ALGÈBRE LINÉAIRE ET RÉDUCTION I

DS_{N°2}

par David Blottière, le 7 octobre 2023 à 09h41

4 HEURES

Les étudiants de MPI résolvent l'exercice 1 et le problème.

Les étudiants de MPI* résolvent l'exercice 2 et le problème.

EXERCICE 1 — RACINES CARRÉES ET PUISSANCES DE MATRICES (MPI)

Dans ce problème, il est inutile de reproduire tous les calculs sur la copie.

On considère la matrice $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$.

Q1. — Démontrer que A est diagonalisable sur **R**.

Q2. — Déterminer une matrice diagonale $D \in \mathcal{M}_3(\mathbf{R})$ et une matrice $P \in GL_3(\mathbb{R})$ telles que $A = PDP^{-1}$.

Q3. — Déterminer une matrice *B* de $\mathcal{M}_3(\mathbb{R})$, que l'on explicitera, vérifiant $B^2 = A$.

Q4. — Déterminer, pour tout entier naturel non nul n, les 9 coefficients de la matrice A^n , en utilisant la matrice de passage P.

Q5. — Donner le polynôme minimal de la matrice A et en déduire, à l'aide d'une division euclidienne de polynômes, la matrice A^n comme une combinaison linéaire des matrices A et I_3 .

EXERCICE 2 — CLASSES DE SIMILITUDE DE PARTIES DE $\mathcal{M}_n(\mathbf{R})$ (MPI*)

Soit un entier $n \ge 2$.

Q6. — Déterminer le nombre de classes d'équivalence de la relation de similitude sur :

$$\mathscr{S} := \{ A \in \mathscr{M}_n(\mathbf{R}) : A^2 = I_n \}.$$

Q7. — Démontrer qu'une matrice non nulle de :

$$\mathcal{N} := \{ A \in \mathcal{M}_n(\mathbf{R}) : A^2 = 0_{\mathcal{M}_n(\mathbf{R})} \}$$

est semblable à une matrice par blocs $\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$ où r est un entier à préciser. En déduire le nombre de classes d'équivalence de la relation de similitude sur \mathcal{N} .

Q8. — Démontrer que deux matrices A, B de $\mathcal{M}_n(\mathbf{R})$ semblables dans $\mathcal{M}_n(\mathbf{C})$ sont semblables dans $\mathcal{M}_n(\mathbf{R})$.

Q9. — Soit u un endomorphisme de \mathbb{C}^n tel que $u^2 = -\mathrm{id}_{\mathbb{C}^n}$. Démontrer que $\mathbb{C}^n = \mathrm{Ker}(u + i \cdot \mathrm{id}_{\mathbb{C}^n}) \oplus \mathrm{Ker}(u - i \cdot \mathrm{id}_{\mathbb{C}^n})$.

Q10. — Démontrer que :

$$\mathscr{A} := \left\{ A \in \mathscr{M}_n(\mathbf{R}) : A^2 = -I_n \right\}$$

est non vide si et seulement si n est pair.

Q11. — On suppose n pair. Démontrer que la relation de similitude sur \mathcal{A} possède une unique classe d'équivalence, celle de la matrice diagonale par blocs :

$$\operatorname{Diag}\left(\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}, \dots, \begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}\right).$$

PROBLÈME — MATRICES QUASI-NILPOTENTES (MPI-MPI*)

\$ NOTATIONS

Dans tout le problème, K désigne R ou C.

Étant donnés deux entiers naturels n et p non nuls, on note $\mathcal{M}_{n,p}(\mathbf{K})$ l'espace vectoriel des matrices à n lignes et p colonnes et à coefficients dans \mathbf{K} et $\mathcal{M}_n(\mathbf{K}) = \mathcal{M}_{n,n}(\mathbf{K})$. Pour $i,j \in [\![1,n]\!]$, on note $E_{i,j}$ la matrice élémentaire de $\mathcal{M}_n(\mathbf{K})$ ayant exactement un coefficient non nul, situé en position (i,j) et de valeur 1. La transposée d'une matrice M sera notée M^{\top} .

Une matrice carrée $A \in \mathcal{M}_n(\mathbf{K})$ est dite **triangulaire supérieure stricte** lorsqu'elle est triangulaire supérieure à coefficients diagonaux tous nuls.

On note $S_n(\mathbf{K})$, $A_n(\mathbf{K})$ et $T_n^{++}(\mathbf{K})$ les sous-ensembles de $\mathcal{M}_n(\mathbf{K})$ constitués respectivement des matrices symétriques, antisymétriques et triangulaires supérieures strictes.

On rappelle la notation du symbole de Kronecker: pour x et y deux entiers,

$$\Delta_{x,y} = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{sinon} \end{cases}$$

Définition 1 — Etant donné un entier naturel non nul n, un sous-espace vectoriel V de $\mathcal{M}_n(\mathbf{K})$, et un élément j de $[\![1,n]\!]$, on note $C_j(V)$ l'ensemble des matrices de V dont toutes les colonnes sont nulles à l'exception éventuelle de la j-ème.

Pour toute matrice $M \in M_n(\mathbf{K})$ avec $n \ge 2$, on notera $K(M) \in \mathcal{M}_{n-1}(\mathbf{K})$, $R(M) \in \mathcal{M}_{n-1,1}(\mathbf{K})$, $L(M) \in \mathcal{M}_{1,n-1}(\mathbf{K})$ et $a(M) \in \mathbf{K}$ la décomposition de M en blocs suivante :

$$M = \begin{pmatrix} K(M) & R(M) \\ L(M) & a(M) \end{pmatrix} \tag{1}$$

On a en particulier défini des fonctions $K: M_n(\mathbb{K}) \to \mathcal{M}_{n-1}(\mathbb{K})$ et $L: M_n(\mathbb{K}) \to \mathcal{M}_{1,n-1}(\mathbb{K})$, évidemment linéaires.

\$ THÉORÈME SPECTRAL

On pourra appliquer le théorème suivant, admis aujourd'hui, mais démontré plus tard dans l'année.

Théorème (spectral) — Pour toute matrice $S \in S_n(\mathbf{R})$, il existe une matrice orthogonale $P \in \mathcal{M}_n(\mathbf{R})$ et une matrice diagonale $D \in \mathcal{M}_n(\mathbf{R})$ telles que $S = P D P^{\top}$.

\$ OBJECTIFS

Définition 2 — Soit $A \in \mathcal{M}_n(\mathbf{K})$. On dit que A est quasi-nilpotente lorsqu'elle ne possède aucune valeur propre non nulle dans \mathbf{K} . Une partie V de $\mathcal{M}_n(\mathbf{K})$ est dite quasi-nilpotente lorsque tous ses éléments sont quasi-nilpotents.

On se propose d'étudier les sous-espaces vectoriels quasi-nilpotents de $\mathcal{M}_n(\mathbf{K})$. En particulier, le résultat principal que nous souhaitons établir s'énoncé comme suite.

Théorème (Dimension des espaces quasi-nilpotents) — Pour tout sous-espace vectoriel quasi-nilpotent N de $\mathcal{M}_n(\mathbf{K})$, on a

$$\dim(V) \leqslant \frac{n(n-1)}{2} \tag{QN}$$

La clé pour démontrer ce résultat réside dans le lemme suivant, démontré dans la partie C.

Lemme (Lemme des colonnes) — Pour tout sous-espace vectoriel V de $\mathcal{M}_n(\mathbf{K})$, quasi-nilpotent, il existe un élément j de [1, n] tel que $C_i(V) = \{0\}$.

§ A. EXEMPLES

Dans cette partie, *n* désigne un entier naturel supérieur ou égal à 2.

Q12. — Montrer que la matrice $D = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est quasi-nilpotente vue comme matrice de $\mathcal{M}_2(\mathbf{R})$. Est-elle quasi-nilpotente vue comme matrice de $\mathcal{M}_2(\mathbf{C})$?

Q13. — Montrer que la matrice $B = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ est quasi-nilpotente vue comme matrice de $\mathcal{M}_2(\mathbf{C})$.

Q14. — Montrer que $S_n(\mathbf{K})$, $A_n(\mathbf{K})$ et $T_n^{++}(\mathbf{K})$ sont des sous-esapces vectoriels de $\mathcal{M}_n(\mathbf{K})$. Montrer que la dimension de $S_n(\mathbf{K})$ est n(n+1)/2.

Q15. — Montrer que $T_n^{++}(\mathbf{K})$ est quasi-nilpotent dans $\mathcal{M}_n(\mathbf{K})$. Vérifier que

$$\dim\left(T_n^{++}(\mathbf{K})\right) = \frac{n(n-1)}{2}$$

Q16. — Soit $A \in A_n(\mathbf{R})$. Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbf{R})$, $X^\top AX = 0$. En déduire que $A_n(\mathbf{R})$ est quasi-nilpotent dans $\mathcal{M}_n(\mathbf{R})$.

Q17. — Montrer qu'il n'existe pas de matrice inversible $P \in GL_n(\mathbf{R})$ telle que

$$A_n(\mathbf{R}) = \{PMP^{-1} : M \in T_n^{++}(\mathbf{R})\}$$

Indication: on pourra commencer par étudier le cas n = 2, en utilisant par exemple la matrice D introduite en Q1.

§ B. CAS RÉEL

Dans cette partie, *n* désigne un entier naturel non nul.

Q18. — Déterminer l'ensemble des matrices de $S_n(\mathbf{R})$ qui sont quasi-nilpotentes dans $\mathcal{M}_n(\mathbf{R})$. Le résultat obtenu tient-il si on remplace \mathbf{R} par \mathbf{C} ?

Q19. — Soit V un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{R})$, quasi-nilpotent dans $\mathcal{M}_n(\mathbf{R})$. Déduire de la question précédente que

$$\dim(V) \leqslant \frac{n(n-1)}{2}$$

§ C. LEMME DES COLONNES

On se propose ici de démontrer le lemme des colonnes par récurrence sur l'entier n.

Q20. — Justifier que le lemme des colonnes est vrai dans le cas n = 1.

Dans la suite, on fixe un entier naturel $n \ge 2$ et on suppose le lemme des colonnes vrai pour l'entier n-1. On se donne un sous-espace vectoriel quasi-nilpotent V de $\mathcal{M}_n(\mathbb{K})$. On raisonne par l'absurde en supposant que $C_j(V) \ne \{0\}$ pour tout $j \in [1, n]$. On introduit le sous-ensemble V' de V constitué de ses matrices de dernière colonne nulle. Toute matrice M de V' s'écrit donc par blocs comme suit

$$M = \begin{pmatrix} & & & 0 \\ & K(M) & \vdots \\ & & 0 \\ \hline & L(M) & 0 \end{pmatrix}$$

Q21. — Montrer que l'ensemble $K(V') = \{K(M) \mid M \in V'\}$ est un sous-espace vectoriel quasi-nilpotent de $\mathcal{M}_{n-1}(\mathbf{K})$.

Q22. — En déduire qu'il existe un entier $j \in [1, n]$ tel que $E_{n,j} \in V$.

Soit σ une bijection de [1, n] dans lui même. Soit $(e_1, ..., e_n)$ la base canonique de K^n . On considère l'application linéaire u_{σ} de K^n dans K^n définie sur la base canonique par

$$\forall j \in [1, n], u_{\sigma}(e_j) = e_{\sigma(j)}$$

On considère la matrice P_{σ} de $\mathcal{M}_n(\mathbf{K})$:

$$P_{\sigma} = (\delta_{i,\sigma(j)})_{1 \leqslant i,j \leqslant n}$$

Q23. — Vérifier que u_{σ} est inversible et préciser son inverse.

Q24. — Vérifier que P_{σ} est la matrice de u_{σ} dans la base canonique de \mathbf{K}^n . Montrer que P_{σ} est inversible et préciser les coefficients de son inverse.

Q25. — Pour $M \in M_n(\mathbb{K})$, préciser les coefficients de $P_{\sigma}^{-1}MP_{\sigma}$ en fonction de ceux de M et de σ . On pourra utiliser un changement de base.

Q26. — Montrer que l'ensemble

$$V^{\sigma} = \{ P_{\sigma}^{-1} M P_{\sigma} \mid M \in V \}$$

est un sous-espace vectoriel quasi-nilpotent de $\mathcal{M}_n(\mathbf{K})$ et que $C_j(V^{\sigma}) \neq \{0\}$ pour tout $j \in [1, n]$.

Q27. — En déduire que pour tout $j \in [1, n]$ on peut choisir un $f(j) \in [1, n] \setminus \{j\}$ tel que $E_{j, f(i)} \in V$. On obtient ainsi une fonction

$$f: [\![1,n]\!] \rightarrow [\![1,n]\!]$$

Q28. — En considérant les images successives de 1, montrer qu'il existe une suite finie $(j_1, ..., j_p)$ d'éléments deux à deux distincts de [1, n] telle que

$$\forall k \in [1, p-1], f(j_k) = j_{k+1} \text{ et } f(j_p) = j_1$$

Q29. — Écrire un algorithme qui permet d'identifier une telle suite connaissant les valeurs de f.

Q30. — Démontrer que 1 est valeur propre de la matrice $N = \sum_{k=1}^{p} E_{j_k, f(j_k)}$ et conclure.

§ D. CAS GÉNÉRAL

On va ici prouver l'inégalité (QN) par récurrence sur n. Le cas n=1 est trivialement vrai. On fixe donc un entier naturel $n \ge 2$ et on suppose l'inégalité (QN) établie au rang n-1. Soit V un sous-espace vectoriel quasi-nilpotent de $\mathcal{M}_n(\mathbf{K})$.

On rappelle qu'on peut écrire toute matrice $M \in M_n(\mathbf{K})$, et en particulier de V, sous la forme (1) et qu'en particulier, les applications $K: V \to \mathcal{M}_{n-1}(\mathbf{K})$ et $L: V \to \mathcal{M}_{1,n-1}(\mathbf{K})$ sont linéaires. On introduit le sous-espace vectoriel

$$W = \{M \in V \mid L(M) = 0\}$$

Jusqu'à la question 21 incluse, on suppose que $C_n(V) = \{0\}$.

Q31. — Montrer que dim $(V) \leq \dim(K(W)) + (n-1)$.

Q32. — En déduire que dim $(V) \leq \frac{n(n-1)}{2}$.

On ne suppose plus désormais que $C_n(V) = \{0\}$.

Q33. — Démontrer que dim $(V) \leq \frac{n(n-1)}{2}$.