RÉVISIONS D'ALGÈBRE LINÉAIRE

CHAPITRE

par David Blottière, le 25 septembre 2023 à 17h07

3

SOMMAIRE

§ 1.	K-ESPACES VECTORIELS	
	1. NOTION DE K -ESPACE VECTORIEL	2
	2. QUELQUES K -ESPACES VECTORIELS USUELS	2
§ 2.	SOUS-ESPACES VECTORIELS	4
_	1. NOTION DE SOUS-ESPACE VECTORIEL	
	2. OPÉRATIONS SUR LES SOUS-ESPACES VECTORIELS	
	3. SOUS-ESPACES VECTORIELS SUPPLÉMENTAIRES	
	4. Sous-espaces vectoriels engendrés	
6.3	FAMILLES REMARQUABLES FINIES	
y J.	1. FAMILLES GÉNÉRATRICES FINIES	
	2. FAMILLES LIBRES FINIES	
	3. BASES FINIES	
E 1	FAMILLES REMARQUABLES	
9 4.	1. Combinaison linéaire d'une famille de vecteurs	
	2. FAMILLES GÉNÉRATRICES	
	3. FAMILLES LIBRES	
	4. Bases	
§ 5.	DIMENSION FINIE	
	1. ESPACE VECTORIEL DE DIMENSION FINIE ET THÉORÈME DE LA BASE EXTRAITE	
	2. Théorème de la base incomplète	
	3. CARDINAUX DES FAMILLES REMARQUABLES ET NOTION DE DIMENSION	
	4. DIMENSION ET SOUS-ESPACES VECTORIELS	
§ 6.	APPLICATIONS LINÉAIRES	
	1. NOTION D'APPLICATION LINÉAIRE	
	2. NOYAU ET IMAGE D'UNE APPLICATION LINÉAIRE	
	3. APPLICATIONS LINÉAIRES ET DIMENSION FINIE	21
§ 7.	MATRICES D'APPLICATIONS LINÉAIRES	
	1. CORDONNÉES D'UN VECTEUR DANS UNE BASE	21
	2. MATRICES D'UNE APPLICATION LINÉAIRE DANS DES BASES	22
	3. COMPOSÉE D'APPLICATIONS LINÉAIRES VERSUS PRODUIT DE DEUX MATRICES	23
	4. APPLICATION LINÉAIRE CANONIQUEMENT ASSOCIÉE UNE MATRICE	24
	5. Matrices de passage	25
	6. CHANGEMENT DE BASES POUR LES APPLICATIONS LINÉAIRES	26
§ 8.	MATRICES	27
	1. RETOUR SUR LA STRUCTURE DE K -ESPACE VECTORIEL SUR $\mathcal{M}_{n,p}(\mathbf{K})$	27
	2. RETOUR SUR LE PRODUIT MATRICIEL	
	3. Matrices carrées	
	4. Matrices carrées inversibles	30
	5. Trace d'une matrice carrée	30
	6. Transposée d'une matrice	
	7. RANG D'UNE MATRICE ET MATRICES $J_{n,p}(r)$	
89	HYPERPLANS ET FORMES LINÉAIRES	
	DÉTERMINANT	
, 10.	1. FORMES <i>n</i> -LINÉAIRES ALTERNÉES	
	2. DÉTERMINANT D'UNE FAMILLE DE VECTEURS DANS UNE BASE	
	3. DÉTERMINANT D'UN ENDOMORPHISME	
	4. DÉTERMINANT D'UNE MATRICE CARRÉE	
	5. CALCULS DE DÉTERMINANTS DE MATRICES	
	6 COMATRICE	39
	THE VALUE AND THE STATE OF THE	. 17

NOTATION. — Dans tout ce chapitre, la lettre **K** désigne un corps.

§ 1. K-ESPACES VECTORIELS

1. NOTION DE K-ESPACE VECTORIEL

DÉFINITION 1 (STRUCTURE DE K-ESPACE VECTORIEL). — Un K-espace vectoriel est la donnée d'un triplet $(E, +, \cdot)$ où :

- E est un ensemble
- + est une loi de composition interne sur E, i.e. une application :

$$+ \left| \begin{array}{ccc} E \times E & \longrightarrow & E \\ (u, v) & \longmapsto & u + v \end{array} \right|$$

• · est une loi de composition externe sur E à opérateurs dans K, i.e.:

$$\cdot \begin{array}{cccc} K \times E & \longrightarrow & E \\ (\lambda, u) & \longmapsto & \lambda. u \end{array}$$

vérifiants les propriétés suivantes.

- (A1) $\forall (u, v, w) \in E^3$ (u+v) + w = u + (v+w) =: u+v+w (+ est associative)
- (A2) $\exists 0_E \in E \quad \forall u \in E \quad 0_E + u = u + 0_E = u$ (+ possède un élément neutre)
- (A3) $\forall u \in E \quad \exists v \in E \quad u + v = v + u = 0_E$ (tout élément de E possède un opposé)
- (A4) $\forall (u, v) \in E^2$ u + v = v + u (+ est commutative)
- (A5) $\forall u \in E \ 1_{\mathbb{K}}.u = u$ (1_{\mathbf{K}} est neutre pour .)
- (A6) $\forall (\lambda, \mu) \in \mathbf{K}^2 \quad \forall u \in E \quad \lambda \cdot (\mu \cdot u) = (\lambda \times_{\mathbf{K}} \mu) \cdot u$ (associativité mixte)
- (A7) $\forall \lambda \in \mathbf{K} \quad \forall (u, v) \in E^2 \quad \lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$ (distributivité à droite)
- (A8) $\forall (\lambda, \mu) \in \mathbf{K}^2 \quad \forall u \in E \quad (\lambda +_{\mathbf{K}} \mu) \cdot u = \lambda \cdot u + \mu \cdot u \qquad (distributivité à gauche)$

Remarque 2. — Soit (E, +, .) un **K**-espace vectoriel. En vertu des propriétés (A1)–(A4) de la définition 1, (E, +) est un groupe abélien (ou commutatif).

PROPOSITION 3 (CONSÉQUENCES DES AXIOMES DE STRUCTURE DE K-ESPACE VECTORIEL). — $Soit(E, +, \cdot)$ un K-espace vectoriel.

- 1. L'élément 0_E est unique. Il est appelé vecteur nul de E.
- 2. Soit $u \in E$. L'élément v de E tel que $v + u = u + v = 0_E$ est unique. Il est appelé opposé de u et est noté -u.
- 3. $\forall u \in E \quad 0_{\mathbf{K}} \cdot u = 0_E$
- 4. $\forall u \in E \quad (-1_{\mathbf{K}}) \cdot u = -u$

2. QUELQUES K-ESPACES VECTORIELS USUELS

Exemple 4 (le K-espace vectoriel K^n). — Soit $n \in N^*$. L'ensemble K^n des n-uplets d'éléments de K muni de :

$$+ \left| \begin{array}{ccc} \mathbf{K}^n \times \mathbf{K}^n & \longrightarrow & \mathbf{K}^n \\ ((x_1, \dots, x_n), (y_1, \dots, y_n)) & \longmapsto & (x_1 +_{\mathbf{K}} y_1, \dots, x_n +_{\mathbf{K}} y_n) \end{array} \right|$$

et

$$| \begin{array}{ccc} \mathbf{K} \times \mathbf{K}^n & \longrightarrow & \mathbf{K}^n \\ (\lambda, (x_1, \dots, x_n)) & \longmapsto & (\lambda \times_{\mathbf{K}} x_1, \dots, \lambda \times_{\mathbf{K}} x_n) \end{array}$$

est un **K**-espace vectoriel. Le vecteur nul de \mathbf{K}^n est $0_{\mathbf{K}^n} = (0_{\mathbf{K}}, \dots, 0_{\mathbf{K}})$. L'opposé d'un vecteur $(x_1, \dots, x_n) \in \mathbf{K}^n$ est $(-x_1, \dots, -x_n)$.

Exemple 5 (le **K**-*espace vectoriel d'applications* $\mathbf{K}^{\Omega} = \mathscr{F}(\Omega, \mathbf{K})$). — Soit Ω un ensemble non vide. L'ensemble $\mathbf{K}^{\Omega} = \mathscr{F}(\Omega, \mathbf{K})$ des applications de Ω dans **K** muni de :

$$+ \left| \begin{array}{ccc} \mathbf{K}^{\Omega} \times \mathbf{K}^{\Omega} & \longrightarrow & \mathbf{K}^{\Omega} \\ (f,g) & \longmapsto & f+g \left| \begin{array}{ccc} \Omega & \longrightarrow & \mathbf{K} \\ \omega & \longmapsto & f(\omega) +_{\mathbf{K}} g(\omega) \end{array} \right. \right.$$

et

est un **K**-espace vectoriel. Le vecteur nul de \mathbf{K}^{Ω} est

$$0_{\mathbf{K}^{\Omega}} \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathbf{K} \\ \omega & \longmapsto & 0_{\mathbf{K}} \end{array}$$

L'opposé d'un vecteur $f \in \mathbf{K}^{\Omega}$ est

$$-f \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathbf{K} \\ \omega & \longmapsto & -f(\omega) \, . \end{array}$$

Exemple 6 (le K-espace vectoriel des suites $K^N = \mathscr{F}(K,N)$). — L'ensemble $K^N = \mathscr{F}(N,K)$ des suites d'éléments de K indexées par N muni de :

$$+ \ \left| \begin{array}{ccc} \mathbf{K}^{\mathbf{N}} \times \mathbf{K}^{\mathbf{N}} & \longrightarrow & \mathbf{K}^{\mathbf{N}} \\ ((u_n), (v_n)) & \longmapsto & (u_n +_{\mathbf{K}} v_n) \end{array} \right.$$

et

$$. \mid \begin{matrix} \mathbf{K} \times \mathbf{K}^{\mathbf{N}} & \longrightarrow & \mathbf{K}^{\mathbf{N}} \\ (\lambda, (u_n)) & \longmapsto & (\lambda \times_{\mathbf{K}} u_n) \end{matrix}$$

 $\text{est un }\mathbf{K}\text{-espace vectoriel. Le vecteur nul de }\mathbf{K^{N}}\text{ est }0_{\mathbf{K}^{n}}=(0_{\mathbf{K}},0_{\mathbf{K}},\ldots,0_{\mathbf{K}},\ldots)\text{. L'opposé d'un vecteur }(u_{n})\in\mathbf{K^{N}}\text{ est }(-u_{n})\text{.}$

Exemple 7 (le K*-espace vectoriel des matrices* $\mathcal{M}_{n,p}(\mathbf{K})$). — Soient n et p des entiers naturels non nuls. L'ensemble $\mathcal{M}_{n,p}(\mathbf{K})$ des matrices de format $n \times p$ à coefficients dans \mathbf{K} muni de

$$+ \left| \begin{array}{ccc} \mathcal{M}_{n,p}(\mathbf{K}) \times \mathcal{M}_{n,p}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{n,p}(\mathbf{K}) \\ \left(\left(a_{i,j} \right), \left(b_{i,j} \right) \right) & \longmapsto & \left(a_{i,j} +_{\mathbf{K}} b_{i,j} \right) \end{array} \right.$$

et

$$\cdot \mid \begin{array}{ccc} \mathbf{K} \times \mathcal{M}_{n,p}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{n,p}(\mathbf{K}) \\ \left(\lambda, \left(a_{i,j}\right)\right) & \longmapsto & \left(\lambda \times_{\mathbf{K}} a_{i,j}\right) \end{array}$$

est un **K**-espace vectoriel. Le vecteur nul de $\mathcal{M}_{n,p}(\mathbf{K})$ est la matrice de format $n \times p$ dont tous les coefficients valent $0_{\mathbf{K}}$. L'opposé d'un vecteur $(a_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$ est $(-a_{i,j})$.

Exemple 8 (le K*-espace vectoriel des polynômes à coefficients dans* K*).* — L'ensemble K[X] des polynômes à coefficients dans K muni de :

$$+ \left| \begin{array}{ccc} \mathbf{K}[X] \times \mathbf{K}[X] & \longrightarrow & \mathbf{K}[X] \\ \left(\sum\limits_{k=0}^{+\infty} a_k X^k, \sum\limits_{k=0}^{+\infty} b_k X^k \right) & \longmapsto & \sum\limits_{k=0}^{+\infty} (a_k +_{\mathbf{K}} b_k) X^k \end{array} \right|$$

et

$$\cdot \left| \begin{pmatrix} \mathbf{K} \times \mathbf{K}[X] & \longrightarrow & \mathbf{K}[X] \\ \lambda, \sum_{k=0}^{+\infty} a_k X^k \end{pmatrix} \right| \longrightarrow \sum_{k=0}^{+\infty} (\lambda \times_{\mathbf{K}} a_k) X^k$$

est un **K**-espace vectoriel. Le vecteur nul de $\mathbf{K}[X]$ est le polynôme dont tous les coefficients valent $0_{\mathbf{K}}$. L'opposé d'un vecteur $\sum_{k=0}^{+\infty} a_k X^k \in \mathbf{K}[X]$ est $\sum_{k=0}^{+\infty} (-a_k) X^k$.

§ 2. Sous-espaces vectoriels

NOTATION. — Dans toute cette partie, on fixe un **K**-espace vectoriel $(E, +, \cdot)$

1. NOTION DE SOUS-ESPACE VECTORIEL

DÉFINITION 9 (SOUS-ESPACE VECTORIEL DE *E*). — Soit *F* une partie de *E*. On dit que *F* est un sous-espace vectoriel de *E* si trois propriétés suivantes sont vérifiées.

- (A1) $0_E \in F$ (F contient le vecteur nul de E)
- (A2) $\forall (u_1, u_2) \in F^2$, $u_1 + u_2 \in F$ (F est stable par addition)
- (A3) $\forall \lambda \in \mathbf{K}$, $\forall u \in F$, $\lambda \cdot u \in F$ (F est stable par multiplication par un scalaire)

Exemple 10 (sous-espaces vectoriels triviaux de E). — Les parties $\{0_E\}$ et E de E sont des sous-espaces vectoriels de E, appelés sous-espaces vectoriels triviaux de E.

PROPOSITION 11 (CRITÈRE POUR ÊTRE UN S.E.V. DE *E***).** — Soit *F* une partie de *E*. Alors *F* est un sous-espace vectoriel de *E* si seulement si les deux propriétés suivantes sont vérifiées.

- (P1) $F \neq \emptyset$ (F contient au moins un élément)
- (P2) $\forall (\lambda_1, \lambda_2) \in \mathbb{K}^2 \quad \forall (u_1, u_2) \in F^2 \quad \lambda_1.u_1 + \lambda_2.u_2 \in F \quad (F \text{ est stable par combinaison linéaire})$

EXERCICE 12. — Démontrer que $\{(x, y, z) \in \mathbb{K}^3 : x - y + 2z = 0\}$ est un sous-espace vectoriel de \mathbb{K}^3 .

EXERCICE 13. — Justifier que $\mathscr{C}^0([0,1],\mathbf{R})$ est un sous-espace vectoriel de $\mathbf{R}^{[0,1]}$.

PROPOSITION 14 (ENSEMBLE SOLUTION D'UNE ÉQUATION LINÉAIRE HOMOGÈNE). — Soit $p \in \mathbb{N}^*$ et soit $a_1, a_2, ..., a_p$ des éléments de **K**. On considère l'équation linéaire homogène (E) définie par :

(E)
$$a_1 \cdot x_1 + a_2 \cdot x_2 + ... + a_p \cdot x_p = 0$$

d'inconnue $(x_1, ..., x_p) \in \mathbf{K}^p$. Alors l'ensemble solution de (E):

$$Sol(E) := \{(x_1, ..., x_p) \in \mathbf{K}^p : a_1 \cdot x_1 + a_2 \cdot x_2 + ... + a_p \cdot x_p = 0\}$$

est un sous-espace vectoriel de \mathbf{K}^p .

Théorème 15 (un s.e.v. de E possède une structure naturelle de K-e.v.). — Soit F un sous-espace vectoriel de E. Alors les applications

$$+_F \mid F \times F \longrightarrow F$$

 $(u, v) \longmapsto u + v$

et

$$F \mid \mathbf{K} \times F \longrightarrow F \\ (\lambda, u) \longmapsto \lambda \cdot u$$

induites par les opérations + et \cdot de E, sont bien définies et $(F, +_F, \cdot_F)$ est un K-espace vectoriel.

Remarque 16. — Le précédent théorème fournit un outil puissant, pour construire de nouveaux espaces vectoriels. ■

EXERCICE 17. — Démontrer que

$$F := \left\{ f \in \mathcal{C}^0([0,1], \mathbf{R}) : \int_0^1 f(t) \, \mathrm{d}t = 0 \right\}$$

est un sous-espace vectoriel de $\mathscr{C}([0,1],\mathbf{R})$.

2. OPÉRATIONS SUR LES SOUS-ESPACES VECTORIELS

PROPOSITION 18 (L'INTERSECTION D'UNE FAMILLE DE S.E.V. DE E **EST UN S.E.V. DE** E). — Soit $(F_i)_{i \in I}$ une famille de sous-espaces vectoriels de E. Alors

$$\bigcap_{i\in I} F_i := \{u\in E: \, \forall\, i\in I,\, u\in F_i\}$$

est un sous-espace vectoriel de E.

Remarque 19 (des réunions de sous-espaces vectoriels). — Une réunion de sous-espaces vectoriels de *E* n'est pas nécessairement un sous-espace vectoriel de *E*. Par exemple

$$F_1 := \{(x, y) \in \mathbf{R}^2 : x - y = 0\}$$
 et $F_2 := \{(x, y) \in \mathbf{R}^2 : x + y = 0\}$

sont des sous-espaces vectoriels de \mathbf{R}^2 (puisque chacun est ensemble solution d'une équation linéaire homogène d'inconnue dans \mathbf{R}^2), mais $F_1 \cup F_2$ n'est pas un sous-espace vectoriel de \mathbf{R}^2 . En effet, $F_1 \cup F_2$ n'est pas stable par addition : (1,1) et (1,-1) appartiennent à $F_1 \cup F_2$, mais (1,1)+(1,-1)=(2,0) \notin $F_1 \cup F_2$.

PROPOSITION 20 (ENSEMBLE SOLUTION D'UN SYSTÈME LINÉAIRE HOMOGÈNE). — Soient n et p est entiers naturels non nuls. Soit $(a_{i,j}) \in \operatorname{Mat}_{n,p}(\mathbb{K})$. On considère le système linéaire homogène (S) défini par :

(S)
$$\begin{cases} a_{1,1} \cdot x_1 + a_{1,2} \cdot x_2 + \dots + a_{1,p} \cdot x_p = 0 & (E_1) \\ a_{2,1} \cdot x_1 + a_{2,2} \cdot x_2 + \dots + a_{2,p} \cdot x_p = 0 & (E_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} \cdot x_1 + a_{n,2} \cdot x_2 + \dots + a_{n,p} \cdot x_p = 0 & (E_n) \end{cases}$$

d'inconnue $(x_1,...,x_p) \in \mathbb{K}^p$. Alors l'ensemble solution de (S)

$$Sol(S) := \{(x_1, ..., x_p) \in \mathbb{K}^p : \forall i \in [1, n], \ a_{i,1} \cdot x_1 + a_{i,2} \cdot x_2 + ... + a_{i,p} \cdot x_p = 0\}$$

est un sous-espace vectoriel de \mathbf{K}^p .

THÉORÈME 21 (SOMME DE DEUX S.E.V. DE E). — Soient F_1 et F_2 deux sous-espaces vectoriels de E. Soit $F_1 + F_2$ la partie de E définie par

$$F_1 + F_2 := \{u_1 + u_2 : u_1 \in F_1 \text{ et } u_2 \in F_2\}.$$

Alors

- 1. $F_1 \cup F_2 \subset F_1 + F_2$ (inclusion)
- 2. $F_1 + F_2$ est un sous-espace vectoriel de E (sous-espace vectoriel)
- 3. si G est une partie de E telle que $F_1 \cup F_2 \subset G$ et G est un sous-espace vectoriel de E, alors $F_1 + F_2 \subset G$.

Ainsi $F_1 + F_2$ est le plus petit (au sens de l'inclusion) sous-espace vectoriel de E qui contient $F_1 \cup F_2$.

TERMINOLOGIE. — La propriété 3 du Théorème 21 sera appelée propriété de minimalité de la somme.

EXERCICE 22. — Soient F_1, F_2, G des sous-espaces vectoriels de E. En utilisant, pleinement et uniquement, les 3 points du théorème précédent, établir l'équivalence, souvent utile, suivante.

$$(F_1 \subset G \text{ et } F_2 \subset G) \iff F_1 + F_2 \subset G$$

EXERCICE 23 (FIL ROUGE - PARTIE 1). — Soient

$$F_1 := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$$
 et $F_2 = \{(a, a, a) \in \mathbb{R}^3 : a \in \mathbb{R}\}.$

- 1. Justifier que F_1 et F_2 sont deux sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Démontrer que $F_1 + F_2 = \mathbf{R}^3$.

DÉFINITION 24 (DEUX S.E.V. DE E EN SOMME DIRECTE). — Soient F_1 et F_2 deux sous-espaces vectoriels de E.

1. On dit que F_1 et F_2 sont en somme directe si

$$\forall u \in F_1 + F_2 \quad \exists ! (u_1, u_2) \in F_1 \times F_2 \quad u = u_1 + u_2$$

i.e. si tout élément de $F_1 + F_2$ s'écrit de manière unique sous la forme $u_1 + u_2$ avec $u_1 \in F_1$ et $u_2 \in F_2$.

2. Si F_1 et F_2 sont en somme directe, alors on note $F_1 \oplus F_2$ le sous-espace vectoriel $F_1 + F_2$ de E.

THÉORÈME 25 (CRITÈRE POUR QUE DEUX S.E.V. DE E SOIENT EN SOMME DIRECTE). — Soient F_1 et F_2 deux sous-espaces vectoriels de $(E, +, \cdot)$. Alors F_1 et F_2 sont en somme directe si et seulement si $F_1 \cap F_2 = \{0_E\}$.

EXERCICE 26 (FIL ROUGE - PARTIE 2). — Démontrer que les sous-espaces vectoriels F_1 et F_2 de l'exercice 23 sont en somme directe.

Nous allons à présent étudier la somme d'un nombre fini de sous-espaces vectoriels, qui étend ce qui a été vu pour la somme de deux sous-espaces vectoriels. Il faut prendre garde à la généralisation du théorème 21. Le critère <u>ne mettra pas en jeu des intersections de deux sous-espaces vectoriels quelconques parmi ceux dont on prend la somme. Cf. théorème 30.</u>

DÉFINITION 27 (SOMME D'UN NOMBRE FINI DE S.E.V.). — Soit E un K-espace vectoriel. Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels de E.

$$F_1 + F_2 + \ldots + F_p = \{x_1 + x_2 + \ldots + x_p : (x_1, x_2, \ldots, x_p) \in F_1 \times F_2 \times \ldots \times F_p \}$$

La somme $F_1 + F_2 + ... + F_p$ est également notée $\sum_{i=1}^p F_i$.

Théorème 28 (Structure de la somme d'un nombre fini de s.e.v.). — Soit E un K-espace vectoriel. Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels de E. Alors $F_1 + F_2 + ... + F_p$ est un sous-espace vectoriel de E.

DÉFINITION 29 (SOMME DIRECTE D'UN NOMBRE FINI DE SOUS-ESPACES VECTORIELS). — Soit E un K-espace vectoriel. Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels de E.

1. La somme $F_1 + ... + F_p$ est dite directe si tout élément x de $F_1 + F_2 + ... + F_p$ s'écrit de manière unique sous la forme

$$x = x_1 + x_2 + \dots + x_p$$
 avec $(x_1, x_2, \dots, x_p) \in F_1 \times F_2 \dots \times F_p$.

2. L'existence de la décomposition de $x \in F_1 + F_2 + ... + F_p$ en 1 étant claire par définition de $F_1 + F_2 + ... + F_p$, seule l'unicité est à considérer. Ainsi peut-on reformuler comme suit la somme $F_1 + ... + F_p$ est directe si : pour tout $((x_1, x_2, ..., x_p), (y_1, y_2, ..., y_p) \in (F_1 \times F_2 ... \times F_p)^2$

$$x_1 + x_2 + ... + x_p = y_1 + y_2 + ... + y_p \Longrightarrow x_1 = y_1, x_2 = y_2, ..., x_p = y_p.$$

3. Si la somme $F_1 + F_2 + ... + F_p$ est directe, on la note $F_1 \oplus F_2 + \oplus + F_p$ ou $\bigoplus_{i=1}^p F_i$.

Théorème 30 (Critère pour qu'un nombre fini de s.e.v. soient en somme directe). — Soit E un K-espace vectoriel. Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels de E.

1. La somme $F_1, F_2, ..., F_p$ est directe si et seulement si la seule décomposition de 0_E sous la forme

$$0_E = x_1 + x_2 + \dots + x_p$$
 avec $(x_1, x_2, \dots, x_p) \in F_1 \times F_2 \dots \times F_p$

 $est 0_E = 0_E + 0_E + ... + 0_E.$

2. Autrement dit, la somme $F_1, F_2, ..., F_p$ est directe est directe si et seulement si pour tout $(x_1, x_2, ..., x_p \in F_1 \times F_2 ... \times F_p)$

$$x_1 + x_2 + ... + x_p = 0_E \Longrightarrow x_1 = 0_E$$
, $x_2 = 0_E$, ..., $x_p = 0_E$.

EXERCICE 31. — Soient $F_1 = \{(x, y, z) \in \mathbf{R}^3 : z = 0\}, F_2 = \{(x, y, z) \in \mathbf{R}^3 : x = y = 0\} \text{ et } F_3 = \{(x, y, z) \in \mathbf{R}^3 : x = 0 \text{ et } y = z\}.$

- 1. Justifier que F_1 , F_2 , F_3 sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Calculer $F_1 \cap F_2$, $F_2 \cap F_3$ et $F_3 \cap F_1$.
- 3. La somme $F_1 + F_2 + F_3$ est-elle directe?

EXERCICE 32 (INTERSECTION TRIVIALE ET SOMME DIRECTE: CAS GÉNÉRAL). — Soit E un K-espace vectoriel. Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels de E. Alors la somme $F_1 + F_2 + ... + F_p$ est directe si et seulement si

$$\forall i \in [1, p], \qquad F_i \cap \left(\sum_{\substack{1 \leqslant j \leqslant p \\ j \neq i}} F_j\right) = \{\mathbf{0}_E\}.$$

3. Sous-espaces vectoriels supplémentaires

DÉFINITION 33 (S.E.V. DE E **SUPPLÉMENTAIRES).** — Soient F_1 et F_2 deux sous-espaces vectoriels de E. On dit que F_1 et F_2 sont supplémentaires dans E si :

$$\forall u \in E, \exists !(u_1, u_2) \in F_1 \times F_2 \qquad u = u_1 + u_2$$

i.e. si tout élément de E s'écrit de manière unique comme somme d'un élément de F1 et d'un élément de F2.

Soit F un sous-espace vectoriel de E. Le complémentaire \overline{F} de F dans E n'est pas un supplémentaire de F dans E. En effet, $0_E \in F$, donc $0_E \notin \overline{F}$. Ainsi \overline{F} n'est pas un sous-espace vectoriel de E et ce ne peut donc être un supplémentaire de F dans E.

PROPOSITION 34 (CRITÈRE POUR QUE DEUX S.E.V. DE E **SOIENT SUPPLÉMENTAIRES).** — Soient F_1 et F_2 deux sous-espaces vectoriels de E. Les deux propriétés suivantes sont équivalentes.

- 1. F_1 et F_2 sont supplémentaires dans E.
- 2. $F_1 + F_2 = E \text{ et } F_1 \cap F_2 = \{0_E\}.$

DÉMONSTRATION. — Conséquence du théorème 25.

EXERCICE 35 (FIL ROUGE - PARTIE 3). — Les sous-espaces vectoriels F_1 et F_2 de l'exercice 23 sont supplémentaires dans \mathbb{R}^3 ?

EXERCICE 36. — On considère le sous-espace vectoriel :

$$F := \left\{ f \in \mathscr{C}^0([0,1], \mathbf{R}) : \int_0^1 f(t) \, \mathrm{d}t = 0 \right\}$$

de $\mathscr{C}^0([0,1],\mathbf{R})$. En donner un supplémentaire dans $\mathscr{C}^0([0,1],\mathbf{R})$.

THÉORÈME 37 (EXISTENCE D'UN SUPPLÉMENTAIRE POUR UN S.E.V. DE E). — Tout sous-espace vectoriel de E possède un supplémentaire dans E.

Remarque 38. — Le théorème 37 est admis pour un espace vectoriel *E* quelconque (le lemme de Zorn permet de l'établir). Cependant, lorsque l'espace vectoriel *E* est de dimension finie, nous serons en mesure de le démontrer, grâce au théorème de la base incomplète.

4. Sous-espaces vectoriels engendrés

PROPOSITION 39 (S.E.V. ENGENDRÉ PAR UNE PARTIE DE E). — Soit A une partie de E. On définit la partie Vect(A) de E par :

$$\operatorname{Vect}(A) := \bigcap_{\substack{F \, s.e.v. \, de \, E \\ tel \, que \, A \subset F}} F.$$

Alors

- 1. $A \subset Vect(A)$ (inclusion)
- 2. Vect(A) est un sous-espace vectoriel de E (sous-espace vectoriel)
- 3. si G est une partie de E telle que
 - (a) $A \subset G$ (inclusion)
 - (b) G est un sous-espace vectoriel de E (sous-espace vectoriel)

alors $Vect(A) \subset G$.

En d'autres termes, Vect(A) est le plus petit (au sens de l'inclusion) sous-espace vectoriel de E contenant A. Le sous-espace vectoriel de E, noté Vect(A), est appelé sous-espace vectoriel de E engendré par A.

TERMINOLOGIE. — La propriété 3 du Théorème 39 sera appelée propriété de minimalité d'un sous-espace vectoriel engendré.

Théorème 40 (description du s.e.v. engendré par une partie finie de E). — Soient $u_1, ..., u_n$ des vecteurs de E. Alors $Vect(\{u_1, ..., u_n\})$ est l'ensemble des combinaisons linéaires des vecteurs $u_1, ..., u_n$, i.e. :

$$\operatorname{Vect}(\{u_1, \dots, u_n\}) = \left\{\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 + \dots + \lambda_n \cdot u_n : (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbf{K}^n\right\}$$
$$= \left\{\sum_{i=1}^n \lambda_i \cdot u_i : (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbf{K}^n\right\}.$$

Théorème 41 (description du s.e.v. engendré par une partie quelconque de de E). — Soit A une partie non vide de E. Alors:

$$\operatorname{Vect}(A) = \bigcup_{n \in \mathbb{N}^*} \left\{ \sum_{k=1}^n \lambda_k \cdot a_k : (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \ et(a_1, \dots, a_n) \in A^n \right\}.$$

EXERCICE 42. — Comparer les deux sous-espaces vectoriels de R⁴

$$F := \text{Vect}((-1,1,2,-2),(1,2,3,-6)) \qquad \text{et} \qquad G := \{(x,y,z,t) \in \mathbb{R}^4 : x+y+z+t=0\}.$$

EXERCICE 43. — Soit $u_1 := (1,1,2)$, $u_2 := (2,2,1)$, $v_1 = (1,1,1)$ et $v_2 := (1,1,-1)$. Démontrer que les sous-espaces vectoriels $Vect(\{u_1,u_2\})$ et $Vect(\{v_1,v_2\})$ de \mathbb{R}^3 sont égaux.

THÉORÈME 44 (SOMME DE DEUX SOUS-ESPACES VECTORIELS ENGENDRÉS). — Soient $u_1, ..., u_n$ et $v_1, ..., v_m$ des vecteurs de E. Alors:

$$Vect({u_1,...,u_n}) + Vect({v_1,...,v_m}) = Vect({u_1,...,u_n,v_1,...,v_m})$$
.

§ 3. Familles remarquables finies

NOTATION. — Dans cette partie, on fixe $(E, +, \cdot)$ un **K**-espace vectoriel.

1. FAMILLES GÉNÉRATRICES FINIES

DÉFINITION 45 (FAMILLE GÉNÉRATRICE DE E). — Soit $u_1, ..., u_n$ des vecteurs de E. La famille $(u_1, ..., u_n)$ est dite génératrice de E si Vect $(\{u_1, ..., u_n\}) = E$.

PROPOSITION 46 (REFORMULATION DE LA DÉFINITION DE FAMILLE GÉNÉRATRICE DE E**).** — Soit $u_1, ..., u_n$ des vecteurs de E. La famille $(u_1, ..., u_n)$ est dite génératrice de E si et seulement si tout vecteur de E peut s'écrire comme combinaison linéaire de $u_1, ..., u_n$.

EXERCICE 47. — Démontrer que $\{(x, y, z, t) \in \mathbb{K}^4 : x - y + z = 0, x + y - 2t = 0, x + z - 2t = 0\}$ est un sous-espace de \mathbb{K}^4 et en donner une famille génératrice.

EXERCICE 48. — Pour tout $n \in \mathbb{N}$, on pose $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X] : \deg(P) \leq n\}$. Démontrer que $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$ et en donner une famille génératrice.

PROPOSITION 49 (SUR-FAMILLE D'UNE FAMILLE GÉNÉRATRICE DE *E*). — Toute sur-famille d'une famille génératrice de *E* est génératrice de *E*.

2. FAMILLES LIBRES FINIES

DÉFINITION 50 (FAMILLE LIBRE ET FAMILLE LIÉE DE E). — Soit $u_1, ..., u_n$ des vecteurs de E. La famille $(u_1, ..., u_n)$ est dite libre si et seulement si :

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbf{K}^n$$
 $\lambda_1.u_1 + \dots + \lambda_n.u_n = 0_E \implies \lambda_1 = \dots = \lambda_n = 0_{\mathbf{K}}.$

Si la famille n'est pas libre, elle est dite liée.

EXERCICE 51. — Énoncer et démontrer une condition suffisante qui assure la liberté d'une famille finie de polynômes de K[X].

EXERCICE 52. — Soit $a \in \mathbb{C}$. Donner une condition nécessaire et suffisante sur a pour que la famille :

$$((1, a, a^2), (a, a^2, 1), (a^2, 1, a))$$

soit une famille libre de \mathbb{C}^3 .

PROPOSITION 53 (SOUS-FAMILLE D'UNE FAMILLE LIBRE DE E). — Toute sous-famille d'une famille libre est libre.

3. BASES FINIES

DÉFINITION 54 (BASE DE E). — Une base de E est une famille de vecteurs de E qui est à la fois libre et génératrice de E.

EXERCICE 55 (BASES CANONIQUES D'ESPACES USUELS). — Soient n et p des nombres entiers naturels non nuls.

- 1. Donner la base canonique de \mathbf{K}^n .
- 2. Donner la base canonique de $\mathbf{K}_n[X]$.
- 3. Donner la base canonique de $\mathcal{M}_{n,p}(\mathbf{K})$.

EXERCICE 56. — Justifier que $\{M \in \mathcal{M}_n(\mathbf{K}) : M = {}^tM\}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{K})$, puis en donner une base.

EXERCICE 57 (COORDONNÉES D'UN VECTEUR DANS UNE BASE). —

1. Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base d'un **K**-espace vectoriel E. Soit $x \in E$. Justifier que :

$$\exists ! \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{K}), \quad x = x_1 \cdot e_1 + x_2 \cdot e_2 + \dots + x_n \cdot e_n.$$

 $\exists ! \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{K}), \quad x = x_1 \cdot e_1 + x_2 \cdot e_2 + \ldots + x_n \cdot e_n.$ Ce vecteur colonne $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ est appelé vecteur des coordonnées de } x \text{ dans la base } \mathcal{B}.$

- 2. Soit $x = (x_1, ..., x_n) \in \mathbf{K}^n$. Expliciter les coordonnées de x dans la base canonique de \mathbf{K}^n .
- 3. Soit $P = a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n \in \mathbf{K}_n[X]$. Expliciter les coordonnées de P dans la base canonique de $\mathbf{K}_n[X]$.
- 4. Soit $A = (a_{i,j})_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} \in \mathcal{M}_{n,p}(\mathbf{K})$. Expliciter les coordonnées de A dans la base canonique de $\mathcal{M}_{n,p}(\mathbf{K})$.

Théorème 58 (construction de bases adaptées à une décomposition en somme directe). — Soit E un **K**-espace vectoriel. Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels de E en somme directe. Pour tout $i \in [1, p]$, donnons nous:

$$\mathscr{B}_i := (e_{i,1}, \ldots, e_{i,n_i})$$

une base de F_i . Alors:

$$\mathscr{B} := \mathscr{B}_1 \# \dots \# \mathscr{B}_p = \left(e_{1,1}, e_{1,2}, \dots, e_{1,n_1}, \dots, e_{p,1}, e_{p,2}, \dots, e_{p,n_p}\right)$$

est une base de $F_1 \oplus F_2 \oplus ... \oplus F_p$, que l'on appelle base adaptée à $F_1 \oplus F_2 \oplus ... \oplus F_p$.

§ 4. FAMILLES REMARQUABLES

NOTATION. — Dans cette partie, on fixe $(E, +, \cdot)$ un **K**-espace vectoriel et *I* désigne un ensemble non vide.

1. COMBINAISON LINÉAIRE D'UNE FAMILLE DE VECTEURS

DÉFINITION 59 (FAMILLE PRESQUE NULLE DE SCALAIRES). —

1. On dit qu'une famille de scalaires $(\lambda_i)_{i \in I} \in \mathbf{K}^I$ indexée par I est presque nulle si son support

$$supp((\lambda_i)_{i\in I}):=\{i\in I:\lambda_i\neq 0\}$$

est fini.

2. L'ensemble des familles de scalaires indexées par I, qui sont presque nulles, est noté $\mathbf{K}^{(I)}$.

PROPOSITION 60 (STRUCTURE DE $\mathbf{K}^{(I)}$). — $\mathbf{K}^{(I)}$ est un sous-espace vectoriel de \mathbf{K}^{I} .

DÉFINITION 61 (COMBINAISON LINÉAIRE D'UNE FAMILLE DE VECTEURS NON NÉCESSAIREMENT FINIE). — Soit $(u_i)_{i \in I}$ une famille de vecteurs de E indexée par I. Un vecteur u de E est dit combinaison linéaire de $(u_i)_{i \in I}$ si il existe $(\lambda_i)_{i \in I} \in \mathbf{K}^{(I)}$ tel que

$$u = \sum_{i \in I} \lambda_i \cdot u_i := \underbrace{\sum_{i \in supp((\lambda_i)_{i \in I})} \lambda_i \cdot u_i}_{somme \ finie}.$$

ou de manière équivalente, s'il existe une partie finie J de I et $(\lambda_j)_{j\in J}$ tel que $u=\sum_{i\in I}\lambda_j\cdot u_j$.

Remarque 62 (as particulier des familles indexées par N ou Z). —

- 1. Soit $(u_i)_{i \in \mathbb{N}}$ une famille de vecteurs de E. u est combinaison linéaire de $(u_i)_{i \in \mathbb{N}}$ si et seulement si il existe $N \in \mathbb{N}$ et $(\lambda_i)_{i \in [\![0,N]\!]} \in \mathbb{K}^{N+1}$ tel que $u = \sum_{i=0}^N \lambda_i u_i$. En effet tout partie finie de \mathbb{N} est incluse dans un ensemble $[\![0,N]\!]$ pour un certain $N \in \mathbb{N}$.
- 2. Soit $(u_i)_{i \in \mathbb{Z}}$ une famille de vecteurs de E. u est combinaison linéaire de $(u_i)_{i \in \mathbb{Z}}$ si et seulement si il existe $N \in \mathbb{N}$ et $(\lambda_i)_{i \in [\![-N,N]\!]} \in \mathbb{K}^{2N+1}$ tel que $u = \sum_{i=-N}^N \lambda_i u_i$. En effet tout partie finie de \mathbb{Z} est incluse dans un ensemble $[\![-N,N]\!]$ pour un certain $N \in \mathbb{N}$.

2. FAMILLES GÉNÉRATRICES

DÉFINITION 63 (FAMILLE GÉNÉRATRICE). — Soit $(u_i)_{i \in I}$ une famille de vecteurs de E indexée par I. La famille $(u_i)_{i \in I}$ est dite génératrice de E si tout élément de E est combinaison linéaire de $(u_i)_{i \in I}$, i.e. si

$$\forall u \in E \quad \exists (\lambda_i)_{i \in I} \in \mathbf{K}^{(I)} \quad x = \sum_{i \in I} \lambda_i . u_i.$$

Remarque 64 (reformulation de la notion de famille génératrice). — Une famille $(u_i)_{i \in I}$ une famille de vecteurs de E est génératrice de E si et seulement si tout vecteur de E s'écrit comme combinaison linéaire d'un nombre fini de vecteurs u_i , où $i \in I$, i.e. si

$$\bigcup_{J \text{ finie } \subset I} \operatorname{Vect}\left(\left(u_{j}\right)_{j \in J}\right) = E.$$

EXERCICE 65. — Reformuler la notion de famille génératrice dans le cas $I = \mathbf{N}$ et dans le cas $I = \mathbf{Z}$.

Exemple 66. — La famille $(X^n)_{n \in \mathbb{N}}$ est génératrice de $\mathbb{K}[X]$.

3. FAMILLES LIBRES

DÉFINITION 67 (FAMILLE LIBRE ET FAMILLE LIÉE). — Soit E un K-espace vectoriel. Soit $(u_i)_{i \in I}$ une famille de vecteurs de E indexée par I.

1. La famille $(u_i)_{i \in I}$ est dite libre si toute combinaison linéaire des $(u_i)_{i \in I}$ qui est nulle a tous ses coefficients nuls, i.e.

$$\left(\forall (\lambda_i)_{i\in I} \in \mathbf{K}^{(I)} \quad \sum_{i\in I} \lambda_i.u_i = 0_E\right) \Longrightarrow (\forall i\in I \quad \lambda_i = 0_{\mathbf{K}}).$$

2. Si la famille $(u_i)_{i \in I}$ n'est pas libre, elle est dite liée.

Exemple 68. — La famille $(X^n)_{n \in \mathbb{N}}$ d'éléments de $\mathbb{K}[X]$ est libre.

Remarque 69 (reformulation de la notion de famille libre). — Une famille $(u_i)_{i \in I}$ une famille de vecteurs de E est libre si et seulement si toute combinaison linéaire finie de vecteurs u_i , $i \in I$, qui est nulle tous ses coefficients nuls, i.e. si et seulement si

 $\forall J \text{ finie } \subset I \qquad (u_i)_{i \in J} \text{ est libre.}$

EXERCICE 70. — Reformuler la notion de famille génératrice dans le cas $I = \mathbf{N}$ et dans le cas $I = \mathbf{Z}$.

Remarque 71 (reformulation de la notion de famille liée). — Une famille $(u_i)_{i \in I}$ une famille de vecteurs de E est liée si et seulement si un des vecteurs de la famille $(u_i)_{i \in I}$ est combinaison linéaire \underline{des} autres, i.e. s'il existe $i \in I$ et I finie $\subseteq I$ ne contenant pas i tel que u_i est combinaison linéaire de $(u_i)_{i \in I}$.

4. BASES

DÉFINITION 72 (BASE). — Une famille $(u_i)_{i \in I}$ une famille de vecteurs de E est appelée base de E si et seulement si elle est libre et génératrice de E.

Exemple 73. — Par définition de K[X], la famille $(X^n)_{n \in \mathbb{N}}$ est une base de K[X].

EXERCICE 74. — Soit $(a_n)_{n \in \mathbb{N}}$ une famille de réels deux à deux distincts. Pour tout $n \in \mathbb{N}$, on pose

$$f_n \mid \mathbf{R} \longrightarrow \mathbf{R}$$

 $x \longmapsto e^{a_n x}$.

La famille $(f_n)_{n \in \mathbb{N}}$ est-elle libre dans $\mathbb{R}^{\mathbb{R}}$?

EXERCICE 75. — Soit $(a_p)_{p \in \mathbb{Z}}$ une famille de réels deux à deux distincts. La famille $((a_p^n)_{n \in \mathbb{N}})_{p \in \mathbb{Z}}$ est-elle libre dans $\mathbb{R}^{\mathbb{N}}$?

§ 5. DIMENSION FINIE

NOTATION. — Dans cette partie, on fixe $(E, +, \cdot)$ un **K**-espace vectoriel.

NOTATION. — Si $(u_1,...,u_n)$ est une famille de vecteurs de E, la famille :

$$(u_1,\ldots,\widehat{u_i},\ldots,u_n)$$

désigne la famille $(u_1, ..., u_n)$ privée du vecteur u_i .

1. ESPACE VECTORIEL DE DIMENSION FINIE ET THÉORÈME DE LA BASE EXTRAITE

DÉFINITION 76 (K-E.v. DE DIMENSION FINIE). — On dit que E est de dimension finie s'il possède une famille génératrice finie.

LEMME 77 (CLÉ POUR LE THÉORÈME DE LA BASE EXTRAITE). — Soit $(u_1,...,u_n)$ une famille de vecteurs de E, qui est génératrice de E. On suppose qu'il existe $i \in [1,n]$, tel que

$$u_i \in \text{Vect}(\{u_1, \dots, \widehat{u_i}, \dots, u_n\})$$

i.e. tel que u_i est combinaison linéaire des autres vecteurs de la famille $(u_1,...,u_n)$. Alors la famille $(u_1,...,\widehat{u_i},...,u_n)$ est génératrice de E.

DÉMONSTRATION. — Soit $x \in E$. Puisque la famille (u_1, \ldots, u_n) engendre E, il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbf{K}^n$ tel que

$$x = \sum_{j=1}^{n} \lambda_j u_j = \left(\sum_{j=1, j \neq i}^{n} \lambda_j u_j\right) + \lambda_i u_i.$$

 $\text{Clairement, } \sum_{j=1, j \neq i}^{n} \lambda_{j} u_{j} \in \text{Vect}(\{u_{1}, \dots, \widehat{u_{i}}, \dots, u_{n}\}). \text{ Comme } u_{i} \in \text{Vect}(\{u_{1}, \dots, \widehat{u_{i}}, \dots, u_{n}\}), \lambda_{i} u_{i} \in \text{Vect}(\{u_{1}, \dots, \widehat{u_{i}}, \dots, u_{n}\}).$

Ainsi $x \in \text{Vect}(\{u_1, ..., \widehat{u_i}, ..., u_n\})$, comme somme de deux éléments de ce sous-espace vectoriel de E. Ceci étant vrai pour un $x \in E$ quelconque, il vient :

$$E \subset \text{Vect}(\{u_1,\ldots,\widehat{u_i},\ldots,u_n\})$$
.

L'inclusion réciproque est triviale.

Théorème 78 (Base extraite et existence d'une base en dimension finie). — Supposons que E est non réduit à $\{0_E\}$ et de dimension finie. Soit (u_1, \ldots, u_n) une famille génératrice de E.

- 1. On peut extraire de la famille $(u_1, ..., u_n)$ une sous-famille qui est une base de E.
- 2. En particulier E possède une base (finie).

DÉMONSTRATION. — Seule la première assertion requiert une preuve. Nous raisonnons par récurrence sur le nombre n d'éléments que possède la famille génératrice donnée. Pour tout $n \in \mathbb{N}^*$, notons $\mathscr{P}(n)$ le prédicat suivant :

- « De toute famille génératrice de n vecteurs de E, on peut extraire une base de E. »
- *Initialisation* à n = 1. Soit (u_1) une famille génératrice de E. Alors $u_1 \neq 0_E$, sinon $E = \text{Vect}(\{0_E\}) = \{0_E\}$, ce qui est contraire à une des hypothèses. Par suite (u_1) est libre. C'est donc une base de E.
- *Hérédité*. Supposons que $\mathcal{P}(n)$ soit vraie pour un entier $n \in \mathbb{N}^*$ fixé. Soit (u_1, \dots, u_{n+1}) une famille génératrice de E, formée de n+1 vecteurs.
 - Si $(u_1,...,u_{n+1})$ est libre, alors c'est une base de E et la propriété $\mathcal{P}(n+1)$ est établie.
 - Sinon $(u_1,...,u_{n+1})$ est liée et donc un des vecteurs de cette famille est combinaison linéaire des autres. Formellement, il existe $i \in [1,n+1]$, tel que $u_i \in \text{Vect}(\{u_1,...,\widehat{u_i},...,u_{n+1}\})$. D'après le Lemme 77, la famille $(u_1,...,\widehat{u_i},...,u_{n+1})$, extraite de $(u_1,...,u_{n+1})$, est génératrice de E. Comme elle possède n vecteurs, on peut lui appliquer l'hypothèse de récurrence $\mathscr{P}(n)$ pour conclure.

2. THÉORÈME DE LA BASE INCOMPLÈTE

LEMME 79 (CLÉ POUR LE THÉORÈME DE LA BASE INCOMPLÈTE). — Soit $(u_1,...,u_n)$ une famille de vecteurs de E, qui est libre. Soit $v \in E$ tel que $v \notin \text{Vect}(\{u_1,...,u_n\})$. Alors la famille $(u_1,...,u_n,v)$ est libre.

DÉMONSTRATION. — Soit $(\lambda_1, ..., \lambda_n, \mu) \in \mathbf{K}^{n+1}$ tel que

$$(\star) \qquad \left(\sum_{i=1}^n \lambda_i u_i\right) + \mu v = 0_E.$$

- Démontrons que $\mu=0$, en raisonnant par l'absurde. Si $\mu\neq 0$, alors $v=\sum_{i=1}^n\left(-\frac{\lambda_i}{\mu}\right)u_i\in \mathrm{Vect}(\{u_1,\ldots,u_n\})$, ce qui contredit une des hypothèses.
- Comme $\mu = 0$, l'identité (\star) se réécrit $\sum_{i=1}^n \lambda_i u_i = 0_E$. La famille (u_1, \dots, u_n) étant libre, il vient $\lambda_1 = \dots = \lambda_n = 0$.

THÉORÈME 80 (BASE INCOMPLÈTE). — Supposons que E possède une base $(e_1, ..., e_n)$. Soit $(u_1, ..., u_p)$ une famille libre de vecteurs de E. On peut adjoindre à la famille $(u_1, ..., u_p)$ un certain nombre des vecteurs $e_1, ..., e_n$ (éventuellement aucun) de manière à ce que la nouvelle famille ainsi obtenue soit une base de E.

DÉMONSTRATION. — On raisonne par récurrence généralisée finie sur le nombre q de vecteurs de la base $(e_1, ..., e_n)$ qui n'appartiennent pas au sous-espace vectoriel engendré par la famille libre donnée. Pour tout $q \in [0, n]$, notons $\mathcal{P}(q)$ le prédicat suivant :

si q des vecteurs de la base (e_1,\ldots,e_n) n'appartiennent pas au sous-espace vectoriel engendré une famille libre donnée, alors on peut adjoindre à cette famille libre donnée un certain nombre des vecteurs e_1,\ldots,e_n (éventuellement aucun) de manière à ce que la nouvelle famille ainsi obtenue soit une base de E.

• *Initialisation* à q = 0. Soit $(u_1, ..., u_p)$ une famille libre de vecteurs de E telle que tous les vecteurs $e_1, ..., e_n$ appartiennent à Vect $(\{u_1, ..., u_p\})$ (i.e. telle que q = 0). Par minimalité du sous-espace engendré Vect $(\{u_1, ..., u_p\})$, il vient

$$E = \text{Vect}(\lbrace e_1, \dots, e_n \rbrace) \subset \text{Vect}(\lbrace u_1, \dots, u_p \rbrace) \subset E.$$

Par suite, $(u_1, ..., u_p)$ est génératrice de E. C'est donc une base de E, puisque cette famille est supposée libre par hypothèse.

• *Hérédité*. Supposons que $\mathcal{P}(q')$ soit vraie pour tous les entiers $q' \in [0, q]$, où $q \in [0, n-1]$ est fixé. Soit (u_1, \ldots, u_p) une famille libre de vecteurs de E telle que q+1 vecteurs de la base (e_1, \ldots, e_n) n'appartiennent pas à $\text{Vect}(\{u_1, \ldots, u_p\})$. Quitte à réindexer les vecteurs de la base (e_1, \ldots, e_n) , on peut supposer que

$$e_1, \dots, e_q, e_{q+1} \notin \operatorname{Vect}(\{u_1, \dots, u_p\})$$
 et $e_{q+2}, \dots, e_n \in \operatorname{Vect}(\{u_1, \dots, u_p\})$.

Comme $e_{q+1} \notin \text{Vect}(\{u_1, ..., u_p\})$, le Lemme 79 nous livre la liberté de la famille $(u_1, ..., u_p, e_{q+1})$. Nous avons

$$e_{q+1} \in \text{Vect}(\{u_1, \dots, u_p, e_{q+1}\})$$

et

$$e_{a+2},...,e_n \in \text{Vect}(\{u_1,...,u_p\}) \subset \text{Vect}(\{u_1,...,u_p,e_{a+1}\}).$$

Par suite le nombre q' de vecteurs de la base (e_1,\ldots,e_n) qui n'appartiennent pas à $\text{Vect}(\{u_1,\ldots,u_p,e_{q+1}\})$ est inférieur ou égal à q. On applique alors l'hypothèse de récurrence $\mathscr{P}(q')$ à la famille libre (u_1,\ldots,u_p,e_{q+1}) , obtenue en adjoignant à (u_1,\ldots,u_p) un des vecteurs de la base (e_1,\ldots,e_n) , pour conclure.

Remarque 81. — Dans la preuve du théorème de la base incomplète, seul le caractère générateur de E de la famille (e_1, \ldots, e_n) nous a été utile. Le résultat est donc encore valide si l'on suppose la famille (e_1, \ldots, e_n) seulement génératrice de E.

3. CARDINAUX DES FAMILLES REMARQUABLES ET NOTION DE DIMENSION

Lemme 82 (CLÉ SUR LES CARDINAUX DES FAMILLES REMARQUABLES). — Soit $(e_1,...,e_n)$ une famille libre de E et soit $(f_1,...,f_m)$ une famille génératrice de E. Alors $n \le m$.

DÉMONSTRATION. — Pour tout $m \in \mathbb{N}^*$, on définit $\mathcal{P}(m)$ comme étant l'assertion :

$$\forall (f_1, ..., f_m) \in E^m, \forall n \in \mathbb{N}^*, \forall (e_1, ..., e_n) \in \text{Vect}(\{f_1, ..., f_m\})^n, (e_1, ..., e_n) \text{ libre} \implies n \leqslant m$$

On démontre que $\mathcal{P}(m)$ est vraie pour tout $m \in \mathbb{N}^*$.

L'assertion du Lemme 82 en découle, puisque si $(f_1,...,f_m)$ est une famille génératrice de E, alors $Vect(\{f_1,...,f_m\})$ = E par définition même.

Remarquons que pour tout $m \in \mathbb{N}^*$, $\mathscr{P}(m)$ est équivalente à :

$$\forall \left(f_1, \dots, f_m\right) \in E^m, \quad \forall \ n \in \mathbf{N}^*, \quad \forall \left(e_1, \dots, e_n\right) \in \mathrm{Vect}\left(\left\{f_1, \dots, f_m\right\}\right)^n, \qquad n > m \implies (e_1, \dots, e_n) \text{ liée}$$

par contraposition.

• *Initialisation* à m = 1. Soit f_1 un vecteur de E, soit $n \in \mathbb{N}^*$, soit $(e_1, ..., e_n) \in \text{Vect}(\{f_1\})^n$. On suppose $n \ge 2$. Démontrons que la famille $(e_1, ..., e_n)$ est liée. Pour cela, il suffit d'établir que la famille (e_1, e_2) est liée.

Il existe $(\lambda_1, \lambda_2) \in \mathbf{K}^2$ tel que $e_1 = \lambda_1 f_1$ et $e_2 = \lambda_2 f_1$.

– Si $\lambda_1 = 0$, alors $e_1 = 0_E$ et:

$$1.e_1 + 0.e_2 = 0_E$$

– Si $\lambda_1 \neq 0$, alors $e_2 = \frac{\lambda_2}{\lambda_1} e_1$ et:

$$-\lambda_2 e_1 + \underbrace{\lambda_1}_{\neq 0} e_2 = 0_E$$

Dans les deux cas, la famille (e_1, e_2) est liée.

• *Hérédité*. Supposons $\mathcal{P}(m)$ vraie pour un $m \in \mathbb{N}^*$ fixé. Soit $(f_1, ..., f_m, f_{m+1}) \in E^{m+1}$, soit $n \in \mathbb{N}^*$ soit $(e_1, ..., e_n) \in \text{Vect}(\{f_1, ..., f_m, f_{m+1}\})^n$. On suppose n > m+1. Démontrons que la famille $(e_1, ..., e_n)$ est liée.

Pour tout $i \in [1, n]$, il existe $(\lambda_{i,1}, \dots, \lambda_{i,m}, \lambda_{i,m+1}) \in \mathbf{K}^{m+1}$ tel que :

$$e_i = \sum_{j=1}^{m+1} \lambda_{i,j} f_j = \sum_{j=1}^{m} \lambda_{i,j} f_j + \lambda_{i,m+1} f_{m+1}$$

$$\in \text{Vect}(\{f_1, \dots, f_m\})$$

- Si $\lambda_{1,m+1} = \ldots = \lambda_{n,m+1} = 0$, alors $(e_1,\ldots,e_n) \in \text{Vect}(\{f_1,\ldots,f_m\})^n$. De n > m+1 > m et de $\mathcal{P}(m)$, on déduit que la famille (e_1,\ldots,e_n) est liée.
- − Si au moins un des scalaires $\lambda_{1,m+1},...,\lambda_{n,m+1}$ est non nul, alors quitte à renuméroter les vecteurs $e_1,...,e_n$ on peut supposer $\lambda_{n,m+1} \neq 0$.

Pour tout $i \in [1, n-1]$, on pose :

$$e'_{i} = e_{i} - \frac{\lambda_{i,m+1}}{\lambda_{n,m+1}} e_{n} = \sum_{j=1}^{m} \lambda_{i,j} f_{j} - \sum_{j=1}^{m} \lambda_{n,j} \frac{\lambda_{i,m+1}}{\lambda_{n,m+1}} f_{j} \in \text{Vect}(\{f_{1}, \dots, f_{m}\})$$

Alors $\left(e_1',\ldots,e_{n-1}'\right)\in \operatorname{Vect}\left(\left\{f_1,\ldots,f_m\right\}\right)^{n-1}$. De n-1>m (qui découle de n>m+1) et de $\mathscr{P}(m)$, on déduit que la famille $\left(e_1',\ldots,e_{n-1}'\right)$ est liée.

Donc il existe des scalaires μ_1, \dots, μ_{n-1} non tous nuls tels que :

$$0_E = \sum_{i=1}^{n-1} \mu_i e_i' = \sum_{i=1}^{n-1} \mu_i e_i - \left(\sum_{i=1}^{n-1} \mu_i \frac{\lambda_{i,m+1}}{\lambda_{n,m+1}}\right) e_n$$

La famille $(e_1, ..., e_n)$ est donc également liée.

THÉORÈME 83 (CARDINAL DES BASES). — Supposons que E est de dimension finie. Alors toutes les bases de E ont le même cardinal.

DÉMONSTRATION. — C'est une conséquence directe du lemme 82.

DÉFINITION 84 (DIMENSION). — Supposons que E est de dimension finie. Le cardinal commun de toutes les bases de E est appelé dimension de E. On le note dim (E).

Exemple 85 (dimension de quelques K-espaces vectoriels usuels). — Soient n et p des entiers naturels non nuls.

- 1. $\dim(\mathbf{K}^n) = n$
- 2. $\dim(\mathbf{K}_n[X]) = n + 1$
- 3. $\dim(\mathcal{M}_{n,p}(\mathbf{K})) = np$
- 4. La dimension de l'espace vectoriel des matrices symétriques $n \times n$ à coefficients dans **K** est $\frac{n(n+1)}{2}$.

Théorème 86 (dimension et cardinal de familles remarquables). — Supposons que E est de dimension finie. Soit $(u_1, ..., u_n)$ une famille de vecteurs de E.

- 1. Supposons $(u_1, ..., u_n)$ génératrice de E.
 - (a) Alors dim $(E) \leq n$.
 - (b) Si $n = \dim(E)$, alors $(u_1, ..., u_n)$ est de plus libre. C'est donc une base de E.
- 2. Supposons $(u_1, ..., u_n)$ libre.
 - (a) Alors $n \leq \dim(E)$.
 - (b) $Si \ n = dim(E)$, $alors(u_1, ..., u_n)$ est de plus génératrice de E. C'est donc une base de E.

DÉMONSTRATION. —

- 1. Supposons $(u_1, ..., u_n)$ génératrice de E.
 - (a) C'est une conséquence du lemme 82.
 - (b) Supposons que $n = \dim(E)$. En appliquant le théorème de la base extraite à la famille $(u_1, ..., u_n)$ génératrice de E, il vient qu'il existe une sous-famille de $(u_1, ..., u_n)$ qui est une base de E.

Si cette sous-famille n'est pas la famille $(u_1, ..., u_n)$ elle-même, alors on trouve une base de E qui a un cardinal strictement plus petit que la dimension de E, ce qui contredit l'égalité des cardinaux de toutes les bases de E (théorème 83).

Donc la sous-famille qui est une base de E, obtenue par application du théorème de la base extraite, est la famille (u_1, \ldots, u_n) elle-même. La famille (u_1, \ldots, u_n) est donc une base de E.

- 2. Supposons $(u_1, ..., u_n)$ libre.
 - (a) C'est une conséquence du lemme 82.
 - (b) Supposons que $n = \dim(E)$. En appliquant le théorème de la base incomplète à $(u_1, ..., u_n)$, on obtient une sur-famille de $(u_1, ..., u_n)$ qui est une base de E.

Si cette sur-famille n'est pas la famille $(u_1, ..., u_n)$ elle-même, alors on trouve une base de E qui a un cardinal strictement plus grand que la dimension de E, ce qui contredit l'égalité des cardinaux de toutes les bases de E (théorème 83).

Donc la sur-famille qui est une base de E, obtenue par le théorème de la base incomplète, est la famille $(u_1, ..., u_n)$ elle-même. La famille $(u_1, ..., u_n)$ est donc une base de E.

4. DIMENSION ET SOUS-ESPACES VECTORIELS

THÉORÈME 87 (DIMENSION ET S.E.V.). — Supposons que E est de dimension finie. Soit F un sous-espace vectoriel de E. Alors

- 1. F est de dimension finie;
- 2. $\dim(F) \leq \dim(E)$.

DÉMONSTRATION. —

- 1. Raisonnons par l'absurde. Supposons *F* n'est pas de dimension finie, i.e. qu'aucune famille finie de vecteurs de *F* n'engendre *F*. On va montrer qu'on peut, sous cette hypothèse, construire des familles libres de vecteurs de *F*, arbitrairement grandes.
 - F n'étant pas de dimension finie, il n'est pas réduit à $\{0_E\}$ (en effet (0_E) est une famille génératrice de $\{0_E\}$). Soit donc u_1 un vecteur non nul de F. La famille (u_1) est une famille libre de vecteur(s) de F.
 - Soit $p \in \mathbb{N}^*$. Supposons construit des vecteurs (u_1, \dots, u_p) de F, qui forment une famille libre. Puisque (u_1, \dots, u_p) n'est pas génératrice de F, il existe $u_{p+1} \in F \setminus \text{Vect}(\{u_1, \dots, u_p\})$. Par le lemme 4.84, la famille $(u_1, \dots, u_p, u_{p+1})$ est une famille libre de vecteurs de F.

Ainsi construit donc, par récurrence, des familles libres de vecteurs de F de cardinaux $p \ge 1$ quelconque. En particulier pour $p = \dim(E) + 1$. L'espace vectoriel E, de dimension finie $\dim(E)$, contient donc une famille libre de cardinal $\dim(E) + 1$, ce qui contredit l'assertion 2.(a) du Théorème 86.

2. Une base de F est en particulier une famille libre de E. Par le théorème 86, il vient donc dim $(F) \leq \dim(E)$.

EXERCICE 88. — Soit $\lambda \in \mathbf{K}$. Justifier que

$$F_{\lambda} := \{(x, y, z) \in \mathbf{K}^3 : \lambda x + y + z = 0, x + \lambda y + z = 0, x + y + \lambda z = 0\}$$

est un sous-espace vectoriel de \mathbf{K}^3 , puis déterminer sa dimension.

EXERCICE 89. — Justifier que

$$F := \{ P \in \mathbf{C}_3[X] \ : \ P(1) = P(-1) = 0 \}$$

est un sous-espace vectoriel de $C_3[X]$, puis déterminer sa dimension.

THÉORÈME 90 (CRITÈRE D'ÉGALITÉ DE DEUX S.E.V.). — Supposons que E est de dimension finie. Soient F et G deux sous-espaces vectoriels de E tels que $F \subset G$.

- 1. $\dim(F) \leq \dim(G)$.
- 2. $Si \dim(F) = \dim(G)$, alors F = G.

DÉMONSTRATION. —

- 1. D'après les hypothèses, F peut-être vu comme un sous-espace vectoriel de G. Alors l'inégalité dim $(F) \leq \dim(G)$ résulte du théorème 87.
- 2. Supposons $\dim(F) = \dim(G) =: d$. Soit (e_1, \dots, e_d) une base de F. On peut considérer cette famille comme une famille libre de G. Puisqu'elle a le même cardinal que $\dim(G)$ c'est une famille génératrice de G (cf. 2.(b) du théorème 86). Or c'est aussi une famille génératrice de F. D'où $F = \text{Vect}(\{e_1, \dots, e_d\}) = G$.

THÉORÈME 91 (FORMULES DE GRASSMANN). — Supposons que E est de dimension finie. Soient F et G deux sous-espaces vectoriels de E.

- 1. Si F et G sont en somme directe, $\dim(F \oplus G) = \dim(F) + \dim(G)$.
- 2. $\dim(F+G) = \dim(F) + \dim(G) \dim(F \cap G)$.

DÉMONSTRATION. —

- 1. L'assertion résulte du Théorème 58.
- 2. Soit F' un supplémentaire de $F \cap G$ dans F. On a ainsi

$$(\star)$$
 $F = (F \cap G) \oplus F'$.

Prouvons

$$(\star\star)$$
 $F'\oplus G=F+G.$

- Caractère direct de la somme F' + GSoit $x \in F' \cap G$. Alors $x \in F' \subset F$ et $x \in G$. Donc $x \in F \cap G$. De $x \in F \cap G$, $x \in F'$ et (\star) , on déduit $x = 0_E$. Ainsi $F' \cap G \subset \{0_E\}$. L'inclusion réciproque est claire.
- L'inclusion $F' \oplus G \subset F + G$ Comme $F' \subset F$, $F' \oplus G \subset F + G$.
- L'inclusion $F + G \subset F' \oplus G$ Soit $x \in F + G$. Alors il existe $y \in F$ et $z \in G$ tels que x = y + z. Comme $y \in F = (F \cap G) \oplus F'$, il existe $y' \in F \cap G$ et $y'' \in F'$ tels que y = y' + y''. Ainsi:

$$(\star\star\star) \qquad x = y'' + (y' + z).$$

Comme $y' \in F \cap G \subset G$ et $z \in G$, $y' + z \in G$. Donc $(\star \star \star)$ est une écriture de x comme somme d'un élément de F' et d'un élément de G. D'où $x \in F' \oplus G$.

L'identité (**), à présent démontrée, nous livre

$$\dim(F+G) = \dim(F' \oplus G) = \dim(F') + \dim(G)$$

en appliquant 1. Toujours en appliquant 1, nous déduisons de (\star)

$$\dim(F') = \dim(F) - \dim(F \cap G).$$

En combinant les deux dernières identités sur les dimensions, le résultat tombe.

Théorème 92 (dimension d'une somme directe). — Soit E un K-espace vectoriel. Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels de E en somme directe. Alors

$$\dim(F_1 \oplus F_2 \oplus \ldots \oplus F_p) = \dim(F_1) + \dim(F_2) + \ldots + \dim(F_p).$$

DÉMONSTRATION. — Il s'agit d'une conséquence du théorème 58.

EXERCICE 93. — Soit E un **K**-espace vectoriel de dimension finie n tel que $n := \dim(E) \geqslant 3$. Soient H_1 , H_2 , H_3 trois hyperplans (i.e. trois sous-espaces vectoriels de E possédant une droite vectorielle pour supplémentaire) de E deux-à-deux distincts.

- 1. Démontrer que dim $(H_1 \cap H_2) = n 2$.
- 2. Démontrer que dim $(H_1 \cap H_2 \cap H_3) \ge n-3$.
- 3. A-t-on « en général » dim $(H_1 \cap H_2 \cap H_3) = n 3$?

Théorème 94 (Critère pour être supplémentaires en dimension finie). — Supposons que E est de dimension finie. Soient F et G deux sous-espaces vectoriels de E. Alors F et G sont supplémentaires dans E si et seulement si

$$F \cap G = \{0_E\}$$
 et $\dim(F) + \dim(G) = \dim(E)$.

DÉMONSTRATION. —

 \implies Supposons que F et G sont supplémentaires dans E, i.e. que $E = F \oplus G$. Puisque la somme est directe, $F \cap G = \{0_F\}$. Ensuite par la première formule de Grassmann

$$\dim(F) + \dim(G) = \dim(F \oplus G) = \dim(E)$$
.

 \leftarrow Supposons $F \cap G = \{0_E\}$ et dim (F) + dim (G) = dim (E).

Puisque $F \cap G = \{0_E\}$, la somme F + G est directe. Il reste à vérifier que cette somme égale E.

 $F \oplus G$ est un sous-espace vectoriel de E. Ensuite par la première formule de Grassmann

$$\dim(F \oplus G) = \dim(F) + \dim(G)$$

et cette dernière somme de nombres entiers vaut $\dim(E)$ par hypothèse. Donc $F \oplus G$ est un sous-espace vectoriel de E de même dimension finie que E. Par le théorème 90, $E = F \oplus G$.

§ 6. APPLICATIONS LINÉAIRES

NOTATION. — Dans cette partie, *E* et *F* désignent deux **K**-espaces vectoriels.

1. NOTION D'APPLICATION LINÉAIRE

Définition 95 (APPLICATION LINÉAIRE). — Une application $f: E \longrightarrow F$ est dite linéaire si

$$\forall (u, v) \in E^2 \quad \forall (\lambda, \mu) \in \mathbf{K}^2 \qquad f(\lambda \cdot u + \mu \cdot v) = \lambda \cdot f(u) + \mu \cdot f(v).$$

PROPOSITION 96 (IMAGE DU VECTEUR NUL PAR UNE APPLICATION LINÉAIRE). — Si $f: E \longrightarrow F$ est linéaire alors $f(0_E) = 0_F$.

DÉFINITION 97 ($\mathcal{L}(E,F)$). — L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.

Théorème 98 (structure de K-e.v. sur $\mathcal{L}(E,F)$). —

1. Soient $(f,g) \in \mathcal{L}(E,F)^2$. L'application f+g définie par

$$f+g \mid E \longrightarrow F$$

 $u \longmapsto f(u)+g(u)$

est linéaire, i.e. $f + g \in \mathcal{L}(E, F)$.

2. $Soit(\lambda, f) \in \mathbb{K} \times \mathcal{L}(E, F)$. L'application $\lambda \cdot f$ définie par

$$\lambda \cdot f \mid E \longrightarrow F$$
 $u \longmapsto \lambda \cdot f(u)$

est linéaire, i.e. λ . $f \in \mathcal{L}(E, F)$.

3. L'ensemble $\mathcal{L}(E,F)$ muni des lois

qui sont bien définies d'après 1. et 2., est un K-espace vectoriel.

4. Le vecteur nul de $\mathcal{L}(E,F)$ est

$$0_{\mathscr{L}(E,F)} \quad \left| \begin{array}{ccc} E & \longrightarrow & F \\ u & \longmapsto & 0_F \end{array} \right.$$

et l'opposé d'un vecteur f de $\mathcal{L}(E,F)$ est donné par

$$-f \mid E \longrightarrow F$$

 $u \longmapsto -f(u).$

Définition 99 (endomorphisme, isomorphisme, automorphisme). —

- 1. Une application linéaire de E dans E est nommée endomorphisme de E.
- 2. L'ensemble des endomorphismes de E est noté $\mathcal{L}(E)$, i.e. $\mathcal{L}(E) := \mathcal{L}(E, E)$.
- 3. Une application linéaire et bijective de E dans F est nommée isomorphisme de E vers F.
- 4. Une application qui est à la fois un endormorphisme et un isomorphisme est nommée automorphisme.

EXERCICE 100. — Soit $f: E \longrightarrow F$ un isomorphisme. Démontrer que l'application $f^{-1}: F \longrightarrow E$ est un isomorphisme.

Théorème 101 (image directe et image réciproque d'un s.e.v.). — Soit $f \in \mathcal{L}(E,F)$.

1. Si H est un sous-espace vectoriel de E, alors

 $f(H) := \{f(u) : u \in H\}$ [partie de F formée des images des éléments de H par f]

est un sous-espace vectoriel de F.

2. Si H' est un sous-espace vectoriel de F, alors

 $f^{-1}(H') := \{u \in E : f(u) \in H'\}$ [partie de E formée des antécédents des éléments de H' par f]

est un sous-espace vectoriel de E.

2. NOYAU ET IMAGE D'UNE APPLICATION LINÉAIRE

DÉFINITION 102 (NOYAU ET IMAGE D'UNE APPLICATION LINÉAIRE). — Soit $f \in \mathcal{L}(E, F)$.

1. Le noyau de f est défini par

$$\operatorname{Ker}(f) := f^{-1}(\{0_F\}) = \{u \in E : f(u) = 0_F\}$$
 [partie de E formée des antécédents de 0_F par f].

2. L'image de f est définie par

 $Im(f) := f(E) = \{f(u) : u \in E\}$ [partie de F formée des images des éléments de E par f].

Corollaire 103 (structure du noyau et de l'image d'une application linéaire). — $Soit f \in \mathcal{L}(E, F)$.

- 1. Ker(f) est un sous-espace vectoriel de E.
- 2. Im(f) est un sous-espace vectoriel de F.

DÉMONSTRATION. — Comme $\{0_F\}$ est un sous-espace vectoriel de F et E est un sous-espace vectoriel de E, les deux assertions résultent du théorème 101.

PROPOSITION 104 (DÉTERMINATION DE L'IMAGE D'UNE APPLICATION LINÉAIRE). — Soit $f \in \mathcal{L}(E,F)$. Soit $(e_1,...,e_n)$ une famille génératrice de E (une base de E par exemple). Alors :

$$\operatorname{Im}(f) = \operatorname{Vect}(\{f(e_1), \dots, f(e_n)\}).$$

Théorème 105 (critères d'injectivité et de surjectivité). — Soit $f \in \mathcal{L}(E,F)$.

- 1. f est injective si et seulement si Ker $(f) = \{0_E\}$.
- 2. f est surjective si et seulement si Im(f) = F.

3. APPLICATIONS LINÉAIRES ET DIMENSION FINIE

EXERCICE 106 (CONSTRUCTION D'APPLICATIONS LINÉAIRES). — Soient $(e_1,...,e_n)$ une base de E et $(f_1,...,f_n)$ une famille quelconque de vecteurs de F. Alors il existe une unique $\varphi \in \mathcal{L}(E,F)$ telle que :

$$\forall i \in [1, n], \quad \varphi(e_i) = f_i$$
.

Définition 107 (rang d'une application linéaire dont la source est de dimension finie). — Soit $f \in \mathcal{L}(E,F)$.

- 1. Si E est de dimension finie, alors Im(f) est de dimension finie.
- 2. La dimension de $\operatorname{Im}(f)$ est appelée rang de f et est notée $\operatorname{Rg}(f)$. On a donc $\operatorname{Rg}(f)$:= $\operatorname{dim}(\operatorname{Im}(f))$.

Théorème 108 (théorème du rang). — Soit $f \in \mathcal{L}(E, F)$. Si E est de dimension finie, alors

$$\dim(\operatorname{Ker}(f)) + \operatorname{Rg}(f) = \dim(E)$$
.

EXERCICE 109 (IMAGE D'UNE BASE DE LA SOURCE ET PROPRIÉTÉS D'UNE APPLICATION LINÉAIRE). — Soit $f \in \mathcal{L}(E, F)$. Supposons que E est de dimension finie. Soit (e_1, \dots, e_n) une base de E.

- 1. Démontrer que f est injective si et seulement si $(f(e_1), ..., f(e_n))$ est une famille libre de F.
- 2. Démontrer que f est surjective si et seulement si $(f(e_1), \ldots, f(e_n))$ est une famille génératrice de F.
- 3. En déduire un critère d'isomorphisme.

COROLLAIRE 110 (APPLICATIONS LINÉAIRES ET DIMENSION FINIE). — Soit $f \in \mathcal{L}(E,F)$. On suppose E et F de dimension finie.

- 1. Si f est injective, alors dim $(E) \leq \dim(F)$.
- 2. Si f est surjective, alors dim $(E) \ge \dim(F)$.
- 3. Si f est injective et si dim (E) = dim (F) alors f est un isomorphisme.
- 4. Si f est surjective et si $\dim(E) = \dim(F)$ alors f est un isomorphisme.

§ 7. MATRICES D'APPLICATIONS LINÉAIRES

1. CORDONNÉES D'UN VECTEUR DANS UNE BASE

NOTATION. —

- E désigne un **K**-espace vectoriel de dimension finie, notée n, supposée non nulle.
- $\mathscr{E} = (e_1, \dots, e_n)$ désigne une base de E.
- *u* désigne un vecteur de *E*.

DÉFINITION 111 (COORDONNÉES DU VECTEUR u DANS LA BASE \mathscr{E}). — Puisque \mathscr{E} est génératrice de E, il existe $(x_1, \ldots, x_n) \in \mathbb{K}^n$ tel que

$$(\star) \qquad u = \sum_{j=1}^{n} x_j e_j .$$

Puisque la famille $\mathscr E$ est libre, le n-uplet d'éléments de $\mathbf K(x_1,\ldots,x_n)$ vérifiant (\star) est unique. On définit la matrice des cordonnées de u dans la base $\mathscr E$ comme étant

$$\operatorname{Mat}_{\mathscr{E}}(u) := \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) \in \mathscr{M}_{n,1}(\mathbf{K}).$$

EXERCICE 112. — Soit $u = (1, 2, 3) \in \mathbb{R}^3$.

- 1. Déterminer les coordonnées de u dans la base canonique de \mathbb{R}^3 .
- 2. On pose $e_1' := (0,1,1)$, $e_2' = (1,0,1)$ et $e_3' = (1,1,0)$. Démontrer que la famille $\mathcal{E}' = (e_1',e_2',e_3')$ est une base de \mathbf{R}^3 et déterminer les coordonnées de u dans la base \mathcal{E}' .

2. MATRICES D'UNE APPLICATION LINÉAIRE DANS DES BASES

NOTATION. —

- E et F désignent des K-espaces vectoriels de dimensions finies, supposées non nulles.
- $\mathscr{E} = (e_1, ..., e_n)$ désigne une base de E et $\mathscr{F} = (f_1, ..., f_p)$ une base de F.
- φ désigne une application linéaire de E dans F.

DÉFINITION 113 (MATRICE D'UNE APPLICATION LINÉAIRE RELATIVEMENT À DES BASES). — La matrice de φ dans les bases $\mathscr E$ et $\mathscr F$ est la matrice notée

$$\mathrm{Mat}_{\mathcal{E},\mathcal{F}}(\varphi)\in\mathcal{M}_{p,n}(\mathbf{K})$$

dont la j-ième ($1 \le j \le n$) colonne est la matrice des cordonnées de $\varphi(e_j) \in F$ dans la base \mathscr{F} . Schématiquement, nous avons la description suivante de $\mathrm{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)$.

$$\varphi(e_1) \quad \varphi(e_2) \qquad \varphi(e_n) \\
\text{Mat}_{\mathscr{E},\mathscr{F}}(\varphi) = \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \\ \vdots & \vdots & & \vdots \\ * & * & \dots & * \end{pmatrix} / f_1 \\
\vdots & \vdots & & \vdots \\
* & * & \dots & * \end{pmatrix} / f_p$$

Remarque 114. — Par définition même, pour tout $j \in [1, n]$:

$$\varphi(e_j) = \sum_{i=1}^p \left[\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi) \right]_{i,j} \cdot f_i.$$

PROPOSITION 115 (INTÉRÊT DE LA NOTION DE MATRICE D'APPLICATION LINÉAIRE). — La seule connaissance de $\text{Mat}_{\mathcal{E},\mathscr{F}}(\varphi)$ permet de retrouver φ , i.e. de calculer $\varphi(u)$ pour tout $u \in E$.

DÉMONSTRATION. — En effet soit $u \in E$ et soit

$$\operatorname{Mat}_{\mathscr{E}}(u) = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) \in \mathscr{M}_{n,1}(\mathbf{K}).$$

la matrice de ses cordonnées dans la base E. Alors :

$$\varphi(u) = \varphi\left(\sum_{j=1}^{n} x_{j} e_{j}\right) = \sum_{j=1}^{n} x_{j} \varphi\left(e_{j}\right) = \sum_{j=1}^{n} x_{j} \sum_{i=1}^{p} \left[\operatorname{Mat}_{\mathcal{E},\mathcal{F}}(\varphi)\right]_{i,j} f_{i}$$

et donc

$$\varphi(u) = \sum_{i=1}^{p} \left(\sum_{j=1}^{n} x_j \left[\operatorname{Mat}_{\mathcal{E},\mathcal{F}}(\varphi) \right]_{i,j} \right) f_i.$$

Le terme de droite se calcule uniquement à l'aide de $Mat_{\mathscr{E},\mathscr{F}}$ (et de la matrice des coordonnées de u dans la base \mathscr{E}), d'où la preuve de l'assertion.

EXERCICE 116. — Soit $n \in \mathbb{N}^*$. Déterminer la matrice de l'application linéaire :

$$f \mid \mathbf{K}_n[X] \longrightarrow \mathbf{K}_n[X]$$

$$P \longmapsto P'$$

dans les bases canoniques de $\mathbf{K}_n[X]$ et $\mathbf{K}_n[X]$.

PROPOSITION 117 (CALCULS D'IMAGES PAR φ GRÂCE À « SA » MATRICE). — On a:

$$\operatorname{Mat}_{\mathcal{F}}(\varphi(u)) = \operatorname{Mat}_{\mathcal{E},\mathcal{F}}(\varphi) \times \operatorname{Mat}_{\mathcal{E}}(u)$$

DÉMONSTRATION. — L'identité

$$\varphi(u) = \sum_{i=1}^{p} \left(\sum_{j=1}^{n} x_j \left[\operatorname{Mat}_{\mathscr{E}, \mathscr{F}}(\varphi) \right]_{i,j} \right) f_i.$$

obtenue dans la démonstration de la Proposition 115 livre une autre information. Les cordonnées de $\varphi(u)$ dans la base \mathscr{F} sont $\left(\sum_{j=1}^n x_j \left[\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)\right]_{i,j}\right)_{1 < i < n}$. Ainsi observe-t-on

$$\operatorname{Mat}_{\mathscr{F}}(\varphi(u)) = \left(\begin{array}{c} \sum\limits_{j=1}^{n} x_{j} \left[\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)\right]_{1,j} \\ \sum\limits_{j=1}^{n} x_{j} \left[\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)\right]_{2,j} \\ \vdots \\ \sum\limits_{j=1}^{n} x_{j} \left[\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)\right]_{p,j} \end{array}\right) = \left(\begin{array}{c} \sum\limits_{j=1}^{n} \left[\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)\right]_{1,j} x_{j} \\ \sum\limits_{j=1}^{n} \left[\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)\right]_{2,j} x_{j} \\ \vdots \\ \sum\limits_{j=1}^{n} \left[\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)\right]_{p,j} x_{j} \end{array}\right) = \operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi) \times \operatorname{Mat}_{\mathscr{E}}(u).$$

La dernière identité repose sur la définition du produit matriciel. Nous avons donc établi :

$$\operatorname{Mat}_{\mathcal{F}}(\varphi(u)) = \operatorname{Mat}_{\mathcal{E},\mathcal{F}}(\varphi) \times \operatorname{Mat}_{\mathcal{E}}(u)$$
.

3. COMPOSÉE D'APPLICATIONS LINÉAIRES VERSUS PRODUIT DE DEUX MATRICES

NOTATION. —

- E, F, G désignent des K-espaces vectoriels de dimensions finies.
- $\mathscr{E} = (e_1, \dots, e_n)$ désigne une base de $E, \mathscr{F} = (f_1, \dots, f_p)$ une base de F et $\mathscr{G} = (g_1, \dots, g_q)$ une base de G.
- φ désigne une application linéaire de E dans F et ψ une application linéaire de F dans G.

Lemme 118 (Rappel sur La j-**IÈME COLONNE D'UNE MATRICE).** — Soit $n \in \mathbb{N}^*$. On note $(e_n^1, ..., e_n^n)$ la base canonique de \mathbb{K}^n . Soit $j \in [1, n]$. Le vecteur $(e_n^j)^\top$ est le vecteur colonne à n composantes, dont toutes les composantes sont nulles, à l'exception de la j-ième qui vaut 1. Soit $A \in \mathcal{M}_{p,n}(\mathbb{K})$. Alors:

$$A \times \left(e_n^j\right)^{\top} = j$$
-ième colonne de A .

Remarque 119 (formats des matrices en jeu). — Comme $\mathrm{Mat}_{\mathscr{E},\mathscr{F}}(\varphi) \in \mathscr{M}_{p,n}(\mathbb{K})$, $\mathrm{Mat}_{\mathscr{F},\mathscr{G}}(\psi) \in \mathscr{M}_{q,p}(\mathbb{K})$, $\mathrm{Mat}_{\mathscr{E},\mathscr{G}}(\psi \circ \varphi) \in \mathscr{M}_{q,n}(\mathbb{K})$, le produit matriciel $\mathrm{Mat}_{\mathscr{F},\mathscr{G}}(\psi) \times \mathrm{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)$ est bien défini et les matrices $\mathrm{Mat}_{\mathscr{E},\mathscr{G}}(\psi \circ \varphi)$ et $\mathrm{Mat}_{\mathscr{F},\mathscr{G}}(\psi) \times \mathrm{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)$ ont même format $q \times n$.

Théorème 120 (composée d'applications linéaires vs. produit de matrices). — On a :

$$\operatorname{Mat}_{\mathcal{E},\mathcal{G}}(\psi \circ \varphi) = \operatorname{Mat}_{\mathcal{F},\mathcal{G}}(\psi) \times \operatorname{Mat}_{\mathcal{E},\mathcal{F}}(\varphi).$$

DÉMONSTRATION. — Soit $j \in [1, n]$. Calculons la j-ième colonne de la matrice $Mat_{\mathscr{F},\mathscr{G}}(\psi) \times Mat_{\mathscr{E},\mathscr{F}}(\varphi)$, notée C_j .

$$C_{j} = \operatorname{Mat}_{\mathscr{F},\mathscr{G}}(\psi) \times \operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi) \times \left(e_{n}^{j}\right)^{\top}$$

$$= \operatorname{Mat}_{\mathscr{F},\mathscr{G}}(\psi) \times \operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi) \times \operatorname{Mat}_{\mathscr{E}}\left(e_{j}\right) \quad \left[\operatorname{car} \operatorname{Mat}_{\mathscr{E}}\left(e_{j}\right) = \left(e_{n}^{j}\right)^{\top}\right]$$

$$= \operatorname{Mat}_{\mathscr{F},\mathscr{G}}(\psi) \times \operatorname{Mat}_{\mathscr{F}}\left(\varphi\left(e_{j}\right)\right)$$

$$= \operatorname{Mat}_{\mathscr{G}}\left(\psi\left(\varphi\left(e_{j}\right)\right)\right) \quad (\text{cf. proposition 4.125})$$

Or par définition même de $\operatorname{Mat}_{\mathscr{E},\mathscr{G}}(\psi \circ \varphi)$, sa j-ième colonne est formée des cordonnées de $\psi(\varphi(e_j))$ dans la base \mathscr{G} , i.e. la j-ième colonne de $\operatorname{Mat}_{\mathscr{E},\mathscr{G}}(\psi \circ \varphi)$ est $\operatorname{Mat}_{\mathscr{G}}(\psi(\varphi(e_j)))$.

Les matrices $\operatorname{Mat}_{\mathscr{E},\mathscr{G}}(\psi \circ \varphi)$ et $\operatorname{Mat}_{\mathscr{F},\mathscr{G}}(\psi) \times \operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi)$ ont (même format et) mêmes colonnes. Elles sont donc égales, i.e.

$$\operatorname{Mat}_{\mathscr{E},\mathscr{G}}(\psi \circ \varphi) = \operatorname{Mat}_{\mathscr{F},\mathscr{G}}(\psi) \times \operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi).$$

4. APPLICATION LINÉAIRE CANONIQUEMENT ASSOCIÉE UNE MATRICE

NOTATION. —

- n et p désignent des entiers naturels non nuls. E, F, G désignent des K-espaces vectoriels de dimensions finies.
- A désigne une matrice de $\mathcal{M}_{p,n}(\mathbf{K})$.
- Si $n \in \mathbb{N}^*$, $\mathscr{B}_n = (e_n^1, \dots, e_n^n)$ désigne la base canonique de \mathbb{K}^n , de sorte que $\mathscr{B}_n^\top := ((e_n^1)^\top, \dots, (e_n^n)^\top)$ est la base canonique de $\mathrm{Mat}_{n,1}(\mathbb{K})$.

PROPOSITION 121 (APPLICATION LINÉAIRE CANONIQUEMENT ASSOCIÉE A). — L'application linéaire canoniquement associée A est

$$\varphi_A \mid \underset{X}{\operatorname{Mat}_{n,1}(\mathbf{K})} \longrightarrow \underset{AX}{\operatorname{Mat}_{p,1}(\mathbf{K})}$$

L'application φ_A est bien linéaire et elle est caractérisée par :

$$\operatorname{Mat}_{\mathscr{B}_{n}^{\top},\mathscr{B}_{n}^{\top}}(\varphi_{A}) = A.$$

Remarque 122. — L'application linéaire canoniquement associée à une matrice va nous permettre d'appliquer la théorie développée pour les applications linéaires pour en déduire des propriétés portant sur les matrices. Un exemple en est donné ci-dessous, cf. théorème 128.

DÉFINITION 123 (NOYAU DE A). — Le noyau de A est par définition de noyau de φ_A , i.e.:

$$Ker(A) := \{ X \in \mathcal{M}_{n,1}(\mathbf{K}) : AX = 0 \}.$$

 $\operatorname{Ker}(A)$ est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbf{K})$.

Remarque 124. — La détermination de Ker (*A*) conduit souvent à la résolution d'un système linéaire homogène dont *A* est la matrice des coefficients.

DÉFINITION 125 (IMAGE DE A). — L'image de A est par définition l'image de φ_A , i.e.

$$\operatorname{Im}(A) = \left\{ AX : X \in \mathcal{M}_{n,1}(\mathbf{K}) \right\}.$$

 $\operatorname{Im}(A)$ est un sous-espace vectoriel de $\mathcal{M}_{p,1}(\mathbf{K})$.

DÉFINITION 126 (RANG DE A). — Le rang de A est la dimension de Im(A), i.e.:

$$Rg(A) = dim(Im(A))$$
.

PROPOSITION 127 (CALCUL EFFECTIF DU RANG). — Notons $C_1, C_2, ..., C_n$ les colonnes de la matrices A. Alors $Im(A) = Vect(\{C_1, C_2, ..., C_n\})$ et donc :

$$Rg(A) = dim(Vect(\{C_1, C_2, ..., C_n\})).$$

DÉMONSTRATION. — Comme $\mathscr{B}_n^{\top} := \left(\left(e_n^1 \right)^{\top}, \dots, \left(e_n^n \right)^{\top} \right)$ est une famille génératrice de la source de φ_A :

$$\operatorname{Im}\left(A\right) := \operatorname{Im}\left(\varphi_{A}\right) = \operatorname{Vect}\left(\left\{\varphi_{A}\left(\left(e_{n}^{1}\right)^{\top}\right), \ldots, \varphi_{A}\left(\left(e_{n}^{n}\right)^{\top}\right)\right\}\right) = \operatorname{Vect}\left(\left\{A\left(e_{n}^{1}\right)^{\top}, \ldots, A\left(e_{n}^{n}\right)^{\top}\right\}\right)$$

D'après le Lemme 118, $Im(A) = Vect(\{C_1, C_2, ..., C_n\}).$

Théorème 128 (Critère d'Inversibilité via le noyau). — Nous supposons ici que n = p, i.e. que A est une matrice carrée. Alors

$$A \in GL_n(\mathbf{K}) \iff \operatorname{Ker}(A) = \{0\}.$$

DÉMONSTRATION. —

- ⇒ Supposons $A \in GL_n(\mathbf{K})$. Clairement $0 \in Ker(A)$. Soit à présent X dans Ker(A). Alors AX = 0. En multipliant chaque membre de cette identité à gauche par A^{-1} (qui existe par hypothèse) nous obtenons X = 0.
- Supposons à présent que $\{0\}$ = Ker (A) := Ker (φ_A) . Alors $\varphi_A \in \mathcal{L}(()\mathcal{M}_{n,1}(\mathbf{K}))$ est injective. Or un endomorphisme d'un \mathbf{K} -espace vectoriel de dimension finie qui est injectif est un automorphisme (conséquence du théorème du rang). Donc φ_A est un automorphisme de $\mathcal{M}_{n,1}(\mathbf{K})$. Nous pouvons donc considérer l'application linéaire φ_A^{-1} . Posons $B := \mathrm{Mat}_{B_n^\top, B_n^\top}(\varphi_A^{-1})$.

Nous calculons

$$\begin{array}{lcl} AB & = & \operatorname{Mat}_{B_n^{\top}, B_n^{\top}} \left(\varphi_A \right) \times \operatorname{Mat}_{B_n^{\top}, B_n^{\top}} \left(\varphi_A^{-1} \right) \\ & = & \operatorname{Mat}_{B_n^{\top}, B_n^{\top}} \left(\varphi_A \circ \varphi_A^{-1} \right) \\ & = & \operatorname{Mat}_{B_n^{\top}, B_n^{\top}} \left(\operatorname{id}_{\mathcal{M}_{n,1}(\mathbf{K})} \right) \\ & = & I_n \end{array}$$

et de même $BA = I_n$. Donc $A \in GL_n(\mathbf{K})$.

5. MATRICES DE PASSAGE

NOTATIONS. —

- E désigne un K-espace vectoriel de dimension finie.
- $\mathscr{E} = (e_1, ..., e_n)$ et $\mathscr{E}' = (e'_1, ..., e'_n)$ sont deux bases de E.

DÉFINITION 129 (MATRICE DE PASSAGE DE LA BASE \mathscr{E} À LA BASE \mathscr{E}'). — La matrice de passage de la base \mathscr{E} à la base \mathscr{E}' est la matrice $P_{\mathscr{E} \to \mathscr{E}'} \in \mathscr{M}_n(\mathbf{K})$ dont la j-ième colonne est formée des cordonnées de e'_j dans la base \mathscr{E} pour tout $j \in [1, n]$.

Schématiquement, nous avons la description suivante de $P_{\mathcal{E} \to \mathcal{E}'}$.

On a l'identité fondamentale suivante :

$$P_{\mathcal{E} \to \mathcal{E}'} = \operatorname{Mat}_{\mathcal{E}', \mathcal{E}} \left(\operatorname{id}_{E} \right) \; .$$

PROPOSITION 130 (PROPRIÉTÉS D'UNE MATRICE DE PASSAGE). — La matrice $P_{\mathscr{E} \to \mathscr{E}'}$ est inversible et :

$$(P_{\mathscr{E} \to \mathscr{E}'})^{-1} = P_{\mathscr{E}' \to \mathscr{E}}.$$

DÉMONSTRATION. — Nous pouvons aussi considérer la matrice de passage « dans l'autre sens ».

$$P_{\mathcal{E}' \to \mathcal{E}} = \operatorname{Mat}_{\mathcal{E}, \mathcal{E}'} (\operatorname{id}_E)$$
.

Nous avons:

$$P_{\mathcal{E}' \to \mathcal{E}} \times P_{\mathcal{E} \to \mathcal{E}'} = \operatorname{Mat}_{\mathcal{E}, \mathcal{E}'} (\operatorname{id}_E) \times \operatorname{Mat}_{\mathcal{E}', \mathcal{E}} (\operatorname{id}_E) = \operatorname{Mat}_{\mathcal{E}', \mathcal{E}'} (\operatorname{id}_E \circ \operatorname{id}_E) = \operatorname{Mat}_{\mathcal{E}', \mathcal{E}'} (\operatorname{id}_E) = I_n.$$

De même $P_{\mathcal{E} \to \mathcal{E}'} \times P_{\mathcal{E}' \to \mathcal{E}} = I_n$. Nous en déduisons que $P_{\mathcal{E} \to \mathcal{E}'}$ est inversible et que $(P_{\mathcal{E} \to \mathcal{E}'})^{-1} = P_{\mathcal{E}' \to \mathcal{E}}$.

PROPOSITION 131 (CHANGEMENT DE BASE ET CORDONNÉES D'UN VECTEUR). — Soit $u \in E$. Posons $X = \text{Mat}_{\mathcal{E}'}(u)$ et $X' = \text{Mat}_{\mathcal{E}'}(u)$. Alors:

$$X = P_{\mathcal{E} \to \mathcal{E}'} \times X'$$
.

DÉMONSTRATION. — Nous calculons

$$P_{\mathcal{E} \to \mathcal{E}'} \times X' = \operatorname{Mat}_{\mathcal{E}', \mathcal{E}} (\operatorname{id}_E) \times \operatorname{Mat}_{\mathcal{E}'} (u) = \operatorname{Mat}_{\mathcal{E}} (\operatorname{id}_E(u)) = \operatorname{Mat}_{\mathcal{E}} (u).$$

Ainsi $X = P_{\mathcal{E} \to \mathcal{E}'} \times X'$.

6. CHANGEMENT DE BASES POUR LES APPLICATIONS LINÉAIRES

NOTATIONS. —

- *E*, *F* désignent deux **K**-espaces vectoriels de dimensions finies.
- $\mathscr{E} = (e_1, \dots, e_n)$ et $\mathscr{E}' = (e'_1, \dots, e'_n)$ désignent deux bases de E.
- $\mathscr{F} = (f_1, ..., f_p)$ et $\mathscr{F}' = (f'_1, ..., f'_p)$ désignent deux bases de F.
- φ désigne une application linéaire de E dans F.

Théorème 132 (théorème de changement de base pour les applications linéaires). — On a :

$$\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi) = P_{\mathscr{F} \to \mathscr{F}'} \times \operatorname{Mat}_{\mathscr{E}',\mathscr{F}'}(\varphi) \times (P_{\mathscr{E} \to \mathscr{E}'})^{-1}$$

ou encore :

$$\mathrm{Mat}_{\mathcal{E},\mathcal{F}}(\varphi) = \mathrm{Mat}_{\mathcal{F}',\mathcal{F}}(\mathrm{id}_F) \times \mathrm{Mat}_{\mathcal{E}',\mathcal{F}'}(\varphi) \times \mathrm{Mat}_{\mathcal{E},\mathcal{E}'}(\mathrm{id}_E)\,.$$

DÉMONSTRATION. — Nous calculons

$$\operatorname{Mat}_{\mathscr{F}',\mathscr{F}}(\operatorname{id}_F) \times \operatorname{Mat}_{\mathscr{E}',\mathscr{F}'}(\varphi) \times \operatorname{Mat}_{\mathscr{E},\mathscr{E}'}(\operatorname{id}_E) = \operatorname{Mat}_{\mathscr{E},\mathscr{F}}\left(\operatorname{id}_F \circ \varphi \circ \operatorname{id}_E\right) = \operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi).$$

La même identité écrite avec des matrices de passages s'écrit :

$$\operatorname{Mat}_{\mathscr{E},\mathscr{F}}(\varphi) = P_{\mathscr{F} \to \mathscr{F}'} \times \operatorname{Mat}_{\mathscr{E}',\mathscr{F}'}(\varphi) \times (P_{\mathscr{E} \to \mathscr{E}'})^{-1}.$$

Exemple 133 (fondamental). — Soit la matrice

$$A = \left(\begin{array}{rrr} -1 & 4 & 2 \\ -2 & 5 & 1 \\ 1 & -2 & 2 \end{array} \right)$$

et soit φ_A l'endomorphisme canonique de ${\bf R}^3$ associé.

- 1. Déterminer tous les $\lambda \in \mathbf{R}$ tels que $\operatorname{Ker}(\varphi_A \lambda i d_{\mathbf{R}^3}) \neq \{0\}$.
- 2. Soient $\lambda_1 < \lambda_2 < \lambda_3$ les réels trouvés à la question précédente. Démontrer

$$\mathbf{R}^{3} = \operatorname{Ker}(\varphi_{A} - \lambda_{1}id_{\mathbf{R}^{3}}) \oplus \operatorname{Ker}(\varphi_{A} - \lambda_{2}id_{\mathbf{R}^{3}}) \oplus \operatorname{Ker}(\varphi_{A} - \lambda_{3}id_{\mathbf{R}^{3}}).$$

- 3. Écrire la matrice D de φ_A dans une base adaptée à la décomposition précédente de \mathbb{R}^3 .
- 4. Quel lien existe-t-il entre A et D?

§ 8. MATRICES

1. RETOUR SUR LA STRUCTURE DE K-ESPACE VECTORIEL SUR $\mathcal{M}_{n,p}(\mathbf{K})$

NOTATIONS. — Les lettres n et p désignent des entiers naturels non nuls.

DÉFINITION 134 (ADDITION DE DEUX MATRICES DE FORMAT $n \times p$). — Soient $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$ et $B = (b_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$. La matrice A + B est la matrice de format $n \times p$ à coefficients dans \mathbf{K} , dont le coefficient d'adresse (i,j) est $a_{i,j} +_{\mathbf{K}} b_{i,j}$ pour tout $(i,j) \in [1,n] \times [1,p]$.

DÉFINITION 135 (MULTIPLICATION D'UNE MATRICE DE FORMAT $n \times p$ PAR UN SCALAIRE). — Soit $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$. Soit $\lambda \in \mathbf{K}$. La matrice $\lambda \cdot A$ est la matrice de format $n \times p$ à coefficients dans \mathbf{K} , dont le coefficient d'adresse (i,j) est $\lambda \times_{\mathbf{K}} a_{i,j}$ pour tout $(i,j) \in [1,n] \times [1,p]$.

Théorème 136 (STRUCTURE DE K-ESPACE VECTORIEL SUR $\mathcal{M}_{n,p}(\mathbf{K})$). — L'ensemble $\mathcal{M}_{n,p}(\mathbf{K})$ munit des opérations

$$+ \left| \begin{array}{ccc} \mathcal{M}_{n,p}(\mathbf{K}) \times \mathcal{M}_{n,p}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{n,p}(\mathbf{K}) \\ (A,B) & \longmapsto & A+B \end{array} \right| \begin{array}{cccc} \mathbf{K} \times \mathcal{M}_{n,p}(\mathbf{K}) & \longrightarrow & \mathcal{M}_{n,p}(\mathbf{K}) \\ (\lambda,A) & \longmapsto & \lambda \cdot A \end{array}$$

est un K-espace vectoriel.

Théorème 137 (Base Canonique de $\mathcal{M}_{n,p}(\mathbf{K})$). — Pour tout $(i,j) \in [\![1,n]\!] \times [\![1,p]\!]$, soit $E_{i,j} \in \mathcal{M}_{n,p}(\mathbf{K})$ la matrice dont tous les coefficients sont nuls, sauf celui d'adresse (i,j) qui vaut 1, i.e. :

$$E_{i,j} = \left(\delta_{i,k} \, \delta_{j,\ell}\right)_{1 \leqslant k \leqslant n, 1 \leqslant \ell \leqslant p}$$

Alors $(E_{i,j})_{(i,j)\in [\![1,n]\!]\times [\![1,p]\!]}$ est une base de $\mathcal{M}_{n,p}(\mathbf{K})$, appelée base canonique.

EXERCICE 138. — Soit $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$. Décomposer A dans la base canonique de $\mathcal{M}_{n,p}(\mathbf{K})$.

COROLLAIRE 139 (DIMENSION DE $\mathcal{M}_{n,p}(\mathbf{K})$). — Le \mathbf{K} -espace vectoriel $\mathcal{M}_{n,p}(\mathbf{K})$ est de dimension finie et $\dim(\mathcal{M}_{n,p}(\mathbf{K})) = n \cdot p$.

2. RETOUR SUR LE PRODUIT MATRICIEL

NOTATIONS. — Les lettres n, p, q, r désignent des entiers naturels non nuls.

DÉFINITION 140 (PRODUIT MATRICIEL). — Soient $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$ et $B = (b_{i,j}) \in \mathcal{M}_{q,r}(\mathbf{K})$.

- 1. Le produit matriciel de A par B est défini si le nombre de colonnes de A est égal au nombre de lignes de B, i.e. si p = q.
- 2. Si le produit matriciel de A par B est défini (donc si p = q), alors le produit matriciel de A par B, noté AB, est une matrice de format $n \times r$.
- 3. Si le produit matriciel de A par B est défini (donc si p = q), alors le coefficient d'adresse (i, j) de AB est

$$\sum_{k=1}^{p} a_{i,k} b_{k,j} = a_{i,1} b_{1,i} + a_{i,2} b_{2,j} + a_{i,3} b_{3,j} + \ldots + a_{i,p} b_{p,j}.$$

pour tout $(i, j) \in [1, n] \times [1, r]$. Autrement dit, nous avons les identités suivantes.

3..
$$AB = \left(\sum_{k=1}^{p} a_{i,k} b_{k,j}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant r}}$$

$$3.. \ \forall \, (i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,r \rrbracket, \qquad [AB]_{ij} = \sum_{k=1}^p [A]_{i,k} \times [B]_{k,j}$$

THÉORÈME 141 (PROPRIÉTÉS DU PRODUIT MATRICIEL). —

1. Associativité

$$\forall (A, B, C) \in \mathcal{M}_{n,p}(\mathbf{K}) \times \mathcal{M}_{p,q}(\mathbf{K}) \times \mathcal{M}_{q,r}(\mathbf{K}), \qquad (AB)C = A(BC).$$

Les parenthèses n'influant pas sur le résultat, on note plus simplement ABC la matrice (AB)C = A(BC).

2. Distributivité à gauche

$$\forall (A, B) \in \mathcal{M}_{n,p}(\mathbf{K})^2, \quad \forall C \in \mathcal{M}_{p,q}(\mathbf{K}), \qquad (A+B)C = AC+BC.$$

3. Distributivité à droite

$$\forall A \in \mathcal{M}_{n,p}(\mathbf{K}), \quad \forall (B,C) \in \mathcal{M}_{p,q}(\mathbf{K})^2, \qquad A(B+C) = AB + AC.$$

4. Commutativité de la multiplication et de la mutliplication par un scalaire

$$\forall A \in \mathcal{M}_{n,p}(\mathbf{K}), \quad \forall B \in \mathcal{M}_{p,q}(\mathbf{K}), \quad \forall \lambda \in \mathbf{K}, \qquad (\lambda \cdot A)B = A(\lambda \cdot B) = \lambda \cdot (AB).$$

Exemple 142 (produit de deux matrices de la base canonique de $\mathcal{M}_n(\mathbf{K})$). — Soit $(E_{i,j})_{1 \leqslant i,j \leqslant n}$ la base canonique de $\mathcal{M}_n(\mathbf{K})$. Soit $(i,j,k,\ell) \in [1,n]^4$.

1. Démontrer:

$$E_{i,j} E_{k,\ell} = \delta_{j,k} E_{i,\ell}$$

en utilisant uniquement la définition du produit matriciel.

2. Retrouver le résultat de la question 1, en introduisant les endomorphismes canoniquement associés aux matrices $E_{i,j}$ et $E_{k,\ell}$.

3. MATRICES CARRÉES

NOTATION. — La lettre *n* désigne un entier naturel non nul.

DÉFINITION 143 (L'ENSEMBLE $\mathcal{M}_n(\mathbf{K})$). — On note $\mathcal{M}_n(\mathbf{K})$ l'ensemble des matrices carrées de format $n \times n$ à coefficients dans \mathbf{K} . On a donc $\mathcal{M}_n(\mathbf{K}) := \mathcal{M}_{n,n}(\mathbf{K})$.

DÉFINITION 144 (MATRICE IDENTITÉ). — On note I_n la matrice de $\mathcal{M}_n(\mathbf{K})$, appelée matrice identité, dont tous les coefficients sont nuls, sauf ses coefficients diagonaux, tous égaux à 1. En d'autres termes

$$[I_n]_{i,j} = \begin{vmatrix} 1 & si \ i = j \\ 0 & si \ i \neq j \end{vmatrix}$$

pour tout $(i, j) \in [1, n]^2$.

THÉORÈME 145 (CARACTÈRE NEUTRE POUR LE PRODUIT × DE LA MATRICE IDENTITÉ). —

$$\forall A \in \mathcal{M}_{n,p}(\mathbf{K}), \qquad AI_p = A \qquad et \qquad I_nA = A.$$

Théorème 146 (structure de K-algèbre sur $\mathcal{M}_n(\mathbf{K})$). — $(\mathcal{M}_n(\mathbf{K}), +, \times, .)$ est une K-algèbre.

DÉFINITION 147 (PUISSANCE D'UNE MATRICE CARRÉE). — Soit $A \in \mathcal{M}_n(\mathbf{K})$. Si $s \in \mathbf{N}$, alors on définit A^s par

$$A^{s} = \begin{cases} I_{n} & si \ s = 0 \\ \underbrace{A \times A \times A \times \dots \times A}_{s \ fois} & si \ s \geqslant 1. \end{cases}$$

Théorème 148 (formule du binôme de Newton pour deux matrices qui commutent). — Soient A et B deux matrices de $\mathcal{M}_n(K)$ qui commutent, i.e. telles que AB = BA. Alors pour tout $s \in N$, on a

$$(A+B)^{s} = \sum_{k=0}^{s} {s \choose k} A^{k} B^{s-k} = \sum_{k=0}^{s} {s \choose k} A^{s-k} B^{k}.$$

Théorème 149 (factorisation de la différence de deux puissances de matrices qui commutent). — Soient A et B deux matrices de $\mathcal{M}_n(\mathbf{K})$ qui commutent, i.e. telles que AB = BA. Alors pour tout $s \in \mathbf{N}^*$, on a

$$A^{s} - B^{s} = (A - B) \sum_{k=0}^{s-1} A^{k} B^{s-1-k}$$
.

Remarque 150. — Les deux formules sommatoires des théorèmes 148 et 149 sont valables dans tout anneau, pour deux éléments qui commutent.

4. MATRICES CARRÉES INVERSIBLES

NOTATION. — La lettre *n* désigne un entier naturel non nul.

DÉFINITION 151 ((MATRICE CARRÉE INVERSIBLE)). — Soit $A \in \mathcal{M}_n(\mathbf{K})$. La matrice A est dite inversible s'il existe $B \in \mathcal{M}_n(\mathbf{K})$ tel que

$$AB = I_n = BA$$
.

L'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbf{K})$ est noté $\mathrm{GL}_n(\mathbf{K})$.

Théorème 152 (Inverse d'une matrice carrée inversible). — Si $A \in \mathcal{M}_n(\mathbf{K})$ est inversible, alors la matrice $B \in \mathcal{M}_n(\mathbf{K})$ vérifiant $AB = I_n = BA$ est unique. On la nomme matrice inverse de A et on la note A^{-1} .

Remarque 153. — Si $A \in \mathcal{M}_n(\mathbf{K})$ est inversible alors il découle de la définition de la matrice inverse A^{-1} de A:

$$A A^{-1} = I_n = A^{-1} A$$
.

Théorème 154 ((GL $_n(\mathbf{K}), \times$) est un groupe). —

- 1. Pour tout $(A, B) \in GL_n(\mathbf{K})^2$, $AB \in GL_n(\mathbf{K})$ et $(AB)^{-1} = B^{-1}A^{-1}$. En particulier, la multiplication sur $\mathcal{M}_n(\mathbf{K})$ induit une loi de composition interne (notée également \times) sur $GL_n(\mathbf{K})$.
- 2. $(GL_n(\mathbf{K}), \times)$ est un groupe dont le neutre est I_n .

Remarque 155. — $I_n^{-1} = I_n$ et, pour tout $A \in GL_n(\mathbf{K}), (A^{-1})^{-1} = A$.

Théorème 156 (affaiblissement de la condition d'inversibilité). — Soit $A \in \mathcal{M}_n(\mathbf{K})$.

- 1. S'il existe $B \in \mathcal{M}_n(\mathbf{K})$ telle que $AB = I_n$, alors A est inversible et $A^{-1} = B$.
- 2. S'il existe $B \in \mathcal{M}_n(\mathbf{K})$ telle que $BA = I_n$, alors A est inversible et $A^{-1} = B$.

5. TRACE D'UNE MATRICE CARRÉE

NOTATION. — La lettre *n* désigne un entier naturel non nul.

DÉFINITION 157 (TRACE). — Soit $A \in \mathcal{M}_n(\mathbf{K})$. La trace de A est le scalaire $\operatorname{Tr}(A) = \sum_{k=1}^n [A]_{k,k}$, i.e. $\operatorname{Tr}(A)$ est la somme des coefficients diagonaux de A.

THÉORÈME 158 (PROPRIÉTÉS DE LA TRACE). —

1. Linéarité

$$\forall (\lambda_1, \lambda_2) \in \mathbf{K}^2, \quad \forall (A_1, A_2) \in \mathcal{M}_n(\mathbf{K})^2, \qquad \operatorname{Tr}(\lambda_1.A_1 + \lambda_2.A_2) = \lambda_1 \operatorname{Tr}(A_1) + \lambda_2 \operatorname{Tr}(A_2).$$

2. Trace et produit

$$\forall A \in \mathcal{M}_n(\mathbf{K}) \quad \forall B \in \mathcal{M}_n(\mathbf{K}), \qquad \operatorname{Tr}(AB) = \operatorname{Tr}(BA)$$

PROPOSITION 159 (TRACE D'UN ENDOMORPHISME). — Soit E un K-espace vectoriel de dimension finie. Soit $f \in \mathcal{L}(E)$. Le scalaire

$$\operatorname{Tr}(f) := \operatorname{Tr}(\operatorname{Mat}_{\mathscr{B}}(f))$$

est indépendant de la base B de E. On le nomme trace de f.

EXERCICE 160 (TRACE D'UN PROJECTEUR). — Soit E un **K**-espace vectoriel de dimension finie et p un projecteur de E. Démontrer que Tr(p) = Rg(p).

6. TRANSPOSÉE D'UNE MATRICE

NOTATIONS. — Les lettres n et p désignent des entiers naturels non nuls.

DÉFINITION 161 (TRANSPOSÉE D'UNE MATRICE). — Soient $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbf{K})$. La matrice transposée de A est la matrice, notée A^{\top} , de format $p \times n$, à coefficients dans \mathbf{K} , définie par

$$A^{\top} := (a_{j,i}).$$

En d'autres termes

$$\forall (k,l) \in [1,p] \times [1,n], \quad [A^\top]_{k,l} = [A]_{l,k}.$$

THÉORÈME 162 (PROPRIÉTÉS DE LA TRANSPOSITION). —

1. Caractère involutif

$$\forall A \in \mathcal{M}_{n,p}(\mathbf{K}), \qquad (A^{\top})^{\top} = A.$$

2. Linéarité

$$\forall (\lambda_1, \lambda_2) \in \mathbf{K}^2, \quad \forall (A_1, A_2) \in \mathcal{M}_{n,p}(\mathbf{K})^2, \qquad (\lambda_1.A_1 + \lambda_2.A_2)^\top = \lambda_1.A_1^\top + \lambda_2.A_2^\top.$$

3. Transposition et produit

$$\forall \, A \in \mathcal{M}_{n,p}(\mathbf{K}) \quad \forall \, B \in \mathcal{M}_{p,q}(\mathbf{K}), \qquad (AB)^\top = B^\top \times A^\top$$

4. Transposition, inversibilité et inverse éventuelle

$$\forall\,A\in\mathrm{GL}_n(\mathbf{K}),\qquad A^{\top}\in\mathrm{GL}_n(\mathbf{K})\quad et\quad \left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$$

7. RANG D'UNE MATRICE ET MATRICES $J_{n,p}(r)$

NOTATIONS. —

- *E* désigne un **K**-espace vectoriel de dimension finie $p \in \mathbb{N}^*$.
- F désigne un **K**-espace vectoriel de dimension finie $n \in \mathbb{N}^*$.
- L'entier r désigne un entier naturel.

Lemme 163 (Invariance du Rang par composition avec un automorphisme). — Soient E et F des K-espaces vectoriels de dimension finie. Soit $\varphi \in \mathcal{L}(E,F)$.

- 1. $Si \psi$ est un automorphisme de E, alors $Rg(\varphi \circ \psi) = Rg(\varphi)$.
- 2. $Si \psi$ est un automorphisme de F, alors $Rg(\psi \circ \varphi) = Rg(\varphi)$.

LEMME 164 (APPLICATION LINÉAIRE DE RANG r **REPRÉSENTÉE PAR UNE MATRICE** $J_{n,p}(r)$). — Soit E et F des K-espaces vectoriels de dimension finie, de dimensions respectives p et n. Soit $\varphi \in \mathcal{L}(E,F)$. Pour tout $r \in [1, \min(n, p)]$, on note $J_{n,p}(r)$ la matrice de format $n \times p$ décrite par blocs comme suit.

$$J_{n,p}(r) := \left(\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right).$$

Il existe une base $\mathscr E$ de E et une base $\mathscr F$ de F telle que

$$\operatorname{Mat}(\varphi, \mathscr{E}, \mathscr{F}) = J_{n,p}(\operatorname{Rg}(\varphi)).$$

En particulier, $\operatorname{Rg}(\varphi) \leq \min(n, p)$.

Théorème 165 (rang d'une matrice et classes d'équivalences des matrices $J_{n,p}(r)$). — Soit $A \in \mathcal{M}_{n,p}(\mathbf{K})$. Soit $r \in \mathbf{N}$.

$$\operatorname{Rg}(A) = r \iff \exists (P, Q) \in \operatorname{GL}_n(\mathbf{K}) \times \operatorname{GL}_p(\mathbf{K}) \quad A = P \ J_{n,p}(r) \ Q.$$

THÉORÈME 166 (PROPRIÉTÉ DU RANG D'UNE MATRICE). —

- 1. Majoration du rang Pour tout $A \in \mathcal{M}_{n,p}(\mathbf{K})$, $\operatorname{Rg}(A) \leqslant n$ et $\operatorname{Rg}(A) \leqslant p$.
- 2. Rang de la transposée Pour tout $A \in \mathcal{M}_{n,p}(\mathbf{K})$, $\operatorname{Rg}(A) = \operatorname{Rg}(A^{\top})$.
- 3. Critère d'inversibilité pour une matrice carrée Pour tout $A \in \mathcal{M}_n(\mathbf{K})$, A est inversible si et seulement si $\operatorname{Rg}(A) = n$.

§ 9. Hyperplans et formes linéaires

NOTATION. — La lettre E désigne un **K**-espace vectoriel non réduit à $\{0_E\}$.

DÉFINITION 167 (HYPERPLAN). — Un hyperplan de E est le noyau d'une forme linéaire non nulle sur E.

Proposition 168 (supplémentaires d'un hyperplan). — Soit H un hyperplan de E.

$$\forall u \in E \setminus H$$
, $H \oplus \text{Vect}(u) = E$.

PROPOSITION 169 (UNE CARACTÉRISATION DES HYPERPLANS). — Un sous-espace vectoriel de E est un hyperplan si et seulement s'il admet un supplémentaire qui est une droite.

DÉMONSTRATION. — Le sens direct est donné par la proposition 168. Établissons le sens réciproque. Soit H un sous-espace vectoriel de E qui possède une droite pour supplémentaire. Considérons une droite vectorielle D telle que $H \oplus D = E$ et un vecteur u non nul de D. Alors l'application :

$$i \mid \begin{matrix} \mathbf{K} & \longrightarrow & D \\ \lambda & \longmapsto & \lambda \cdot u \end{matrix}$$

est un isomorphisme de K-espaces vectoriels. Si p est la projection de E sur D parallèlement à H alors :

$$\varphi \mid \begin{matrix} E & \longrightarrow & \mathbf{K} \\ x & \longmapsto & i^{-1}(p(x)) \end{matrix}$$

est une application bien définie, qui est une forme linéaire sur E, de noyau H.

EXERCICE 170 (FORMES LINÉAIRES NON NULLES AYANT MÊME NOYAU). — Soient φ et ψ deux formes linéaires non nulles sur E telles que $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\psi)$. Démontrer :

$$\exists \lambda \in \mathbf{K}^*, \quad \psi = \lambda \cdot \varphi.$$

PROPOSITION 171 (HYPERPLAN D'UN ESPACE DE DIMENSION FINIE). — Si l'espace vectoriel E est de dimension finie $n \ge 1$, alors un sous-espace vectoriel E de E est un hyperplan si et seulement si :

$$\dim(H) = n - 1.$$

EXERCICE 172 (DIMENSION DE DEUX HYPERPLANS DISTINCTS). — Soit E un K-espace vectoriel de dimension $n \ge 3$.

1. Soient H_1 , H_2 des hyperplans distincts de E. Démontrer :

$$\dim (H_1 \cap H_2) = n - 2.$$

2. Soient H_1, H_2, H_3 des hyperplans distincts de E. Démontrer :

$$\dim (H_1 \cap H_2 \cap H_3) \geqslant n-3$$

et étudier le cas d'égalité dans cette inégalité.

EXERCICE 173 (SOUS-ESPACES VECTORIELS DE Rⁿ **ET INTERSECTION D'HYPERPLANS).** — Soient un entier $n \ge 2$, F un sous-espace vectoriel strict de E et $p := \dim(F)$. Démontrer qu'il existe des hyperplans H_1, \ldots, H_{n-p} de \mathbf{R}^n tels que :

$$F = \bigcap_{k=1}^{n-p} H_k.$$

EXERCICE 174 (ÉQUATIONS D'UN SOUS-ESPACE VECTORIEL DE \mathbb{R}^4). — Soit F le sous-espace vectoriel de \mathbb{R}^4 défini par :

$$F := \text{Vect}((1, 1, 1, 1), (1, 2, 3, 4)).$$

Déterminer un système linéaire (S) d'inconnue (x, y, z, t) $\in \mathbb{R}^4$ donc F est l'ensemble solution.

§ 10. DÉTERMINANT

1. FORMES *n*-LINÉAIRES ALTERNÉES

NOTATION. — Dans toute cette partie, *E* désigne un **K**-espace vectoriel de dimension finie $n \ge 1$.

DÉFINITION 175 (FORME *n*-LINÉAIRE ANTISYMÉTRIQUE). — *Une application*

$$f: E^n \longrightarrow \mathbf{K}$$

est dite n-linéaire antisymétrique si elle vérifie les deux conditions suivantes.

1. Caractère n-linéaire. Pour tout $i \in [1, n]$, pour tout $(x_1, ..., x_{i-1}, x_i, y_i, x_{i+1}, ..., x_n) \in E^{n+1}$, pour tout $(\lambda, \mu) \in \mathbb{K}^2$

$$f(x_1,...,x_{i-1},\lambda \cdot x_i + \mu \cdot y_i,x_{i+1},...,x_n) = \lambda \cdot f(x_1,...,x_{i-1},x_i,x_{i+1},...,x_n) + \mu \cdot f(x_1,...,x_{i-1},y_i,x_{i+1},...,x_n)$$

2. Caractère antisymétrique. Pour tout $(x_1,...,x_n) \in E^n$, pour tout $(i,j) \in [1,n]^2$ tel que $i \neq j$

$$f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_{j-1},x_j,x_{j+1},\ldots,x_n) = -f(x_1,\ldots,x_{i-1},x_j,x_{i+1},\ldots,x_{j-1},x_i,x_{j+1},\ldots,x_n)$$

NOTATION. — Soient $(x_1, x_2, ..., x_n) \in E^n$ et $\sigma \in S_n$. On pose :

$$x_{\sigma} := (x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$$

de sorte que, si $(\sigma_1, \sigma_2) \in S_n^2$ alors $x_{\sigma_1 \circ \sigma_2} = (x_{\sigma_2})_{\sigma_1}$.

PROPOSITION 176 (PROPRIÉTÉS D'UNE APPLICATION n**-LINÉAIRE ANTISYMÉTRIQUE).** — Soit $f: E^n \longrightarrow \mathbf{K}$ une application n-linéaire antisymétrique sur E.

1. Annulation sur une famille avec deux vecteurs identiques ou caractère alterné. Pour tout $(i,j) \in [1,n]$ tel que i < j, pour tout $(x_1,\ldots,x_j,\ldots,x_{j-1},x_{j+1},\ldots,x_n) \in E^{n-1}$

$$f(x_1,...,x_{i-1},x_i,x_{i+1},...,x_{j-1},x_i,x_{j+1},...,x_n)=0$$

2. Annulation sur une famille liée. Pour tout $(x_1, x_2, ..., x_n) \in E^n$

$$(x_1, x_2, ..., x_n)$$
 est liée $\Longrightarrow f(x_1, x_2, ..., x_n) = 0$

3. Effet d'une permutation. Pour tout $(x_1, x_2, ..., x_n) \in E^n$, pour tout $\sigma \in S_n$

$$f(x_{\sigma}) := f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \varepsilon(\sigma) \cdot f(x_1, x_2, \dots, x_n)$$

Exemple 177. — L'application

$$f \mid \begin{array}{ccc} \mathcal{M}_{2,1}(\mathbf{R}) \times \mathcal{M}_{2,1}(\mathbf{R}) & \longrightarrow & \mathbf{R} \\ \left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \right) & \longmapsto & x_1 \cdot y_2 - y_1 \cdot x_2 \end{array}$$

est 2-linéaire alternée.

EXERCICE 178 (CALCUL FONDAMENTAL). — Soient $\mathscr{B} = (e_1, e_2, ..., e_n)$ une base de $E, f: E^n \longrightarrow \mathbf{K}$ une application n-linéaire alternée et $(x_1, ..., x_n) \in E^n$. On pose, pour tout $j \in [1, n]$

$$Mat_{\mathscr{B}}(x_{j}) = (x_{1,j}, x_{2,j}, ..., x_{n,j})^{\top}$$

En développant

$$f(x_1, x_2, \dots, x_n) = f\left(\sum_{i_1=1}^n x_{i_1, 1} \cdot e_{i_1}, \sum_{i_2=1}^n x_{i_2, 2} \cdot e_{i_2}, \dots, \sum_{i_n=1}^n x_{i_n, n} \cdot e_{i_n}\right)$$

déterminer un scalaire λ tel que $f(x_1, x_2, ..., x_n) = \lambda \cdot f(e_1, e_2, ..., e_n)$.

Remarque 179. — L'ensemble des formes n linéaires alternées sur E est noté $\bigwedge^n E$, i.e.

$$\bigwedge^{n} E := \left\{ f \in \mathbf{K}^{E^{n}} : f \text{ est } n \text{ linéaire alternée} \right\} \subset \mathbf{K}^{E^{n}}$$

L'ensemble $\bigwedge^n E$ est un sous-espace vectoriel de \mathbf{K}^{E^n} et est donc muni d'une structure naturelle de \mathbf{K} -espace vectoriel.

2. DÉTERMINANT D'UNE FAMILLE DE VECTEURS DANS UNE BASE

NOTATION. — Dans toute cette partie, *E* désigne un **K**-espace vectoriel de dimension finie $n \ge 1$.

Théorème 180 (déterminant d'une famille de vecteurs dans une base). — $Soit \mathcal{B} = (e_1, e_2, ..., e_n)$ une base de E. Il existe une unique application

$$\det_{\mathscr{B}}: E^n \longrightarrow \mathbf{K}$$

qui est n-linéaire alternée et telle que $\det_{\mathcal{B}}(e_1, e_2, ..., e_n) = 1$. De plus

$$\forall (x_1, \dots, x_n) \in E^n \quad \det_{\mathscr{B}}(x_1, x_2, \dots, x_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \cdot \prod_{k=1}^n \left[\operatorname{Mat}_{\mathscr{B}}(x_k) \right]_{\sigma(k)}$$

Théorème 181 (une forme n-linéaire alternée est proportionnelle à $\det_{\mathscr{B}}$). — Soient $\mathscr{B} = (e_1, e_2, ..., e_n)$ une base de E et $f: E^n \longrightarrow \mathbf{K}$ une forme n-linéaire alternée sur E. Alors

$$\forall (x_1, x_2, ..., x_n) \in E^n$$
 $f(x_1, x_2, ..., x_n) = f(e_1, e_2, ..., e_n) \cdot \det_{\mathscr{B}}(x_1, x_2, ..., x_n)$

 $donc\ f\ est\ proportionnelle\ \grave{a}\ det_{\mathscr{B}}.$

Remarque 182. — D'après 180 et 181, $\bigwedge^n E$ est une droite vectorielle. Chaque choix de base \mathscr{B} de E produit $\det_{\mathscr{B}}$, qui en est un vecteur directeur.

COROLLAIRE 183 (COMPARAISON DES DÉTERMINANTS ASSOCIÉS À DEUX BASES). — Soient $\mathscr{B} = (e_1, e_2, ..., e_n)$ et $\mathscr{C} = (f_1, f_2, ..., f_n)$ deux bases de E. Alors

- 1. $\forall (x_1, x_2, \dots, x_n) \in E^n \quad \det_{\mathscr{C}}(x_1, x_2, \dots, x_n) = \det_{\mathscr{C}}(\mathscr{B}) \cdot \det_{\mathscr{B}}(x_1, x_2, \dots, x_n)$
- 2. Les scalaires $\det_{\mathscr{C}}(\mathscr{B})$ et $\det_{\mathscr{B}}(\mathscr{C})$ sont non nuls et inverses l'un de l'autre.

PROPOSITION 184 (CARACTÉRISATION DES BASES VIA LE DÉTERMINANT). — Soient $\mathcal{B} = (e_1, e_2, ..., e_n)$ une base de E et $(x_1, ..., x_n) \in E^n$. Alors

 $(x_1,...,x_n)$ est une base de $E \iff \det_{\mathscr{B}}(x_1,...,x_n) \neq 0$

EXERCICE 185. — Déterminer les réels λ tels que la famille

$$\mathcal{B} := (\ u_1 = (\lambda, 1, 1, 1)\ ,\ u_2 = (1, \lambda, 1, 1)\ ,\ u_3 = (1, 1, \lambda, 1)\ ,\ u_4 = (1, 1, 1, \lambda)\)$$

est une base de \mathbb{R}^4 .

3. DÉTERMINANT D'UN ENDOMORPHISME

NOTATION. — Dans toute cette partie, *E* désigne un **K**-espace vectoriel de dimension finie $n \ge 1$.

Lemme 186 (CLÉ POUR LA DÉFINITION DU DÉTERMINANT D'UN ENDOMORPHISME). — Soient $\mathscr{B} = (e_1, e_2, ..., e_n)$, $\mathscr{C} = (f_1, f_2, ..., f_n)$ deux bases de E et u un automorphisme de E. On pose

$$u(\mathscr{B}) := (u(e_1), u(e_2), \dots, u(e_n))$$
 et $u(\mathscr{C}) := (u(f_1), u(f_2), \dots, u(f_n))$ [bases de E]

- 1. $\det_{u(\mathcal{B})}(u(\mathcal{C})) = \det_{\mathcal{B}}(\mathcal{C})$
- 2. $\det_{\mathscr{B}}(u(\mathscr{B})) = \det_{\mathscr{C}}(u(\mathscr{C}))$

Définition 187 (déterminant d'un endomorphisme). — Soit $u \in \mathcal{L}(E)$. Le déterminant de u est défini par

 $\operatorname{Det}(u) := \operatorname{Det}_{\mathscr{B}}(u(e_1), u(e_2), \dots, u(e_n))$ où $\mathscr{B} = (e_1, e_2, \dots, e_n)$ est une base de E [indépendant du choix de \mathscr{B}]

Remarque 188. — Nous observons que $Det(id_E) = 1$.

PROPOSITION 189 (CARACTÉRISATION DES AUTOMORPHISMES VIA LE DÉTERMINANT). — Soit $u \in \mathcal{L}(E)$. Alors

u est un automorphisme de $E \iff \operatorname{Det}(u) \neq 0$

Théorème 190 (déterminant d'une composée d'endomorphismes). — Soient $(u, v) \in \mathcal{L}(E)^2$. Alors

$$Det(v \circ u) = Det(v) \cdot Det(u)$$

COROLLAIRE 191 (DÉTERMINANT DE LA RÉCIPROQUE D'UN AUTOMORPHISME). — Soit u un automorphisme de E. Alors

$$\operatorname{Det}(u) \neq 0$$
 et $\operatorname{Det}(u^{-1}) = \operatorname{Det}(u)^{-1}$

EXERCICE 192 (S). — oit s une symétrie vectorielle de E. Calculer Det(s).

4. DÉTERMINANT D'UNE MATRICE CARRÉE

NOTATION. — On note \mathcal{B}_0 la base canonique de $\mathcal{M}_{n,1}(\mathbf{K})$ et, pour tout $A \in \mathcal{M}_n(\mathbf{K})$ et $(i,j) \in [1,n]$, on note $A_{i,\bullet}$ désigne la i-ième ligne de A et $A_{\bullet,j}$ la j-ième colonne de A, i.e.

$$A_{i,\bullet} := ([A]_{i,1}, [A]_{i,2}, \dots, [A]_{i,n}) \in \mathbf{K}^n \quad \text{ et } \quad A_{\bullet,j} := \begin{pmatrix} [A]_{1,j} \\ [A]_{2,j} \\ \vdots \\ [A]_{n,j} \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{K})$$

DÉFINITION 193 (DÉTERMINANT D'UNE MATRICE CARRÉE). — L'application

$$\text{Det} \left| \begin{array}{ccc} \mathcal{M}_n(\mathbf{K}) & \longrightarrow & \mathbf{K} \\ A & \longmapsto & \text{Det}(A) := \text{Det}_{\mathscr{B}_0} \left(A_{\bullet,1}, A_{\bullet,2}, \dots, A_{\bullet,n} \right) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \cdot \prod_{k=1}^n \left[A \right]_{k,\sigma(k)}$$

est l'unique application

- 2. linéaire par rapport à chacune des colonnes
- 2. alternée par rapport aux colonnes (l'échange de deux colonnes a pour effet de multiplier le déterminant par −1)
- 2. valant 1 sur la matrice I_n .

Remarque 194. — Le déterminant de $A \in \mathcal{M}_n(\mathbf{K})$ est une expression polynomiale en les coefficients de la matrice A.

EXERCICE 195. — Calculer les déterminants des matrices

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 1 \\ 2 & 2 & -4 \end{pmatrix}$$

Proposition 196 (déterminant d'une matrice vs. déterminant de l'application linéaire associée). — $Soit A \in \mathcal{M}_n(\mathbf{K})$. On note

$$\varphi_A \mid \mathcal{M}_{n,1}(\mathbf{K}) \longrightarrow \mathcal{M}_{n,1}(\mathbf{K})$$

$$X \longmapsto AX$$

l'application linaire canoniquement associée. Alors

$$Det(A) = Det(\varphi_A)$$

PROPOSITION 197 (DÉTERMINANT D'UN PRODUIT DE MATRICES CARRÉES). — Pour tout $(A, B) \in \mathcal{M}_n(\mathbf{K})^2$

$$Det(AB) = Det(A) \cdot Det(B)$$

et, pour tout $(\lambda, A) \in \mathbf{K} \times \mathcal{M}_n(\mathbf{K})$

$$\operatorname{Det}(\lambda \cdot A) = \lambda^n \cdot \operatorname{Det}(A)$$

THÉORÈME 198 (CARACTÉRISATION DES MATRICES INVERSIBLES PAR LE DÉTERMINANT). —

$$\forall A \in \mathcal{M}_n(\mathbf{K}), A \in \mathrm{GL}_n(\mathbf{K}) \iff \mathrm{Det}(A) \neq 0$$

PROPOSITION 199 (MORPHISME DE GROUPES INDUIT PAR Det). — L'application déterminant induit l'application

$$\left| \begin{array}{ccc} (\mathrm{GL}_n(\mathbf{K}), \times) & \longrightarrow & (\mathbf{K}^*, \times) \\ A & \longmapsto & \mathrm{Det}(A) \end{array} \right|$$

qui est un morphisme de groupes.

EXERCICE 200 (GROUPE SPÉCIAL LINÉAIRE). — Que dire de $SL_n(\mathbf{K}) := \{A \in \mathcal{M}_n(\mathbf{K}) : Det(A) = 1\}$?

THÉORÈME 201 (DÉTERMINANT D'UNE MATRICE VS. DÉTERMINANT DE SA TRANSPOSÉE). —

$$\forall A \in \mathcal{M}_n(\mathbf{K}), \quad \text{Det}(A) = \text{Det}(A^\top)$$

COROLLAIRE 202 (PROPRIÉTÉS DU DÉTERMINANT D'UNE MATRICE PAR RAPPORT À SES LIGNES). — L'application

Det:
$$\mathcal{M}_n(\mathbf{K}) \longrightarrow \mathbf{K}$$

est:

- 1. linéaire par rapport à chacune des lignes
- 2. alternée par rapport aux lignes (l'échange de deux lignes a pour effet de multiplier le déterminant par –1)

EXERCICE 203 (C). — alculer le déterminant de la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 2 & 4 & 6 \end{pmatrix}$.

5. CALCULS DE DÉTERMINANTS DE MATRICES

Théorème 204 (effet d'une opération élémentaire sur le déterminant). — $Soit A \in \mathcal{M}_n(\mathbf{R})$.

1. Transposition. Soit $(i, j) \in [1, n]^2$ tel que $i \neq j$. Alors

$$\mathrm{Det}(A) = -1 \cdot \mathrm{Det}(A \quad [C_i \leftrightarrow C_j]) \quad et \quad \mathrm{Det}(A) = -1 \cdot \mathrm{Det}(A \quad [L_i \leftrightarrow L_j])$$

2. Dilatation. Soient $i \in [1, n]$ et $\lambda \in \mathbf{K}^*$. Alors

$$\operatorname{Det}(A) = \frac{1}{\lambda} \cdot \operatorname{Det}(A \quad [C_i \leftarrow \lambda \cdot C_i]) \quad et \quad \operatorname{Det}(A) = \frac{1}{\lambda} \cdot \operatorname{Det}(A \quad [L_i \leftarrow \lambda \cdot L_i])$$

3. Transvection. Soient $(i, j) \in [1, n]^2$ tel que $i \neq j$ et $\lambda \in \mathbf{K}$. Alors

$$\mathrm{Det}(A) = \mathrm{Det}(A \quad [C_j \leftarrow C_j + \lambda \cdot C_i]) \quad et \quad \mathrm{Det}(A) = \mathrm{Det}(A \quad [L_j \leftarrow L_j + \lambda \cdot L_i])$$

EXERCICE 205. — Exprimer le déterminant de la matrice

$$A := \begin{pmatrix} 1 & 0 & 1 & 2 \\ 1 & 2 & 3 & 1 \\ 2 & -1 & 2 & 0 \\ 1 & 2 & -3 & 3 \end{pmatrix}$$

en fonction du déterminant d'une matrice triangulaire supérieure, avec des coefficients diagonaux tous égaux à 1. $\ \square$

DÉFINITION 206 (MINEUR ET COFACTEUR). — Soient $A \in \mathcal{M}_n(\mathbf{K})$ et $(i, j) \in [1, n]^2$.

- 1. La matrice $A_{i,j} \in \mathcal{M}_{n-1}(\mathbf{K})$ est la matrice obtenue en supprimant la i-ème ligne et la j-ième colonne de A.
- $2. \ \ Le \ mineur \ de \ A \ associ\'e \ au \ couple \ (i,j) \ est$

$$Det(A_{i,j})$$

3. Le cofacteur de A associé au couple (i, j) est

$$C_{i,j} := (-1)^{i+j} \cdot \operatorname{Det}(A_{i,j})$$

EXERCICE 207. — Calculer tous les cofacteurs de la matrice $A := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

LEMME 208 (CLÉ POUR LE DÉVELOPPEMENT D'UN DÉTERMINANT SUIVANT UNE LIGNE/COLONNE). — Soient $\mathcal{B}_0 = (X_1, ..., X_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbf{K})$ et $A \in \mathcal{M}_n(\mathbf{K})$.

- 1. $\operatorname{Det}(A_{\bullet,1},...,A_{\bullet,n-1},X_n) = \operatorname{Det}(A_{n,n})$
- 2. Pour tout $(i, j) \in [1, n]^2$

$$\operatorname{Det}\left(A_{\bullet,1},\ldots,A_{\bullet,j-1},X_{i},A_{\bullet,j+1},\ldots,A_{\bullet,n}\right) = (-1)^{i+j} \cdot \operatorname{Det}(A_{i,j})$$

Théorème 209 (développement d'un déterminant suivant une ligne/colonne). — Soient $A \in \mathcal{M}_n(\mathbf{K})$.

1. Pour tout $i \in [1, n]$

$$Det(A) = \sum_{j=1}^{n} (-1)^{i+j} \cdot [A]_{i,j} \cdot Det(A_{i,j}) \qquad \left[\text{d\'eveloppement suivant la i-i\`eme ligne de A} \right]$$

2. Pour tout $j \in [1, n]$

$$\operatorname{Det}(A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot [A]_{i,j} \cdot \operatorname{Det}(A_{i,j}) \qquad \left[\text{d\'eveloppement suivant la j-i\`eme colonne de A} \right]$$

EXERCICE 210. — Calculer le déterminant de $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$.

PROPOSITION 211 (DÉTERMINANT D'UNE MATRICE TRIANGULAIRE). — Soit $A \in \mathcal{M}_n(\mathbf{K})$. Si A est triangulaire (inférieure ou supérieure), alors

$$\operatorname{Det}(A) = \prod_{k=1}^{n} [A]_{k,k}$$
 [produit des éléments diagonaux]

Exemple 212. —
$$\operatorname{Det} \begin{pmatrix} 2 & 8 & 1 & 7 \\ 0 & -3 & 1 & 3 \\ 0 & 0 & -7 & 5 \\ 0 & 0 & 0 & 6 \end{pmatrix} = 252$$

Théorème 213 (déterminant de Vandermonde). — Soient $(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbf{K}^n$. On pose

Alors

$$\mathrm{Det}(V(\alpha_1,\alpha_2,\ldots,\alpha_n)) = \prod_{1 \leqslant i < j \leqslant n} (\alpha_j - \alpha_i)$$

6. COMATRICE

DÉFINITION 214 (COMATRICE). — Soit $A \in \mathcal{M}_n(\mathbf{K})$. La comatrice de A, notée Com(A), est la matrice de $\mathcal{M}_n(\mathbf{K})$ définie par

 $\forall (i, j) \in [1, n]^2 \quad [Com(A)]_{i,j} = C_{i,j} = (-1)^{i+j} \cdot Det(A_{i,j})$

THÉORÈME 215 (RELATION FONDAMENTALE ENTRE UNE MATRICE ET SA COMATRICE). — Pour tout $A \in \mathcal{M}_n(\mathbf{K})$

$$A \times \text{Com}(A)^{\top} = \text{Com}(A)^{\top} \times A = \text{Det}(A) \cdot I_n$$

Théorème 216 (expression de l'inverse d'une matrice inversible). — Si $A \in GL_n(K)$ alors

$$A^{-1} = \frac{1}{\operatorname{Det}(A)} \cdot \operatorname{Com}(A)^{\top}$$

EXERCICE 217 (J). — ustifier que la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$ est inversible et calculer son inverse.