Corrigé X-ENS 2019, épreuve A, filière MP

Thème: Polynômes cyclotomiques et nombres de Salem

et B ne sont pas premiers entre eux.

Partie I

- 1. L'application $P \mapsto P(\alpha)$ de $\mathbb{Q}[X]$ dans \mathbb{C} est un morphisme d'anneaux. Son noyau $I(\alpha)$ est donc un idéal de $\mathbb{Q}[X]$. Il n'est pas réduit à $\{0\}$ puisque α est algébrique.
- 2. Si α est de degré 1, alors son polynôme minimal, qui est unitaire et annule α , est $X \alpha$, donc $\alpha \in \mathbb{Q}$. Si, réciproquement, $\alpha \in \mathbb{Q}$, alors $X \alpha \in \mathbb{Q}[X]$ donc $\Pi_{\alpha} = X \alpha$ et α est de degré 1.
- 3. (a) Soient $A, B \in \mathbb{Q}[X]$ unitaires tels que $\Pi_{\alpha} = AB$. On a $A(\alpha)B(\alpha) = \Pi_{\alpha}(\alpha) = 0$ donc, par exemple, $A(\alpha) = 0$ d'où $A \in I(\alpha)$, c'est-à-dire $\Pi_{\alpha}|A$. On a donc $A = \Pi_{\alpha}$, ce qui montre que P est irréductible.
 - (b) Puisque P annule z, z est algébrique et $\Pi_z|P$. Comme $\deg(\Pi_z)\geqslant 1$, que P est irréductible et que ces deux polynômes sont unitaires, $P=\Pi_z$.

 Remarque : une conséquence de ceci est que si w est une racine de Π_z , alors $\Pi_w=\Pi_z$.
- 4. (a) Soit α une racine commune de A et B. On a $\Pi_{\alpha}|A$ et $\Pi_{\alpha}|B$ donc, puisque $\deg(\Pi_{\alpha})\geqslant 1$, A
 - (b) D'une manière générale, les racines complexes d'un polynôme $P \in \mathbb{Q}[X]$ irréductible sont simples car $P \wedge P'$ divise P et $\deg(P \wedge P') < \deg(P)$, donc $P \wedge P' = 1$.
- 5. (a) Posons $\alpha=\frac{p}{q}$, où $p\in\mathbb{Z},\,q\in\mathbb{N}^*$, $p\wedge q=1$. Soit $P=X^n+a_{n-1}X^{n-1}+\ldots a_1X+a_0\in\mathbb{Q}[X]$ un polynôme annulateur de α . On a :

$$p^{n} + a_{n-1}p^{n-1}q + \dots + a_{1}pq^{n-1} + a_{0}q^{n} = 0$$

d'où $q|p^n$. Puisque $p \wedge q = 1$, et donc $p^n \wedge q = 1$, cela entraı̂ne q = 1 et $\alpha \in \mathbb{Z}$.

- (b) Soit $P \in \mathbb{Z}[X]$ unitaire tel que $P(\alpha) = 0$. Comme $\Pi_{\alpha}|P$, les racines de Π_{α} sont des entiers algébriques. Or, Π_{α} étant unitaire, les relations coefficients-racines et le théorème admis en introduction montrent que les coefficients de Π_{α} sont des entiers algébriques. Comme ce sont des rationnels, la question **5.(a)** montre que ce sont des entiers : $\Pi_{\alpha} \in \mathbb{Z}[X]$.
- 6. (a) Soient $a,b\in\mathbb{Z}$ tels que $\alpha^2+a\alpha+b=0$. On a, en conjuguant, $\overline{\alpha}^2+a\overline{\alpha}+b=0$. Comme α n'est pas réel (car les réels de module 1 sont 1 et -1 qui ne sont pas algébriques de degré 2), α et $\overline{\alpha}$ sont les deux racines de X^2+aX+b . Donc $b=\alpha\overline{\alpha}=1$ et $a=\alpha+\overline{\alpha}=2\operatorname{Re}(\alpha)$. En particulier, $|a|\leqslant 2$. Les cas a=-2 et a=2 conduisent à $\alpha=\pm 1$ qui est exclu. Donc $a\in\{-1,0,1\}$ et $\alpha\in\{i,-i,j,-j,j^2,-j^2\}$, qui sont tous des complexes de module 1.
 - (b) On a $\left|\frac{3+4i}{5}\right|^2=\frac{9+16}{25}=1$. Par ailleurs, le polynôme $\left(X-\frac{3+4i}{5}\right)\left(X-\frac{3-4i}{5}\right)=X^2-\frac{6}{5}X+1$ annule $\frac{3+4i}{5}$, qui est donc algébrique. Et, puisque $\frac{3+4i}{5}$ n'est pas rationnel, $\Pi_{\alpha}=X^2-\frac{6}{5}X+1$. Comme ce polynôme n'est pas à coefficients entiers, **5b.** montre que α n'est pas un entier algébrique. En particulier, ce n'est pas une racine de l'unité.

- 7. Notons $\mathbb U$ le groupe des complexes de module 1 et $\mathbb U_n$ le sous-groupe des racines n-ièmes de l'unité. L'ensemble $\mathbb P_n$ n'est autre que l'ensemble des générateurs de ce groupe. Notons $s(\omega)$ l'ordre d'une racine de l'unité, c'est-à-dire l'ordre du sous-groupe de $\mathbb U$ qu'elle engendre. On sait que :
 - Si d|n, alors $\mathbb{U}_d \subset \mathbb{U}_n$
 - si $\omega \in \mathbb{U}_n$, alors $s(\omega)$ divise n.

Donc $\{\omega \in \mathbb{U}_n; s(\omega) = d\} = \mathbb{P}_d$ et

$$\mathbb{U}_n = \bigcup_{d|n} \{\omega \in \mathbb{U}_n; s(\omega) = d\} = \bigcup_{d|n} \mathbb{P}_d$$

et cette réunion est disjointe. On en déduit immédiatement :

$$X^n - 1 = \prod_{d|n} \Phi_d$$

8. (a) Soit $k \ge 1$. Les diviseurs de p^k sont les p^j , $1 \le j \le k$. Donc

$$\begin{cases} X^{p^k} - 1 = \prod_{j=1}^k \Phi_{p^j} \\ X^{p^{k-1}} - 1 = \prod_{j=1}^{k-1} \Phi_{p^j} \end{cases}$$

D'où:

$$\Phi_{p^k} = \frac{X^{p^k} - 1}{p^{k-1} - 1} = X^{(p-1)p^{k-1}} + X^{(p-2)p^{k-1}} + \dots + X^{p^{k-1}} + 1$$

- (b) On trouve aisément : $\Phi_1 = X 1$, $\Phi_2 = X + 1$, $\Phi_3 = X^2 + X + 1$, $\Phi_4 = X^2 + 1$, $\Phi_5 = X^4 + X^3 + X^2 + X + 1$, et $\Phi_6 = X^2 X + 1$.
- 9. (a) On a $\Phi_1=X-1$ donc $\Phi_1(0)=-1$. Par ailleurs on déduit de 7. que, pour tout $n\in\mathbb{N}^*$, $\prod_{d|n}\Phi_d(0)=-1$. On en déduit immédiatement, par récurrence forte sur $n\geqslant 1$, que :

$$\Phi_n(0) = 1 \text{ si } n \ge 2$$
, $\Phi_n(0) = 1 \text{ si } n = 1$.

(b) On a d'abord $\Phi_1(1)=0$. Et, si n est de la forme p^k , p premier, $k\geqslant 1$, alors **8a.** montre que $\Phi_{p^k}=p$. Par ailleurs, si n est de la forme $p_1^{k_1}\dots p_s^{k_s}$, où $s\geqslant 2$, les p_i sont des nombres premiers distincts et $k_i\geqslant 1$, on déduit de **7b.** après simplification par $X-1=\Phi_1$:

$$n = \prod_{d|n,d \neq 1} \Phi_d(1)$$

d'où, en utilisant $\Phi_{p_j^k}(1)=p_j$

$$1 = \prod_{d \mid n, \rho(d) \geqslant 2} \Phi(d)$$

où l'on note $\rho(d)$ le nombre de diviseurs premiers de n (avec la convention usuelle que le produit vaut 1 si aucun diviseur d de n ne vérifie $\rho(d) \geqslant 2$). On en déduit immédiatement par récurrence forte sur $n \geqslant 2$ que :

$$\Phi_n(1) = p \text{ si } n \text{ est de la forme } p^k, \quad \Phi_n(1) = 1 \text{ sinon}$$

- 10. On a $X^n-1=\Phi_n\prod_{\substack{d|n,d< n}}\Phi_d$. Donc Φ_n est le quotient (dans $\mathbb{Q}[X]$) dans la division euclidienne de X^n-1 par $\prod_{\substack{d|n,d< n}}\Phi_d$. Or l'algorithme usuel de la division euclidienne atteste que le quotient d'un polynôme de $\mathbb{Z}[X]$ par un polynôme unitaire de $\mathbb{Z}[X]$ est encore un polynôme de $\mathbb{Z}[X]$. Une récurrence forte sur d|n montre alors que $\Phi_n\in\mathbb{Z}[X]$.
- 11. (a) On a $|a_k| \le n$ pour tout k, donc le rayon de convergence de la série entière $\sum_k a_k z^k$ est au moins 1. En particulier, elle converge pour tout z tel que |z| < 1.
 - (b) Rappelons d'abord que la dérivée logarithmique d'un polynôme non nul Q, définie par $D(Q)=\frac{Q'}{Q}$, a la propriété $D(Q_1Q_2)=D(Q_1)+D(Q_2)$. Donc $D(P)=\sum_{k=1}^n\frac{1}{X-z_k}$. On a maintenant (l'inversion des deux Σ vient de ce que chaque série $\sum_{k=0}^{\infty}z_j^kz^k$ est convergente et que la seconde somme est finie) :

$$f(z) = \sum_{k=0}^{\infty} \sum_{j=1}^{n} z_{j}^{k} z^{k} = \sum_{j=1}^{n} \sum_{k=0}^{\infty} z_{j}^{k} z^{k} = \sum_{j=1}^{n} \frac{1}{1 - z_{j} z}$$
$$= \sum_{j=1}^{n} \frac{1}{z} \frac{1}{\frac{1}{z} - z_{j}} = \frac{1}{z} \frac{P'(1/z)}{P(1/z)},$$

d'où la relation cherchée.

(c) On a, pour z dans le disque unité ouvert privé de 0, $z^nP(1/z)f(z)=z^{n-1}P'(1/z)$. Donc la fonction $z\mapsto z^nP(1/z)f(z)$, définie sur le disque unité ouvert, produit d'une fonction polynomiale par la somme d'une série entière, est somme d'une série entière, laquelle vaut $z^{n-1}P'(1/z)$ (y compris pour z=0 par continuité de la somme d'une série entière) : elle est donc à coefficients entiers. Posons $P=X^n+b_1X^{n-1}+\ldots+b_{n-1}X+b_n$. On a $X^nP(1/X)=b_nX^n+b_{n-1}X^{n-1}+\ldots+b_1X+1$. Donc les coefficients de la série entière de somme $z^nP(1/z)f(z)$ valent :

$$\begin{cases}
 a_0 \in \mathbb{Z} \\
 a_1 + a_0 b_1 \in \mathbb{Z} \\
 a_2 + a_1 b_1 + a_0 b_2 \in \mathbb{Z} \\
 \dots
\end{cases}$$

et une récurrence immédiate montre que les a_k sont entiers.

12. (a) On a, vu ce qui précède, $a_k \in \llbracket -n, n \rrbracket$ pour tout k et, par conséquent, $(a_k, a_k+1, \ldots, a_{k+n}) \in \llbracket -n, n \rrbracket^{n+1}$. L'application $k \mapsto (a_k, a_k+1, \ldots, a_{k+n})$ de $\mathbb N$ dans $\llbracket -n, n \rrbracket^{n+1}$ ne peut donc pas être injective et il existe k, ℓ tels que $0 \leqslant k < \ell$ et

$$(a_k, a_k + 1, \dots, a_{k+n}) = (a_\ell, a_\ell + 1, \dots, a_{\ell+n}).$$

(b) Par linéarité, il suffit de vérifier l'égalité lorsque F est un polynôme de la forme X^s . Or

$$\sum_{i=1}^{n} z_i^s (z_i^{\ell} - z_i^k) = \sum_{i=1}^{n} z_i^{s+\ell} - \sum_{i=1}^{n} z_i^{s+k} = a_{s+\ell} - a_{s+k} = 0$$

(c) Comme P est irréductible, $P \wedge P'$, qui est un diviseur strict de P, vaut 1. Donc les racines complexes de P sont distinctes (rappelons que le pgcd de deux polynômes à coefficients

dans $\mathbb Q$ est le même, que l'on voit ces polynômes comme éléments de $\mathbb Q[X]$ ou de $\mathbb C[X]$). Les relations obtenues dans **12b.** pour $F=X^s$ donnent, en prenant $s\in [0,n-1]$:

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_n \\ \vdots & \vdots & \dots & \vdots \\ z_1^{n-1} & z_2^n & \dots & z_n^{n-1} \end{pmatrix} \begin{pmatrix} z_1^{\ell} - z_1^k \\ z_2^{\ell} - z_2^k \\ \vdots \\ z_n^{\ell} - z_n^k \end{pmatrix} = 0$$

Comme les z_i sont deux à deux distincts, la matrice de Vandermonde est inversible d'où, pour tout $i, z_i^\ell = z_i^k$. Notons qu'on aurait pu, depuis **12a**, faire courir i dans $[\![0,n-1]\!]$ plutôt que $[\![0,n]\!]$.

- 13. (a) Il est bien connu que, pour $k \in [1, p-1]$, $\binom{p}{k}$ est un multiple de p. Cette propriété, et la formule du binôme, montrent l'existence de H.
 - (b) Puisque $z \in \mathbb{U}_n$, z est un entier algébrique. Donc, par **5b.**, $\Pi_z \in \mathbb{Z}[X]$. Posons $\Pi_z = X^s + b_{s-1}X^{s-1} + \ldots + b_1X + b_0$. On a, en utilisant **13a**. étendu à la somme d'un nombre quelconque de polynômes (récurrence immédiate), l'existence d'un polynôme $G \in \mathbb{Z}[X]$ tel que

$$\Pi_z(X)^p = X^{sp} + b_{s-1}^p X^{p(s-1)} + \dots + b_1^p X^p + b_0^p + pG(X)$$

Or, par le petit théorème de Fermat, $b_k^p \equiv b_k \ [p]$. Donc il existe $F \in \mathbb{Z}[X]$ tel que

$$\Pi_z(X)^p = \Pi_z(X^p) + pF(X)$$

(c) La dernière relation entraîne :

$$\Pi_z(z^p) = pF(z)$$

Et, puisque l'ensemble des entiers algébriques est un anneau, $\frac{\Pi_z(z^p)}{p}=F(z)$ est un entier algébrique.

14. (a) On a

$$\prod_{i=1}^{n} P'(z_i) = \prod_{i=1}^{n} \prod_{j \neq i} (z_i - z_j) = (-1)^{\frac{n(n-1)}{2}} \prod_{i < j} (z_i - z_j)^2,$$

et, par ailleurs

$$\prod_{i=1}^{n} P'(z_i) = \prod_{i=1}^{n} n z_i^{n-1} = n^n \left(\prod_{i=1}^{n} z_i \right)^{n-1} = \left((-1)^{(n+1)} \right)^{n-1} n^n = (-1)^{n^2 - 1} n^n = (-1)^{n-1} n^n.$$

On en déduit

$$\prod_{i < j} (z_i - z_j)^2 = (-1)^{\frac{n(n+1)}{2} + 1} n^n$$

(b) Les racines de Π_z sont bien sûr des éléments de \mathbb{U}_n et elles sont distinctes (4b.). Posons $I=\{i\in [\![1,n]\!];\Pi_z(z_i)=0\}$. Supposons $\Pi_z(z^p)\neq 0$. Alors, puisque $z^p\in \mathbb{U}_n$, il existe $k\in [\![1,n]\!]\setminus I$ tel que $z^p=z_k$. Il vient $\Pi_z(z^p)=\prod_{i\in I}(z_k-z_i)$. Or ce produit peut être isolé dans le produit étudié dans la question précédente :

$$\prod_{i < j} (z_i - z_j)^2 = v \Pi_z(z^p)$$

où v, qui est un produit de termes de la forme (z_j-z_i) , tous entiers algébriques, est un entier algébrique (via le théorème admis). Il vient $n^n=u\Pi_z(z^p)$, où $u=(-1)^{\frac{n(n+1)}{2}+1}v$ est

- un entier algébrique. Comme l'ensemble des entiers algébriques est un anneau (théorème admis), $\frac{n^n}{p}=u imes \frac{\Pi_z(z^p)}{p}$ est un entier algébrique. Comme $\frac{n^n}{p}$ est un rationnel, **5a.** montre que c'est un entier, ce qui est absurde puisque p est un nombre premier qui ne divise pas n. On a prouvé $\Pi_z(z^p)=0$.
- (c) Soit w un élément de \mathbb{P}_n qui est aussi racine de Π_z . On a $\Pi_z=\Pi_w$ d'après **3b.** donc, par **14b.** appliqué à w, $\Pi_z(w^p)=\Pi_w(w^p)=0$. En outre, w^p est encore élément de \mathbb{P}_n puisque, on le sait, l'ordre de w^p dans \mathbb{U}_n vaut $\frac{n}{n \wedge p}=n$. On en déduit aisément que, pour tout $k \in \mathbb{N}^*$ premier avec n, $\Pi_z(z^k)=0$. Comme $\mathbb{P}_n=\{z^k, k \wedge n=1\}$, il vient $\Phi_n|\Pi_z$ d'où, puisque Π_z est irréductible et que ces deux polynômes sont unitaires, $\Phi_n=\Pi_z$.
- 15. (a) C'est un calcul immédiat.
 - (b) Puisque P est unitaire et réciproque, son coefficient constant vaut 1 et 0 n'est pas racine de $P: x \neq 0$. Soit s l'ordre de x en tant que racine de P. Posons $P = (X-x)^s Q$, où $Q(x) \neq 0$. On a $P = X^d P(1/X) = X^s \left(\frac{1}{X} x\right)^s X^{d-s} Q(1/X) = (1-xX)^s X^{d-s} Q(1/X)$. Comme 1/x n'est pas racine de Q(1/X), 1/x est racine d'ordre s de P.
- 16. Comme $\Pi_x \in \mathbb{Q}[X]$, $\frac{1}{x} = \overline{x}$ est racine de Π_x . Puisque $x \notin \{-1,1\}$, 1/x est distinct de x. C'est donc un conjugué de x. On a donc, par $\mathbf{3a}$, $\Pi_{1/x} = \Pi_x$. Or, en notant d le degré de Π_x , $X^d\Pi_x(1/X)$ est un polynôme de degré d qui annule 1/x. Donc il existe $\lambda \in \mathbb{Q}^*$ tel que $X^d\Pi_x(1/X) = \lambda \Pi_{1/x} = \Pi_x$. Ceci montre que l'ensemble Z des racines de Π_x est stable par $z \mapsto z^{-1}$. Comme 1 et -1 ne sont pas racines de Π_x (car leur polynôme minimal vaut X-1 et X+1 respectivement, tandis que toute racine de Π_x a Π_x pour polynôme minimal), on a $\prod_{z \in Z} z = 1$. Les racines de Π_x étant simples, il vient que $\deg(\Pi_x)$ est pair et $\Pi_x(0) = 1$. Ceci montre que $X^d\Pi_x(1/X)$ est unitaire, donc $\lambda = 1$. Par conséquent, Π_x est réciproque.
- 17. (a) On a $\gamma \notin \{-1,1\}$ car -1 et 1 sont algébrique de degré 1, tandis que γ est algébrique de degré 2 (car $\Pi_{\gamma} = \Pi_{\alpha}$). Par **16.**, $\Pi_{\alpha} = \Pi_{\gamma}$ est réciproque.
 - (b) Si γ était une racine de l'unité, donc une racine de X^m-1 pour une certain m, on aurait $\Pi_{\gamma}|X^m-1$. Donc α serait une racine de l'unité et, puisque $\alpha\in\mathbb{R}$, α appartiendrait à $\{-1,1\}$. Donc γ n'est pas une racine de l'unité.
 - (c) Si β est une racine de Π_{α} de module différent de 1, alors β ou $1/\beta$ est de module strictement supérieur à 1. Comme Π_{α} est réciproque, ce sont deux racines de Π_{α} . Or, par définition de \mathcal{S} , α est l'unique racine de Π_{α} de module strictement supérieur à 1. Donc $\beta=\alpha$ ou $\beta=\frac{1}{\alpha}$. On en déduit que tous les conjugués de α autres que $1/\alpha$ sont de module 1.
- 18. Si $\alpha \in \mathcal{S}$ est de degré impair, alors Π_{α} , dont toutes les racines sont distinctes (4b.), admet un nombre impair de racines. Comme toutes les racines autres que α et $1/\alpha$ sont de module 1, Π_{α} admet 1 ou -1 pour racine, ce qui est absurde (le degré de Π_{α} est au moins 2). Donc α est de degré pair. Si ce degré valait 2, on aurait $C(\alpha) = \{1/\alpha\}$, ce qui contredit la définition de \mathcal{S} . Donc le degré de α est pair, au moins égal à 4.
- 19. Si P_n admet une racine $z\in\mathbb{Q}$, alors z est un entier algébrique rationnel, donc, par **5a.**, $z\in\mathbb{Z}$. La relation $z(-z^3+(6+n)z^2-(10+n)z+(6+n))=1$ montre que z est inversible dans \mathbb{Z} , donc $z=\pm 1$. Or $P_n(1)=-n\neq 0$ et $P_n(-1)=24+3n\neq 0$, donc P_n n'admet aucune racine rationnelle. Par ailleurs, puisque $P_n(1)<0$ et $\lim_{x\to +\infty}P_n(x)=+\infty$, le théorème des valeurs intermédiaires montre que P_n admet une racine dans $]1,+\infty[$.
- 20. Comme P_n est un polynôme réciproque, cela résulte de **15b.**

21. On a

$$\frac{1}{X^2}[X^4 - (6+n)X^3 + (10+n)X^2 - (6+n)X + 1] = \left(X + \frac{1}{X}\right)^2 - (6+n)\left(X + \frac{1}{X}\right) + (8+n)$$

Donc s_n et t_n sont racines de $Y^2 - (6+n)Y + (8+n)$. Si $s_n \neq t_n$, ce sont les deux racines et l'on a

$$s_n + t_n = 6 + n$$
 et $s_n t_n = (8 + n)$.

Ce résultat subsiste si $s_n = t_n$ car on a, dans ce cas, $\gamma_n = \alpha_n$ ou $\gamma_n = \frac{1}{\alpha_n}$:

$$X^{4} - (6+n)X^{3} + (10+n)X^{2} - (6+n)X + 1 = (X - \alpha_{n})^{2} \left(X - \frac{1}{\alpha_{n}}\right)^{2} = \left(X^{2} - \left(\alpha_{n} + \frac{1}{\alpha_{n}}\right)X + 1\right)^{2},$$

ďoù

$$\frac{1}{X^2}[X^4 - (6+n)X^3 + (10+n)X^2 - (6+n)X + 1] = \left(\left(X + \frac{1}{X}\right) - \left(\alpha_n + \frac{1}{\alpha_n}\right)\right)^2$$

qui montre que $s_n = t_n$ est racine double de $Y^2 - (6+n)Y + (8+n)$.

22. Puisque α_n est réel, il en est de même de $t_n=\alpha_n+\frac{1}{\alpha_n}$ et de $s_n=6+n-t_n$. En outre, le polynôme $Q(Y)=Y^2-(6+n)Y+(8+n)$ vérifie Q(0)>0 et Q(2)=-n<0. Donc Q admet une racine dans]0,2[. Il ne peut s'agir de $t_n=\alpha_n+\frac{1}{\alpha_n}$ car $x+\frac{1}{x}>2$ pour tout x>1. Donc $s_n\in]0,2[$.

Comme $x+\frac{1}{x}$ n'appartient jamais à]0,2[lorsque x est réel, on en déduit $\gamma_n\notin\mathbb{R}$. En outre, γ_n et $\frac{1}{\gamma_n}$ sont les deux racines du polynôme $X^2-s_nX+1=0$. Comme les coefficients de celui-ci sont réels, $\frac{1}{\gamma_n}=\overline{\gamma_n}$, d'où $|\gamma_n|=1$.

- 23. (a) Les nombres s_n et t_n sont les racines de $Y^2 (6+n)Y (8+n)$. Ce sont donc des entiers algébriques. S'ils sont rationnels (ils le sont soit tous les deux, soit ni l'un ni l'autre puisque $s_n + t_n = 6 + n$), ce sont des entiers relatifs d'après **5a.** d'où, puisque $s_n \in]0,2[$, $s_n = 1$. C'est absurde puisque 1 n'est manifestement pas racine de $Y^2 (6+n)Y (8+n)$.
 - (b) Supposons P_n non irréductible et posons $P_n = AB$, où $A, B \in \mathbb{Q}[X]$ sont unitaires. Si on avait, par exemple, $\deg(A) = 1$, alors P_n admettrait une racine rationnelle et s_n ou t_n serait rationnel. On a donc $\deg(A) = \deg(B) = 2$. Les racines de A sont toutes les deux réelles ou tous les deux non réelles. Donc, quitte à échanger les noms de A et B: $A = (X \alpha_n) \left(X \frac{1}{\alpha_n} \right)$ d'où $t_n = \alpha_n + \frac{1}{\alpha_n} \in \mathbb{Q}$, ce qui contredit **23a.**. Donc P_n est irréductible. Puisque $|\gamma_n| = |1/\gamma_n| = 1$, on a montré $\alpha_n \in \mathcal{S}$.
 - (c) On a $\alpha_n^4 6\alpha_n^3 + 10\alpha_n^2 6\alpha_n + 1 = n\alpha_n \left(\alpha_n^2 \alpha_n + 1\right)$. Comme $x(x^2 x + 1) \geqslant 1$ pour tout $x \geqslant 1$ (la dérivée de $x^2 x + 1$ est positive sur $[1, +\infty[$), on a $\alpha_n^4 6\alpha_n^3 + 10\alpha_n^2 6\alpha_n + 1 \geqslant n$ et donc $\lim_{n \to +\infty} \alpha_n^4 6\alpha_n^3 + 10\alpha_n^2 6\alpha_n + 1 = +\infty$. Or, si $(\alpha_n)_n$, qui est positive, ne divergeait pas vers $+\infty$, elle admettrait une sous-suite bornée, et la sous-suite correspondante de $(\alpha_n^4 6\alpha_n^3 + 10\alpha_n^2 6\alpha_n + 1)_n$ serait elle-même bornée. Donc $\lim_{n \to +\infty} \alpha_n = +\infty$.
- 24. Soit α un élément de \mathcal{T} . Posons $\Pi_{\alpha}=X^4+aX^3+bX^2+aX+1$ (on sait que Π_{α} est un polynôme réciproque). Notons α , $\frac{1}{\alpha}$, γ , $\frac{1}{\gamma}$ ses racines (où γ est de module 1). Les relations coefficients

racines donnent:

$$\begin{cases} a = -\left(\alpha + \frac{1}{\alpha} + \gamma + \frac{1}{\gamma}\right) \\ b = 2 + \alpha\gamma + \frac{1}{\alpha\gamma} + \frac{\alpha}{\gamma} + \frac{\gamma}{\alpha} \end{cases}$$

d'où $|a| \le |\alpha| + 3$ et $|b| \le 2|\alpha| + 4$. Ceci montre que, pour tout M > 1, l'ensemble d'éléments de \mathcal{T} dans]1, M] est fini, puisque, si α est un tel nombre, $|a| \le M + 3$ et $|b| \le 2M + 4$. En particulier, en choisissant M tel que]1, M] contienne un élément de \mathcal{T} (c'est possible d'après ce qui précède), on voit que \mathcal{T} possède un plus petit élément.

Déterminons celui-ci. Soit $P=X^4+aX^3+bX^2+aX+1$ un polynôme réciproque de degré 4. Cherchons à quelles conditions l'une de ses racines est élément de \mathcal{T} . D'après la **partie 3**, P doit admettre une racine $\alpha>1$ et une racine γ de module 1 non réelle (car non racine de l'unité), les autres racines étant $\frac{1}{\alpha}$ et $\frac{1}{\gamma}$. Supposons que tel soit le cas et posons $t=\alpha+\frac{1}{\alpha}$, $s=\gamma+\frac{1}{\gamma}$. Alors s et t sont les racines du polynôme $Q(Y)=Y^2+aY+(b-2)$ et l'on a t>2 et -2< s<2. Si, réciproquement, le polynôme $Q(Y)=Y^2+aY+(b-2)$ admet deux racines réelles s et t vérifiant t>2 et -2< s<2, alors les racines de P sont les racines des polynômes X^2-tX+1 et X^2-sX+1 , qu'on peut écrire α , $\frac{1}{\alpha}$ pour le premier et γ , $\frac{1}{\gamma}$ pour le second, avec $\alpha>1$ et $|\gamma|=1$, γ non réel. En outre, dans ces conditions, P est irréductible si et seulement si s et/ou t est/sont irrationnels (comme s+t est rationnel, ils le sont simultanément).

En résumé, P définit un élément de \mathcal{T} si et seulement si $Q(Y) = Y^2 + aY + (b-2)$ admet deux racines réelles irrationnelles s et t vérifiant t > 2 et -2 < s < 2.

Par le théorème des valeurs intermédiaires, que $Q(Y) = Y^2 + aY + (b-2)$ admette deux racines réelles s et t vérifiant t > 2 et -2 < s < 2 équivaut à Q(-2) > 0 et Q(2) < 0, soit

$$\begin{cases} 2a - b - 2 < 0 \\ 2a + b + 2 < 0 \end{cases}$$

Déterminons maintenant le couple (a,b) (on verra qu'il n'y en a qu'un) vérifiant les deux inégalités de ce système pour lequel α est minimal (sans exiger a priori $\alpha \in \mathcal{T}$). Ainsi qu'on le constatera, t est irrationnel pour ce couple de valeurs, pour lequel on a aura donc $\alpha = \min(\mathcal{T})$. En sommant les inégalités, on a a < 0 (donc $a \leqslant -1$ puisque c'est un entier).

Par ailleurs, puisque $x \mapsto x + 1/x$ est strictement croissante sur $]1, +\infty[$, α est minimal lorsque t est maximal.

Or $t=\frac{-a+\sqrt{a^2-4(b-2)}}{2}$ et, pour a fixé, l'application $b\mapsto \frac{-a+\sqrt{a^2-4(b-2)}}{2}$ est décroissante. Donc, à $a\leqslant -1$ fixé, la valeur maximale de t(a,.) est obtenue pour la valeur maximale de b vérifiant les deux inégalités, soit b=-2a-3, et elle vaut

$$\tau(a) = \frac{-a + \sqrt{a^2 + 8a + 20}}{2}$$

Or cette fonction de a est une fonction décroissante. Sa valeur maximale est donc obtenue pour a=-1. Ainsi, la valeur maximale de t est obtenue pour a=-1 et b=-1. Comme $t=\frac{1+\sqrt{13}}{2}$ est irrationnel, ce couple fournit la valeur minimale de $\alpha\in\mathcal{T}$:

$$\alpha = \frac{\frac{1+\sqrt{13}}{2} + \sqrt{\left(\frac{1+\sqrt{13}}{2}\right)^2 - 4}}{2} \simeq 1,722084$$