ALGÈBRE LINÉAIRE 2

TD*

par David Blottière, le 3 octobre 2023 à 14h58

5

§ 1. FRIANDISES

ÉNONCÉ DE L'EXERCICE 1

Soient un corps fini **K** de cardinal q (puissance de nombre premier) et un entier $n \ge 2$.

Calculer le cardinal de $GL_n(\mathbf{K})$.

ÉNONCÉ DE L'EXERCICE 2

Soit un entier $n \ge 2$.

Déterminer toutes les applications $f \in \mathcal{L}(\mathbf{R}^n)$ telle que $f(\mathbf{Z}^n) = \mathbf{Z}^n$.

§ 2. EXERCICES ISSUS DES ORAUX CENTRALESUPÉLEC MP 2021

ÉNONCÉ DE L'EXERCICE 3

Soient un entier $n \ge 3$ et $A \in \mathcal{M}_n(\mathbf{R})$.

- **Q1.** Démontrer que Com(A)^{\top} A = Det(A) · I_n .
- **Q2.** Déterminer le rang de Com(A) en fonction de celui de A.
- **Q3.** Résoudre Com(A) = A dans $\mathcal{M}_n(\mathbf{R})$.

§ 3. EXERCICES ISSUS DES ORAUX MINES-PONTS 2021

ÉNONCÉ DE L'EXERCICE 4

Soient E un espace vectoriel réel de dimension finie, u un endomorphisme nilpotent de E, S un sous-espace de E stable par u et tel que $S + \operatorname{Im}(u) = E$.

Démontrer que S = E.

ÉNONCÉ DE L'EXERCICE 5

Soient E un espace vectoriel de dimension quelconque, et H_1 , H_2 deux hyperplans de E.

Démontrer que que H_1 et H_2 sont isomorphes.

ÉNONCÉ DE L'EXERCICE 6

Soient un entier $n \ge 2$ et $A \in \mathcal{M}_n(K)$.

Démontrer que $A^2 = 0$ si et seulement si A est semblable à la matrice $\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$, où r est un entier tel que $2r \leqslant n$.

§ 4. EXERCICES ISSUS DES ORAUX X MP 2021

ÉNONCÉ DE L'EXERCICE 7

Soit un entier $n \ge 2$.

Déterminer les matrices de $\mathcal{M}_n(\mathbf{K})$ semblables uniquement à elles-mêmes.

ÉNONCÉ DE L'EXERCICE 8

Soit f un endomorphisme de \mathbb{R}^{10} qui stabilise tous les sous-espaces de dimension 5. Que dire de f?

ÉNONCÉ DE L'EXERCICE 9

Soit E un R-espace vectoriel de dimension finie.

Quels sont les endomorphismes de *E* qui stabilisent les hyperplans de *E*?

§ 5. EXERCICES ISSUS DES ORAUX ÉNS MP 2021

ÉNONCÉ DE L'EXERCICE 10

Soit $A \in \mathcal{M}_2(\mathbf{R})$ *telle que* |Det(A)| = 1.

On suppose que les valeurs propres complexes de A sont de module différent de 1.

Démontrer que A est diagonalisable dans $\mathcal{M}_2(\mathbf{R})$.