ALGÈBRE GÉNÉRALE

TD

par David Blottière, le 26 octobre 2023 à 07h13

_

SOMMAIRE

§ 1.	EXERCICES ISSUS DES ORAUX DU CCINP	1
§ 2.	EXERCICES ISSUS DES ORAUX DU CONCOURS TPE	3
§ 3.	EXERCICES ISSUS DES ORAUX DU CONCOURS CENTRALESUPÉLEC	4
§ 4.	EXERCICES ISSUS DES ORAUX DU CONCOURS MINES PONTS	6

§ 1. EXERCICES ISSUS DES ORAUX DU CCINP

ÉNONCÉ DE L'EXERCICE 1

Soit $p \in \mathbb{N}^*$. On considère dans **Z** la relation d'équivalence \mathcal{R} définie par

$$\forall (x, y) \in \mathbb{Z}^2, \quad x \mathcal{R} y \iff p \mid (x - y).$$

On note $\mathbf{Z}/p\mathbf{Z}$ l'ensemble des classes d'équivalence pour cette relation d'équivalence.

- **Q1.** Quelle est la classe d'équivalence de 0? Quelle est celle de p?
- **Q2.** Donner soigneusement la définition de l'addition usuelle et de la multiplication usuelle dans **Z**/*p***Z**.
- **Q3.** On admet que muni de ces opérations, $\mathbf{Z}/p\mathbf{Z}$ est un anneau. Démontrer que $\mathbf{Z}/p\mathbf{Z}$ est un corps si et seulement si p est premier.

ÉNONCÉ DE L'EXERCICE 2

On note S_n l'ensemble des permutations sur l'ensemble [1, n].

Q1. — Démontrer que (S_n, \circ) est un groupe.

On note σ l'élément de S_8 défini de la manière suivante :

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 1 & 7 & 8 & 6 & 2 & 3 \end{pmatrix}$$

l'image de chaque terme de la première ligne étant écrit juste en-dessous.

Q2. — Démontrer que la permutation σ est la composée de deux cycles que l'on précisera.

Q3. — On note
$$\sigma^n = \underbrace{\sigma \circ ... \circ \sigma}_{n \text{ fois}}$$
. Déterminer σ^{12} , σ^{24} , σ^4 et σ^{2016} .

Q1. — Résoudre l'équation :

$$3n + 5 \equiv 0$$
 [10]

d'inconnue $n \in \mathbb{Z}$.

Q2. — Résoudre l'équation :

$$n^2 \equiv 1$$
 [8]

d'inconnue $n \in \mathbb{Z}$.

Q3. — Résoudre l'équation :

$$n^2 + 2n + 2 \equiv 0$$
 [5]

d'inconnue $n \in \mathbb{Z}$.

ÉNONCÉ DE L'EXERCICE 4

Q1. — Résoudre le système :

$$\begin{cases} n \equiv 1 \ [6] \\ n \equiv 2 \ [7] \end{cases}$$

d'inconnue $n \in \mathbb{Z}$.

Q2. — Résoudre le système :

$$\begin{cases} 3n \equiv 2 [5] \\ 5n \equiv 1 [6] \end{cases}$$

d'inconnue $n \in \mathbb{Z}$.

Q3. — Résoudre le système :

$$\begin{cases} n+m \equiv 4 \text{ [11]} \\ nm \equiv 10 \text{ [11]} \end{cases}$$

d'inconnue $(n, m) \in \mathbb{Z}^2$.

ÉNONCÉ DE L'EXERCICE 5

Démontrer que pour tout $n \in \mathbb{N}^*$:

$$12^{12^n} \equiv 1 \ [7]$$
 et $10^{10^n} \equiv 4 \ [7]$.

ÉNONCÉ DE L'EXERCICE 6

Soient (G, \cdot) *un groupe et a* \in *G. Pour tout* $(x, y) \in G^2$ *, posons* :

$$x \star y = x \cdot a \cdot y$$
.

Démontrer que (G, \star) est un groupe.

Soient $(A, +, \times)$ un anneau commutatif et I un idéal de A.

Q1. — L'ensemble $\{x \in A : x^2 \in I\}$ est-il un idéal de *A*?

Q2. — L'ensemble $\{x \in A : \exists n \in \mathbb{N}, x^n \in I\}$ est-il un idéal de A?

ÉNONCÉ DE L'EXERCICE 8

Existe-t-il un couple $(a, b) \in \mathbb{N}^2$ tel que $a^2 + b^2 = 2023$?

§ 2. EXERCICES ISSUS DES ORAUX DU CONCOURS TPE

ÉNONCÉ DE L'EXERCICE 9

INDICATIONS

Résoudre $x^2 + x + 1 = 0$ dans $\mathbb{Z}/7\mathbb{Z}$, puis dans $\mathbb{Z}/6\mathbb{Z}$. Que dire dans $\mathbb{Z}/n\mathbb{Z}$, où $n \in \mathbb{N}^*$?

ÉNONCÉ DE L'EXERCICE 10

Démontrer que l'ensemble des entiers premiers congrus à -1 modulo 4 est infini. On pourra raisonner par l'absurde et considérer $N=4\cdot p_1\cdot\ldots\cdot p_r-1$, où p_1,\ldots,p_r sont des nombres premiers « bien choisis ».

ÉNONCÉ DE L'EXERCICE 11

Soit A un anneau tel que pour tout $x \in A$, $x^3 = x$.

Q1. — Démontrer que pour tout $x \in A$, 6x = 0.

Q2. — Notons $B = \{x \in A : 2x = 0\}$ et $C = \{x \in A : 3x = 0\}$. Démontrer que B + C = A.

ÉNONCÉ DE L'EXERCICE 12

Résoudre dans \mathbb{Z}^2 l'équation :

 $11 \cdot (n \wedge m) + n \vee m = 203$.

Soit $p \ge 3$ un nombre premier. On considère l'équation

(*E*)
$$x^2 + ax + b = 0$$

d'inconnue $x \in \mathbb{Z}/p\mathbb{Z}$.

Q1. — Démontrer que (*E*) possède une solution si et seulement si $a^2 - 4b$ est un carré dans **Z**/p**Z**.

Dans la suite, on suppose qu'il existe $u \in \mathbb{N}^*$ tel que $p = 3 \cdot u + 1$.

- **Q2.** Démontrer qu'il existe $a \in (\mathbb{Z}/p\mathbb{Z})^*$ tel que $a^u \neq 1$.
- **Q3.** En déduire que -3 est un carré dans $\mathbb{Z}/p\mathbb{Z}$.

ÉNONCÉ DE L'EXERCICE 14

Résoudre dans **Z**/37**Z** le système suivant.

$$\left\{ \begin{array}{lll} \overline{6}\,x+\overline{7}\cdot y & = & \overline{30} \\ \overline{3}\,x-\overline{7}\cdot y & = & \overline{0} \end{array} \right.$$

ÉNONCÉ DE L'EXERCICE 15

Résoudre dans $N^* \times N^*$ le système suivant.

$$\begin{cases}
 n \wedge m &= n - m \\
 n \vee m &= 300
\end{cases}$$

§ 3. Exercices issus des oraux du concours CentraleSupélec

ÉNONCÉ DE L'EXERCICE 16

Notons:

$$\mathbf{Z}[i] := \left\{ a + i \cdot b : (a, b)_i \, n\mathbf{Z}^2 \right\}$$

et

$$\begin{array}{c|ccc}
v & \mathbf{Z}[i] & \longrightarrow & \mathbf{R}_+ \\
z & \longmapsto & |z|^2 .
\end{array}$$

- **Q1.** Déterminer les éléments inversibles de $\mathbf{Z}[i]$. On pourra utiliser v.
- **Q2.** Démontrer que 2 est réductible dans $\mathbf{Z}[i]$.
- **Q3.** Soit $(z, w) \in \mathbf{Z}[i] \times (\mathbf{Z}[i] \setminus \{0\})$. Démontrer qu'il existe $(q, r) \in \mathbf{Z}[i]^2$ tel que z = qw + r, avec v(r) < v(w). Un tel couple est-il nécessairement unique?
- $\mathbf{Q4.}$ Démontrer que les idéaux de $\mathbf{Z}[i]$ sont principaux, i.e. qu'ils sont engendrés par un élément.

Pour tout $n \in \mathbb{N}^*$, on note D_n l'ensemble des diviseurs positifs de n. Soient n et m premiers entre eux. Posons :

$$\varphi_{n,m} \left| \begin{array}{ccc} D_n \times D_m & \longrightarrow & D_{nm} \\ (d,d') & \longmapsto & d \cdot d' \end{array} \right| \begin{array}{ccc} et & \psi_{n,m} \left| \begin{array}{ccc} D_{nm} & \longrightarrow & D_n \times D_m \\ q & \longmapsto & (n \wedge q, m \wedge q) \end{array} \right.$$

- **Q1.** Démontrer que $\varphi_{n,m}$ et $\psi_{n,m}$ sont des applications bien définies et inverses l'une de l'autre.
- **Q2.** Qu'en déduire pour le cardinal de D_{nm} ?

ÉNONCÉ DE L'EXERCICE 18

Soit (G, \cdot) *un groupe fini. Pour a* \in G, *posons* :

$$\Phi_a \mid \begin{matrix} G & \longrightarrow & G \\ x & \longmapsto & a \cdot x \cdot a^{-1} \end{matrix} \qquad [conjugaison \ par \ a].$$

- **Q1.** Démontrer que Φ_a est un automorphisme de groupes de G.
- **Q2.** Démontrer que l'ensemble :

$$I := \{ \Phi_a : a \in G \}$$

est un sous-groupe du groupe des automorphismes de G.

Q3. — Supposons *I* cyclique. Démontrer que *G* est commutatif.

ÉNONCÉ DE L'EXERCICE 19

Soient (G, \cdot) un groupe fini de cardinal n, d'élément neutre e et p un diviseur premier de n. Posons :

$$E = \{(x_1, ..., x_p) \in G^p : x_1 \cdot ... \cdot x_p = e\}.$$

Q1. — Démontrer que Card $(E) = n^{p-1}$.

Notons $\sigma \in \mathfrak{S}_p$ le p-cyle (1, ..., p). Pour tout $X = (x_1, ..., x_p) \in G^p$ et tout $k \in \mathbb{Z}$, on note :

$$\sigma^k X := \left(x_{\sigma^k(1)}, \dots, x_{\sigma^k(p)} \right).$$

Q2. — Démontrer :

$$\forall X \in E, \forall k \in \mathbb{Z}, \sigma^k X \in E.$$

Soit $X \in E$. On pose

$$\mathrm{o}(X) := \left\{ Y \in E : \exists k \in \mathbf{Z} \ tel \ que \ \sigma^k \ X = Y \right\}.$$

- **Q3.** Démontrer que o(Y) = o(X), pour tout $Y \in o(X)$.
- **Q4.** Démontrer qu'il existe une famille $(X_i)_{1 \le i \le m}$ telle que $(o(X_i))_{1 \le i \le m}$ forme une partition de E.
- **Q5.** Soit $X \in E$. Démontrer que o(X) contient soit p éléments, soit un unique élément.
- **Q6.** Démontrer que G posséde un élément d'ordre p. Ce résultat est connu sous le nom de Lemme de Cauchy.

§ 4. Exercices issus des oraux du concours Mines Ponts

ÉNONCÉ DE L'EXERCICE 20

Indications

Résoudre dans N^3 le système suivant.

$$\begin{cases} x^3 - y^3 - z^3 &= 3xyz \\ x^2 &= 2y + 2z \end{cases}$$

ÉNONCÉ DE L'EXERCICE 21

Déterminer les couples d'entiers $(p, q) \in \mathbb{Z}^2$ tels que 7 divise 2p + 3q.

ÉNONCÉ DE L'EXERCICE 22

Soit $n \in \mathbb{N}^*$. Déterminer le maximum et le minimum, lorsque σ parcourt l'ensemble \mathfrak{S}_n , de $\sum_{k=1}^n k \cdot \sigma(k)$.

ÉNONCÉ DE L'EXERCICE 23

Posons:

$$\mathbf{Q}\left[\sqrt{2}\right] := \left\{a + \sqrt{2} \cdot b : (a, b) \in \mathbf{Q}^2\right\}.$$

Démontrer que $\mathbf{Q}\left[\sqrt{2}\right]$ est un corps et déterminer les morphismes d'anneaux de $\mathbf{Q}\left[\sqrt{2}\right]$ dans $\mathbf{Q}\left[\sqrt{2}\right]$.

ÉNONCÉ DE L'EXERCICE 24

Posons $j = e^{i\frac{2\pi}{3}}$ et:

$$\mathbf{Z}[j] := \{a + b \cdot j : (a, b) \in \mathbf{Z}^2\}.$$

Q1. — Démontrer que $\mathbf{Z}[j]$ est un sous-anneau de \mathbf{C} .

On note U l'ensemble des inversibles de $\mathbf{Z}[j]$.

Q2. — Démontrer que pour tout $z \in \mathbf{Z}[j]$, $z \in U$ si et seulement si |z| = 1.

Q3. — Déterminer U.

INDICATIONS POUR L'EXERCICE 9

ÉNONCÉ

Résolution dans $\mathbb{Z}/7\mathbb{Z}$ via la forme canonique de $X^2 + X + \overline{1}$ dans $\mathbb{F}_7[X]$. Comme 7 est un nombre premier, l'anneau $\mathbb{F}_7 = \mathbb{Z}/7\mathbb{Z}$ est un corps. Dans ce corps $\overline{2} \neq \overline{0}$ a pour inverse $\overline{4}$. Ainsi :

$$X^2 + X + \overline{1} = (X + \overline{4})^2 - \overline{1}$$
 [forme canonique dans $\mathbb{F}_7[X]$].

Résolution dans $\mathbb{Z}/7\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z}$ en testant tous les éléments. On peut également tester les 7 (resp. 6) éléments de \mathbb{F}_7 (resp. de $\mathbb{Z}/6\mathbb{Z}$), pour savoir lesquels sont solutions de l'équation.

Résolution dans $\mathbb{Z}/n\mathbb{Z}$. On pose, pour tout entier $n \ge 2$:

$$Sol_n := \left\{ x \in \mathbb{Z} / n\mathbb{Z} : x^2 + x + \overline{1} = \overline{0} \right\}.$$

On propose six pistes de réflexion pour étudier ces ensembles.

(1) Soit un entier naturel pair $n \ge 2$. Alors:

$$Sol_n = \emptyset$$

Considérer la parité de $x^2 + x$ pour un nombre entier x.

(2) Soit un nombre entier $n = p_1^{k_1} \dots p_r^{k_r}$, où p_1, \dots, p_r sont des nombres premiers impairs distincts et k_1, \dots, k_r sont des nombres entiers naturels non nuls. On a une bijection naturelle :

$$\operatorname{Sol}_n \longrightarrow \operatorname{Sol}_{p_1^{k_1}} \times \ldots \times \operatorname{Sol}_{p_r^{k_r}}$$

Convoquer le théorème des restes chinois.

(3) Soit un nombre premier $p \ge 3$. Alors:

$$\operatorname{Sol}_p = \left\{ \begin{array}{ll} \emptyset & \operatorname{si} \, \overline{-3} \text{ n'est pas un carr\'e dans } \mathbb{F}_p; \\ \left\{ -\overline{2}^{-1} \left(\, \overline{1} + \overline{\delta} \, \right), -\overline{2}^{-1} \left(\, \overline{1} - \overline{\delta} \, \right) \right\} & \operatorname{si} \, \overline{-3} \text{ est le carr\'e d'un \'el\'ement } \overline{\delta} \text{ de } \mathbb{F}_p. \end{array} \right.$$

Considérer la forme canonique de $X^2 + X + \overline{1}$ dans $\mathbb{F}_n[X]$.

(4) Pour tout nombre entier $k \ge 2$:

$$Sol_{3k} = \emptyset$$
.

Établir d'abord le résultat pour Sol₉.

(5) Soit un nombre premier $p \ge 5$ tel que $\overline{-3}$ n'est pas un carré dans \mathbb{F}_p . Alors, pour tout $k \in \mathbb{N}^*$:

$$Sol_{n^k} = \emptyset$$
.

(6) Soient un nombre premier $p \ge 5$ tel que $\overline{-3}$ est un carré dans \mathbb{F}_p et δ un un entier tel que $\delta^2 \equiv -3 \mod p$. D'après (3):

$$\operatorname{Sol}_p = \left\{ \overline{x_1} := -\overline{2}^{-1} \left(\overline{1} + \overline{\delta} \right), \ \overline{y_1} := -\overline{2}^{-1} \left(\overline{1} - \overline{\delta} \right) \right\}.$$

Il existe un unique élément $(x_k)_{k\geqslant 2}$ de $\prod_{k=2}^{+\infty} \mathbf{Z}/p^k\mathbf{Z}$ tel que, pour tout nombre entier $k\geqslant 2$:

$$x_k^2 + x_k + 1 \equiv 0 \mod p^k$$
 et $x_k = x_{k-1} \mod p^{k-1}$

et un unique élément $(y_k)_{k\geqslant 2}$ de $\prod_{k=2}^{+\infty} \mathbf{Z}/p^k\mathbf{Z}$ tel que, pour tout nombre entier $k\geqslant 2$:

$$y_k^2 + y_k + 1 \equiv 0 \mod p^k$$
 et $y_k = y_{k-1} \mod p^{k-1}$

de sorte que, pour tout nombre entier $k \ge 2$:

$$\operatorname{Sol}_{n^k} = \{ \overline{x_k}, \overline{y_k} \}.$$

Construire les nombres entiers x_k par récurrence, les nombres entiers y_k pouvant être obtenus de même.

Les éléments $(x_k)_{k\geqslant 1}$ et $(y_k)_{k\geqslant 1}$ de $\prod_{k=1}^{+\infty} \mathbf{Z}/p^k \mathbf{Z}$ que l'on a construits sont des nombres p-adiques et on établit ici un cas particulier du lemme de Hensel.

Remarque. Soit un nombre premier $p \ge 5$. On peut démontrer que :

$$(\overline{-3} \text{ est un carr\'e dans } \mathbb{F}_p) \iff 3 \mid p-1.$$

INDICATIONS POUR L'EXERCICE 20

ÉNONCÉ

Nous raisonnons par analyse et synthèse. Considérons des entiers naturels x, y, z solutions de :

(S)
$$\begin{cases} x^3 - y^3 - z^3 = 3xyz \\ x^2 = 2y + 2z \end{cases}$$

La première équation évoque des relations coefficients-racines (formules de Viète). Comme :

$$(X - x)(X + y)(X + z) = X^3 - (x - y - z)X^2 + (yz - xy - xz)X - xyz$$

il vient:

puis, en sommant:

$$x^3 - y^3 - z^3 - 3xyz = (x - y - z)(x^2 + y^2 + z^2 + xy + xz - yz).$$

Ainsi x, y, z sont solutions de l'un des deux systèmes suivants.

$$(S_1) \quad \left\{ \begin{array}{ccc} x & = & y+z \\ x^2 & = & 2(y+z) \end{array} \right. \qquad (S_2) \quad \left\{ \begin{array}{ccc} x^2 + \left(y^2 + z^2 - yz\right) + xy + xz & = & 0 \\ x^2 & = & 2y + 2z. \end{array} \right.$$

Pour (S_2) , on pourra s'intéresser au signe de $y^2 + z^2 - yz$.