CONCOURS D'ADMISSION 2016

COMPOSITION DE MATHÉMATIQUES -B - (X)

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

Toute affirmation doit être clairement et complètement justifiée.

On considère une variable aléatoire X discrète définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ dont la loi est donnée par :

$$\forall i \in \mathbb{N}, \quad \mathbb{P}(X = x_i) = p_i \geqslant 0 \quad \text{avec} \quad \sum_{i=0}^{+\infty} p_i = 1,$$

et où $(x_i)_{i\geqslant 0}$ est une suite de réels strictement positifs distincts. On suppose que X admet une espérance finie notée $m:=\mathbb{E}(X)>0$.

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires définies sur $(\Omega, \mathscr{A}, \mathbb{P})$, indépendantes et identiquement distribuées, de même loi que X. On note $(S_k)_{k\geqslant 0}$ ses sommes partielles définies par

$$S_0 = 0$$
, et pour $n \geqslant 1$, $S_n = \sum_{k=1}^n X_k$.

L'objet de ce problème est l'étude du nombre (aléatoire) d'éléments de la suite $(S_n)_{n\geqslant 0}$ qui appartiennent à l'intervalle [a,b], défini pour $\omega\in\Omega$ par

$$N(a,b)(\omega) = \operatorname{Card}\{k \in \mathbb{N} \mid S_k(\omega) \in [a,b]\} = \sum_{k=0}^{+\infty} \mathbb{1}_{(S_k \in [a,b])}(\omega),$$

et en particulier le comportement de N(a, b) quand a et b tendent vers l'infini.

Première partie

1a. Justifier que pour tous $\ell \ge 0$ et $n \in \mathbb{N}$, $(N(0,\ell) = n+1) = (S_n \le \ell < S_{n+1})$ à un ensemble négligeable près. En déduire que, à des ensembles négligeables près,

$$(S_n \leqslant \ell) = (N(0,\ell) \geqslant n+1)$$
 et $(S_n \geqslant \ell) \subset (N(0,\ell) \leqslant n+1)$.

1b. On suppose dans cette question que X admet de plus une variance finie V. Montrer alors que

$$\forall \varepsilon > 0, \ \forall n \geqslant 1, \quad \mathbb{P}(S_n \leqslant n(m - \varepsilon)) \leqslant \frac{V}{\varepsilon^2 n}.$$

2. Soit Y une variable aléatoire à valeurs dans $\mathbb N$ presque sûrement, et qui admet une espérance. Montrer que

$$\mathbb{E}(Y) = \sum_{k=1}^{+\infty} \mathbb{P}(Y \geqslant k).$$

3a. Montrer que pour tous $n \in \mathbb{N}$ et $\ell \geq 0$,

$$\mathbb{P}(S_n \leqslant \ell) \leqslant \mathbb{E}(\exp(\ell - S_n)),$$

puis que

$$\mathbb{P}(S_n \leqslant \ell) \leqslant e^{\ell} \mathbb{E}(\exp(-X))^n.$$

3b. En déduire que $\mathbb{P}(S_n \leq \ell)$ tend vers 0 quand $n \to +\infty$ et que

$$\mathbb{E}(N(0,\ell)) \leqslant \frac{e^{\ell}}{1 - \mathbb{E}(\exp(-X))}.$$

3c. Montrer que pour tous $x \in \mathbb{R}$, $\ell \geqslant 0$, $k \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$,

$$\mathbb{P}(S_{n-1} < x \leqslant S_n, \ N(x, x+\ell) \geqslant k) \leqslant \mathbb{P}(S_{n-1} < x \leqslant S_n) \mathbb{P}(N(0, \ell) \geqslant k),$$

puis que

$$\mathbb{E}(N(x, x + \ell)) \leqslant \frac{e^{\ell}}{1 - \mathbb{E}(\exp(-X))}.$$

Deuxième partie

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Si f est bornée, on note

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$$

sa norme uniforme. On appelle support de f l'adhérence de $\{x \in \mathbb{R} \mid f(x) \neq 0\}$. En particulier, si x n'appartient pas au support de f, alors f(x) = 0.

Soit K > 0 et $g : \mathbb{R} \to \mathbb{R}$ une fonction positive bornée à support dans [0, K]. On va étudier la suite de fonctions $f_n : \mathbb{R} \to \mathbb{R}$ définies pour $n \ge 0$ par

$$f_n(x) = \sum_{k=0}^{n} \mathbb{E}(g(x - S_k)).$$

4a. Montrer que pour tout $x \in \mathbb{R}$, la suite $(f_n(x))_{n \ge 0}$ est croissante. On note f(x) sa limite dans $\mathbb{R} \cup \{+\infty\}$.

4b. Montrer que si $g = \mathbb{1}_{[0,K]}$, alors $f(x) = \mathbb{E}(N(x - K, x))$.

4c. En déduire que pour tous $x \in \mathbb{R}$ et $n \in \mathbb{N}$,

$$0 \leqslant f_n(x) \leqslant ||g||_{\infty} \frac{e^K}{1 - \mathbb{E}(\exp(-X))}.$$

4d. Conclure que la suite de fonctions f_n converge simplement vers une fonction f positive, bornée et dont le support est inclus dans \mathbb{R}^+ .

5. Soit Y une variable aléatoire discrète, indépendante de X, et $\varphi : \mathbb{R}^2 \to \mathbb{R}$ une fonction bornée. Montrer que

$$\mathbb{E}(\varphi(X,Y)) = \sum_{i=0}^{+\infty} p_i \mathbb{E}(\varphi(x_i,Y)).$$

6a. Montrer que pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$,

$$f_{n+1}(x) = g(x) + \sum_{i=0}^{+\infty} p_i f_n(x - x_i).$$

6b. Montrer que la fonction f vérifie l'égalité suivante sur \mathbb{R}

$$f(x) = g(x) + \sum_{i=0}^{+\infty} p_i f(x - x_i).$$
 (E)

7. Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction bornée qui vérifie $h(x) = \sum_{i=0}^{+\infty} p_i h(x - x_i)$ pour tout $x \in \mathbb{R}$.

7a. Montrer que pour tous $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on a $h(x) = \mathbb{E}(h(x - S_n))$.

7b. En déduire que si de plus le support de h est inclus dans \mathbb{R}^+ , alors pour tout $x \in \mathbb{R}$, h(x) = 0.

7c. Conclure qu'il existe une unique fonction bornée à support dans \mathbb{R}^+ solution de (E).

8a. Montrer que l'ensemble $\Lambda_X := \bigcup_{n \in \mathbb{N}} \{y \in \mathbb{R} \mid \mathbb{P}(S_n = y) > 0\}$ est dénombrable et inclus dans \mathbb{R}^+ . On se donne une énumération de cet ensemble : $\Lambda_X = \{y_i \mid i \in \mathbb{N}\}$.

8b. Montrer que pour tout $x \in \mathbb{R}$,

$$f_n(x) = \sum_{k=0}^n \sum_{i=0}^{+\infty} \mathbb{P}(S_k = y_i) g(x - y_i).$$

8c. En déduire qu'il existe une suite de réels positifs $(q_i)_{i\geq 0}$ telle que pour tout $x\in\mathbb{R}$,

$$f(x) = \sum_{i=0}^{+\infty} q_i g(x - y_i), \quad \text{et} \quad \sum_{i \in \mathbb{N}, \ y_i \in [x - K, x]} q_i = \mathbb{E}(N(x - K, x)).$$

9a. Dans la formule précédente, montrer que la convergence de la série est normale sur tout segment de \mathbb{R} . On pourra utiliser la question 3c.

9b. On suppose que q est continue. Montrer que f est uniformément continue.

9c. On suppose que g est de classe \mathscr{C}^1 . Montrer que g' bornée. En déduire que f est de classe \mathscr{C}^1 , que f' est bornée et uniformément continue et que pour tout $x \in \mathbb{R}$,

$$f'(x) = g'(x) + \sum_{i=0}^{+\infty} p_i f'(x - x_i).$$

Troisième partie

Soit Λ un sous-ensemble non vide de \mathbb{R}_{*}^{+} tel que

$$\forall (x,y) \in \Lambda^2, \quad x+y \in \Lambda.$$

On dit que Λ est stable par addition.

10a. Montrer si $(x,y) \in \Lambda^2$, $(k,n) \in \mathbb{N} \times \mathbb{N}^*$ et $k \leq n$, alors $nx + k(y-x) \in \Lambda$.

On définit

$$\Gamma = \{ z \in \mathbb{R}_+^* \mid \exists (x, y) \in \Lambda, \ z = y - x \}, \text{ et } r(\Lambda) = \inf \Gamma.$$

10b. Donner deux exemples de tels ensembles Λ , l'un pour lequel $r(\Lambda) > 0$ et l'autre pour lequel $r(\Lambda) = 0$.

11. Dans cette question, on suppose que $r(\Lambda) > 0$.

11a. Montrer qu'il existe $(a,b) \in \Lambda^2$ tels que $b-a \in [r(\Lambda), 2r(\Lambda)]$.

On note d = b - a.

11b. Soient $k, n \in \mathbb{N}$ tels que $k \leq n - 1$. Montrer que

$$\Lambda \cap [na + kd, na + (k+1)d] = \{na + kd, na + (k+1)d\}.$$

- **11c.** Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que $n_0 a + n_0 d > (n_0 + 1)a$ puis qu'il existe $k \in \mathbb{N}$ tel que a = kd.
- **11d.** En déduire que $\Lambda \subset d\mathbb{Z}$, où $d\mathbb{Z} = \{kd \mid k \in \mathbb{Z}\}.$
- 12. On suppose maintenant que $r(\Lambda) = 0$.
- **12a.** Soit $\eta > 0$. Montrer qu'il existe $A \ge 0$ tel que pour pour tout x > A,

$$\Lambda \cap [x, x + \eta] \neq \emptyset$$
.

12b. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction uniformément continue. On suppose que pour toute suite $(x_n)_{n\geqslant 0}$ à valeurs dans Λ telle que $x_n \to +\infty$, $f(x_n) \to 0$ quand $n \to +\infty$. Montrer que $f(x) \to 0$ quand $x \to +\infty$.

Quatrième partie

On suppose dans cette partie que pour tout $d \ge 0$,

$$\mathbb{P}(X \in d\mathbb{Z}) < 1.$$

13. On considère une fonction h uniformément continue et bornée sur \mathbb{R} telle que pour tout $x \in \mathbb{R}$, $h(x) \leq h(0)$ et

$$h(x) = \sum_{i=0}^{+\infty} p_i h(x - x_i).$$

On rappelle que pour tous $x \in \mathbb{R}$ et $n \in \mathbb{N}$, $h(x) = \mathbb{E}(h(x - S_n))$ (question 7a).

- **13a.** Montrer que pour tout $n \in \mathbb{N}$ et $x \ge 0$ tels que $\mathbb{P}(S_n = x) > 0$, on a h(-x) = h(0).
- 13b. Montrer que l'ensemble Λ_X défini à la question 8a est stable par addition et que $r(\Lambda_X) = 0$.
- **13c.** En déduire que $h(-x) \to h(0)$ quand $x \to +\infty$.
- **13d.** Conclure que h est une fonction constante.

On suppose dans toute la suite que g est de classe \mathscr{C}^1 , à support dans [0,K] avec K>0. On rappelle que f est la limite croissante des fonctions f_n et l'unique solution bornée et uniformément continue de l'équation (E).

14a. Prouver que la fonction $x \mapsto \sup_{t \geqslant x} f'(t)$ admet une limite finie quand $x \to +\infty$. On note

$$c := \lim_{x \to +\infty} \sup_{t \geqslant x} f'(t).$$

14b. Montrer qu'il existe une suite $y_n \to +\infty$ telle que $f'(y_n) \to c$ quand $n \to +\infty$.

On admet qu'il existe une sous-suite $(t_k)_{k\geqslant 0}$ de $(y_n)_{n\geqslant 0}$ telle que la suite de fonctions $(\xi_k)_{k\geqslant 0}$ définies par

$$\xi_k : \mathbb{R} \to \mathbb{R}, \quad t \mapsto \xi_k(t) = f'(t+t_k)$$

converge uniformément sur tout segment de \mathbb{R} vers une fonction notée ξ .

14c. Montrer que ξ est constante, égale à c.

14d. Conclure que c = 0.

On montrerait de même que $\lim_{x\to +\infty} \inf_{t\geqslant x} f'(t) = 0$, résultat que l'on admet dans toute la suite.

14e. En déduire que $f'(t) \to 0$ quand $t \to +\infty$.

14f. Montrer alors que pour tout $\ell \geqslant 0$, $f(t+\ell) - f(t) \to 0$ quand $t \to +\infty$.

On suppose dans toute la suite de cette partie que seul un nombre fini de p_i sont strictement positifs, et on pose

$$g_0(x) = \begin{cases} \mathbb{P}(X > x) & \text{si } x \geqslant 0, \\ 0 & \text{si } x < 0. \end{cases}$$

On admet que g_0 est continue par morceaux et à support dans un segment de \mathbb{R}^+ , intégrable sur \mathbb{R} , et que $\int_0^{+\infty} g_0(t)dt = \mathbb{E}(X)$.

On note \mathscr{F} l'ensemble des fonctions positives, bornées et à support dans un segment de \mathbb{R}^+ . En utilisant la deuxième partie, pour tout $g \in \mathscr{F}$, on note Lg l'unique solution de (E) bornée à support dans \mathbb{R}^+ .

Nous dirons que la suite $(t_k)_{k\geqslant 0}$ satisfait la propriété (\mathscr{P}) si $t_k\to +\infty$ et s'il existe une fonction continue bornée $\mu:\mathbb{R}^+\to\mathbb{R}^+$, telle que pour toute fonction g de \mathscr{F} continue par morceau,

$$Lg(t_k) \to \int_0^{+\infty} g(t)\mu(t)dt$$
 quand $k \to +\infty$.

On admet que pour toute suite $(x_n)_{n\geqslant 0}$ tendant vers l'infini, il existe une sous suite $(t_k)_{k\geqslant 0}$ de $(x_n)_{n\geqslant 0}$ qui satisfait la propriété (\mathscr{P}) .

15a. Montrer, en utilisant la question **14f**, que pour tous $g \in \mathscr{F} \cap \mathscr{C}^1(\mathbb{R}, \mathbb{R}^+)$ et $\ell \geqslant 0$,

$$\int_0^{+\infty} g(t)(\mu(t+\ell) - \mu(t))dt = 0.$$

5

15b. En déduire que μ est constante.

16a. Montrer que $Lg_0(x) = 1$ pour $x \ge 0$ et $Lg_0(x) = 0$ pour x < 0.

16b. En déduire que $\mu(t) = \frac{1}{\mathbb{E}(X)}$ pour tout $t \ge 0$.

17. Conclure que pour tout g de \mathscr{F} continue par morceaux,

$$\sum_{k=0}^{+\infty} \mathbb{E}(g(x-S_k)) \to \frac{1}{\mathbb{E}(X)} \int_{-\infty}^{+\infty} g(t) dt \quad \text{quand} \quad x \to +\infty.$$

18. Soit $\ell > 0$ fixé. Déterminer le comportement de $\mathbb{E}(N(x, x + \ell))$ quand $x \to +\infty$. Interpréter le résultat. Ce résultat est-il vrai s'il existe d > 0 tel que $\mathbb{P}(X \in d\mathbb{Z}) = 1$?