PROGRAMME DE COLLE POLYNÔMES

§ 1 DÉROULEMENT DE LA COLLE

La colle comporte deux phases.

- Rédaction d'une question de cours (8 points 20 minutes maximum): la colle débute par une des questions de cours listées dessous.
- (2) Résolution d'exercices proposés par l'examinateur (12 points) : la colle se poursuit avec des exercices que vous ne connaissez pas à l'avance et que vous résoudrez au tableau, sans temps de préparation sur feuille.

§ 2 PROGRAMME

Chapitre 16 • Polynômes [PDF]

- Construction de l'algèbre $\mathbb{K}[X]$.
- Synthèse des opérations définies sur $\mathbb{K}[X]$.
- Synthèse sur la structure de ($\mathbb{K}[X]$, +, ×,·).
- Degré
- · Divisibilité et division euclidienne
- · Fonctions polynomiales et racines
- Polynômes interpolateurs de Lagrange
- Dérivation

\$ 3 À VENIR

Chapitre 17 « Fractions rationnelles ».

§ 4 QUESTIONS DE COURS

- Q1 Définition du degré d'un polynôme [C16.20]. Définition du coefficient dominant d'un polynôme non nul [C16.22]. Propriétés du degré d'un polynôme [C16.28, énoncé de 1) et 2), démonstrations de 1) sans le cas d'égalité et 2)].
- **Q2** Si $P \in \mathbb{K}[X]$ et si $Q \in \mathbb{K}[X]$ est tel que deg $Q \ge 1$, degré et coefficient dominant de $P \circ Q$ [C16.31, énoncé et démonstration].
- Q3 Définition de l'ensemble des combinaisons linéaires d'une famille finie de polynômes [C16.36]. Propriétés de de l'ensemble des combinaisons linéaires d'une famille finie de polynômes [C16.37, énoncé et démonstration]. Si $n \in \mathbb{N}$, définition de $\mathbb{K}_n[X]$ via une condition sur le degré [C16.39]. Si $n \in \mathbb{N}$, $\mathbb{K}_n[X]$ est l'ensemble des combinaisons linéaires de n+1 monômes [C16.41, énoncé précisé et démonstration].
- Q4 Intégrité de $\mathbb{K}[X]$ [C16.29, énoncé formalisé et démonstration]. Définition de l'ensemble des inversibles de $\mathbb{K}[X]$ [C16.42]. Caractérisation des éléments inversibles de $\mathbb{K}[X]$ [C16.43, énoncé et démonstration].
- Q5 Définition de la relation de divisibilité dans $\mathbb{K}[X]$ [C16.44]. Définition de deux polynômes de $\mathbb{K}[X]$ associés [C16.44]. Critère pour que deux polynômes de $\mathbb{K}[X]$ soient associés [C16.49, énoncé et démonstration].
- **Q6** Théorème de la division euclidienne dans $\mathbb{K}[X]$ [C16.51, énoncé et démonstration].
- Q7 Algorithme de la division euclidienne dans $\mathbb{K}[X]$ [C16.54, énoncé]. Correction totale de l'algorithme de la division euclidienne dans $\mathbb{K}[X]$ [C16.55, énoncé]. Calcul de la division euclidienne de A par B, où A et B sont deux polynômes de $\mathbb{K}[X]$ donnés par l'interrogateur.

Q8 — Critère de divisibilité via la division euclidienne [C16.56, énoncé et démonstration]. Si $B \in \mathbb{K}[X]$ est de degré $n \ge 1$ alors l'application

 $f \mid \begin{matrix} \mathbb{K}[X] & \longrightarrow & \mathbb{K}_{n-1}[X] \\ P & \longmapsto & \text{le reste de la division euclidienne de } P \text{ par } B \end{matrix}$

est linéaire, surjective mais non injective [C16.61, formalisation de la propriété de linéarité et démonstration].

- Q9 Définition de la fonction polynomiale associée à un polynôme [C16.62]. Exemple d'un corps \mathbb{K} et de deux polynômes distincts P,Q de $\mathbb{K}[X]$ dont les fonctions polynomiales associées sont identiques [C16.63, énoncé]. Si $x \in \mathbb{K}$, propriétés de l'application « évaluation d'un polynôme de $\mathbb{K}[X]$ au point x » [C16.64, énoncé formalisé intégral et démonstration de la propriété relative aux multiplications].
- Q10 Définitions d'une racine dans \mathbb{K} d'un polynôme P de $\mathbb{K}[X]$ et du spectre dans \mathbb{K} de P [C16.66]. Calculs de $\operatorname{Spec}_{\mathbb{C}}(P)$ et $\operatorname{Spec}_{\mathbb{R}}(P)$, où P est un polynôme de $\mathbb{R}[X]$ donné par l'interrogateur.
- **Q11** Caractérisation d'un racine par une relation de divisibilité [C16.69, énoncé et démonstration]. Factorisation d'un polynôme connaissant des racines distinctes [C16.70, énoncé et démonstration].
- **Q12** Majoration du nombre de racines d'un polynôme non nul [C16.72, énoncé et démonstration]. Polynômes de $\mathbb{K}[X]$ versus fonctions polynomiales de \mathbb{K} dans \mathbb{K} , lorsque \mathbb{K} est un corps infini [C16.74, énoncé et démonstration].
- **Q13** Définition de l'ordre de multiplicité d'une racine α d'un polynôme $P \in \mathbb{K}[X]$ de degré $n \ge 1$ et inégalité sur mult (α, P) [C16.75, énoncé et démonstration]. Caractérisation de l'ordre de multiplicité d'une racine d'un polynôme par une propriété de divisibilité et une propriété de non-divisibilité [C16.76, énoncé et démonstration].
- Q14 Définition d'un polynôme de $\mathbb{K}[X]$ scindé sur \mathbb{K} [C16.78]. Si $n \in \mathbb{N}^*$, scindage sur \mathbb{C} de $X^n 1$ [C16.80, énoncé]. Multiplicités des racines d'un polynôme de $\mathbb{K}[X]$ scindé sur \mathbb{K} [C16.81, énoncé et démonstration].
- Q15 Formules de Viète ou relation coefficients-racines pour un polynôme de $\mathbb{K}[X]$ scindé sur \mathbb{K} [C16.83, énoncé et démonstration].
- Q16 Si $n \in \mathbb{N}_{\geqslant 2}$, valeurs de $\sum_{\zeta \in \mathbb{U}_n} \zeta$ et de $\prod_{\zeta \in \mathbb{U}_n} \zeta$ à l'aide du scindage sur \mathbb{C} de $X^n 1$ [C16.86, énoncé et démonstration]. Théorème de d'Alembert-Gauß [C16.87, énoncé]. Scindage sur \mathbb{C} d'un polynôme non constant de $\mathbb{C}[X]$ [C16.88, énoncé et démonstration].
- **Q17** Existence et unicité des polynômes interpolateurs élémentaires de Lagrange [C16.89, énoncé et démonstration]. Polynôme interpolateur de Lagrange [C16.90, énoncé et démonstration].
- **Q18** Définition du polynôme dérivé d'un polynôme et de ses polynômes dérivés itérés [C16.94]. Degré du polynôme dérivé [C16.97, énoncé et démonstration]. De l'annulation des polynômes dérivés itérés d'un polynôme [C16.98, énoncé et démonstration].
- **Q19** Propriétés algébriques de la dérivation [C16.99, énoncé intégral et démonstration de 2) et 3)].
- **Q20** Formule de Leibniz dans $\mathbb{K}[X]$ [C16.101, énoncé et démonstration].
- **Q21** Si $(a, k) \in \mathbb{K} \times \mathbb{N}_{\geq 2}$, polynôme dérivé de $(X a)^k$ [C16.100, énoncé et démonstration]. Formule de Taylor exacte dans $\mathbb{K}[X]$ [C16.102, énoncé et démonstration].
- Q22 Caractérisation de l'ordre de multiplicité d'une racine d'un polynôme via les polynômes dérivés itérés [C16.105, énoncé et démonstration]. Application au calcul de mult(α , P), où $P \in \mathbb{K}[X]$ et $\alpha \in \operatorname{Spec}_{\mathbb{K}}(P)$ sont donnés par l'interrogateur.

§ 5 APRÈS LA COLLE

Vous repartirez avec les énoncés des exercices que vous a proposés l'examinateur. Vous collerez cet énoncé sur une feuille simple et vous en rédigerez une solution soignée que vous me remettrez sans faute à la fin du TD du lundi suivant votre colle.