mathbf{K})^{\mathbf{N}}$ telle que :

$$A_k \xrightarrow[k \to +\infty]{} A$$
.

§ 3. EXERCICES ISSUS DE L'ORAL MINES PONT MP 2015

ÉNONCÉ DE L'EXERCICE 3

Soient $(a, b) \in \mathbf{R}^* \times \mathbf{R}^*$ et:

$$\Phi \mid \begin{array}{ccc} \mathcal{M}_n(\mathbf{R}) & \longrightarrow & \mathcal{M}_n(\mathbf{R}) \\ M & \longmapsto & a \cdot M + b \cdot M^\top. \end{array}$$

- **Q1.** Donner une condition nécessaire et suffisante sur (a, b) pour que Φ soit bijectif.
- **Q2.** Calculer Det (Φ) et Tr (Φ) .

ÉNONCÉ DE L'EXERCICE 4

Soient un entier $n \ge 2$ et $u \in \mathcal{L}(\mathbb{C}^n)$.

- **Q1.** Que dire de u si la matrice de u dans toute base est diagonale?
- **Q2.** Que dire de u si la matrice de u dans toute base est la même?

ÉNONCÉ DE L'EXERCICE 5

Soit $n \in \mathbb{N}^*$.

Déterminer les couples $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ tels que l'application :

$$f \mid \mathcal{M}_n(\mathbf{C}) \longrightarrow \mathcal{M}_n(\mathbf{C})$$

$$M \longmapsto M + \operatorname{Tr}(AM) \cdot B$$

soit diagonalisable.

§ 4. EXERCICES ISSUS DE L'ORAL X MP 2015

ÉNONCÉ DE L'EXERCICE 6

Soient E un K-espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ diagonalisable.

Démontrer que les seuls sous-espaces stables par f sont les $F_1 \oplus ... \oplus F_r$ où, pour tout $i \in [1, r]$, F_i est un sous-espace vectoriel d'un sous-espace propre.

ÉNONCÉ DE L'EXERCICE 7

Soient E un K-espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ nilpotent et non nul.

Démontrer qu'il existe un sous-espace vectoriel stable n'admettant pas de supplémentaire stable.

ÉNONCÉ DE L'EXERCICE 8

Soient E un C-espace vectoriel de dimension finie et a un endomorphisme de E.

- **Q1.** On suppose que a est inversible et qu'il existe $n \in \mathbb{N}^*$ tel que a^n est diagonalisable. Démontrer que a est diagonalisable.
- **Q2.** Donner un contre-exemple lorsque *a* n'est pas inversible.
- **Q3.** Démontrer que *a* est diagonalisable si et seulement si :

 a^2 est diagonalisable et Ker(a) = Ker(a^2).

ÉNONCÉ DE L'EXERCICE 9

Soient $n \in \mathbb{N}^*$, **K** un corps et $A \in \mathcal{M}_n(\mathbb{K})$. On pose:

$$\chi_A = X^n + a_{n-1} \cdot X^{n-1} + \dots + a_1 \cdot X + a_0.$$

Démontrer que :

$$Com(A)^{\top} = (-1)^{n-1} \cdot (A^{n-1} + a_{n-1} \cdot A^{n-2} + ... + a_1 \cdot I_n).$$