DEVOIR SURVEILLÉ N°7

Samedi 14 janvier – 8h15-11h15

On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Les assertions seront toutes justifiées avec soin, les raisonnements structurés, les résultats encadrés.

§ 1 CLASSE DE SIMILITUDE ET TRACE

Soient un entier $n \ge 2$ et \mathbb{K} un corps. Deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ sont dites <u>semblables</u> s'il existe $P \in GL_n(\mathbb{K})$ tel que $B = PAP^{-1}$. Dans ce cas on note $A \sim B$.

- **Q1** Démontrer que la relation ~ est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{K})$.
- **Q2** Que dire d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ semblable à I_n ?
- Q3 Soient A et B deux matrices semblables de $\mathcal{M}_n(\mathbb{K})$. Démontrer que, pour tout $r \in \mathbb{N}^*$, les matrices A^r et B^r sont semblables.

Soient les trois matrices de $\mathcal{M}_3(\mathbb{K})$ définies par $A_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 3 & 1 & 1 \\ 3 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}$ et $Q = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- **Q4** Calculer les matrices QA_1 et A_2Q .
- Q5 Démontrer que la matrice *Q* est inversible et calculer son inverse, en appliquant l'algorithme du pivot de Gauß sur une matrice augmentée et en expliquant le résultat à l'aide de matrices de transposition/dilatation/transvection.
- **Q6** Que dire des matrices A_1 et A_2 ?

La trace d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$, notée $\operatorname{Tr}(A)$, est la somme de ses coefficients diagonaux, i.e.

$$Tr(A) = \sum_{i=1}^{n} [A]_{i,i}$$
.

- **Q7** Démontrer que, pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.
- **Q8** Soient *A* et *B* deux matrices semblables de $\mathcal{M}_n(\mathbb{K})$. Démontrer que Tr(A) = Tr(B).
- **Q9** Les matrices $A_3 = \begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 2 & 3 & 0 \\ 0 & 5 & 6 & 0 \\ 7 & 0 & 0 & 8 \end{pmatrix}$ et $A_4 = \begin{pmatrix} 0 & 1 & 4 & 0 \\ 2 & 0 & 0 & 3 \\ 5 & 0 & 0 & 6 \\ 0 & 7 & 8 & 0 \end{pmatrix}$ sont-elles semblables?

§ 2 COMMUTANTS DE MATRICES ET CENTRE DE $\mathcal{M}_n(\mathbb{K})$

Soient un entier $n \ge 2$ et \mathbb{K} un corps. Le <u>commutant</u> $\mathscr{C}(A)$ d'une matrice $A \in \mathscr{M}_n(\mathbb{K})$ est l'ensemble des matrices $M \in \mathscr{M}_n(\mathbb{K})$ qui commutent avec A, i.e.

$$\mathscr{C}(A) := \{ M \in \mathscr{M}_n(\mathbb{K}) : AM = MA \}$$
.

Le centre \mathscr{C} de $\mathscr{M}_n(\mathbb{K})$ est l'ensemble des matrices de $\mathscr{M}_n(\mathbb{K})$ qui commutent avec toutes les autres, i.e.

$$\mathcal{C}:=\{M\in\mathcal{M}_n(\mathbb{K})\,:\,\forall\,N\in\mathcal{M}_n(\mathbb{K})\quad MN=NM\}=\bigcap_{A\in\mathcal{M}_n(\mathbb{K})}\mathcal{C}(A)\;.$$

- **Q10** Soit $A \in \mathcal{M}_n(\mathbb{K})$. Démontrer que $\mathcal{C}(A)$ est stable par combinaison linéaire.
- Q11 Soient $\lambda_1, ..., \lambda_n$ des éléments de \mathbb{K} deux-à-deux distincts. On note D la matrice diagonale dont les coefficients diagonaux sont $\lambda_1, ..., \lambda_n$. Démontrer que $\mathscr{C}(D)$ est l'ensemble des matrices diagonales de $\mathscr{M}_n(\mathbb{K})$.
- Q12 Soient $(i,j) \in [1,n]^2$ et $E_{i,j}$ la matrice de $\mathcal{M}_n(\mathbb{K})$ dont tous les coefficients sont nuls, sauf celui d'adresse (i,j) qui vaut 1. Démontrer que, pour tout $M \in \mathcal{M}_n(\mathbb{K})$, $M \in \mathcal{C}\left(E_{i,j}\right)$ si et seulement si les trois conditions suivantes sont vérifiées.
 - (a) Pour tout $k \in [1, n] \setminus \{i\}$, $[M]_{k,i} = 0$.
 - (b) Pour tout $\ell \in [1, n] \setminus \{j\}, [M]_{j,\ell} = 0$.
 - (c) $[M]_{i,i} = [M]_{i,j}$.
- **Q13** Démontrer que $\mathscr{C} = \bigcap_{(i,j) \in [1,n]^2} \mathscr{C}(E_{i,j}).$
- **Q14** En déduire que $\mathscr{C} = \text{Vect}(I_n)$.

§ 3 MATRICES TRIANGULAIRES STRICTES ET NILPOTENCE

Soient un entier $n \ge 3$ et \mathbb{K} un corps. Pour tout $p \in [0, n-2]$, on définit la partie F_p de $\mathcal{M}_n(\mathbb{K})$ par

$$F_p := \left\{ M = \left(m_{i,j} \right) \in \mathcal{M}_n(\mathbb{K}) \, : \, \forall \, (i,j) \in [\![1,n]\!]^2 \quad j-i \leqslant p \Longrightarrow [M]_{i,j} = 0 \right\} \, .$$

L'ensemble F_0 est donc l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ qui sont triangulaires supérieures avec des coefficients diagonaux tous nuls.

- Q15 Soit $p \in [0, n-2]$. Écrire F_p comme l'ensemble des combinaisons linéaires d'une famille finie de matrices de $\mathcal{M}_n(\mathbb{K})$ et en déduire une propriété de stabilité de F_p .
- **Q16** Soit $(A, B) \in F_0 \times F_{n-2}$. Démontrer que la matrice AB est nulle.
- **Q17** Soit $(p,q) \in [0, n-2]^2$ tel que $p+q \le n-3$. Soit $(A,B) \in F_p \times F_q$. Démontrer que $AB \in F_{p+q+1}$.
- **Q18** En déduire que si $A \in F_0$, alors A^n est la matrice nulle.

Q19 — Soient
$$a, b, c, d, e, f, g, h, i, j$$
 des scalaires. Que vaut A^5 si $A := \begin{cases} 0 & 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 & 0 \\ b & c & 0 & 0 & 0 \\ d & e & f & 0 & 0 \\ g & h & i & j & 0 \end{cases}$?

§ 4 FONCTIONS ARITHMÉTIQUES MULTIPLICATIVES ET APPLICATIONS 1

On note P l'ensemble des nombres premiers.

Pour $n \in \mathbb{N}^*$, on note \mathcal{D}_n l'ensemble des nombres entiers naturels divisant n et on écrit $\sum_{d \mid n} = \sum_{d \in \mathcal{D}_n} la$ somme sur

tous les nombres entiers naturels d divisant n.

Une <u>fonction arithmétique</u> est une fonction $f: \mathbb{N}^* \longrightarrow \mathbb{C}$. L'ensemble des fonctions arithmétiques est noté \mathbb{A} . On dit qu'une fonction arithmétique $f \in \mathbb{A}$ est multiplicative si

$$\begin{cases} f(1) \neq 0 \\ \forall (m,n) \in (\mathbb{N}^*)^2, \ m \wedge n = 1 \implies f(mn) = f(m)f(n) \end{cases}$$

On note M l'ensemble des fonctions arithmétiques multiplicatives. On note 1, δ et I les fonctions arithmétiques

On remarque que ces trois fonctions arithmétiques sont multiplicatives.

Si f et g sont deux fonctions arithmétiques, le <u>produit de convolution</u> de f et g est la fonction arithmétique notée f * g définie par

$$\forall n \in \mathbb{N}^*, (f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Q20 — Énoncer le théorème de changement d'indice pour les sommes finies de nombres complexes.

Q21 — Vérifier que δ est un élément neutre pour la loi *.

Pour tout $n \in \mathbb{N}^*$, on note $\mathcal{C}_n = \{(d_1, d_2) \in (\mathbb{N}^*)^2, d_1 d_2 = n\}.$

Q22 — Justifier que, pour tout $n \in \mathbb{N}^*$,

$$(f * g)(n) = \sum_{(d_1, d_2) \in \mathcal{C}_n} f(d_1)g(d_2)$$

Q23 — En déduire que * est commutative.

Q24 — De même, en exploitant l'ensemble $\mathscr{C}'_n = \{(d_1, d_2, d_3) \in (\mathbb{N}^*)^3, \ d_1 d_2 d_3 = n\}$, montrer que * est associative.

Q25 — Que peut-on dire de (A, +, *)?

 $\mathbf{Q26}$ — Soient f et g deux fonctions multiplicatives. Montrer que si

$$\forall p \in \mathscr{P}, \ \forall k \in \mathbb{N}^*, \ f(p^k) = g(p^k)$$

alors f = g.

Q27 — Soient m et n deux entiers naturels premiers entre eux. Montrer que l'application

$$\pi \quad \left| \begin{array}{ccc} \mathscr{D}_n \times \mathscr{D}_m & \longrightarrow & \mathscr{D}_{mn} \\ (d_1, d_2) & \longmapsto & d_1 d_2 \end{array} \right|$$

^{1.} Extrait de la première épreuve du Concours Centrale-Supélec 2020, filière MP

est bien définie et réalise une bijection entre $\mathcal{D}_n \times \mathcal{D}_m$ et \mathcal{D}_{mn} .

Q28 — En déduire que si f et g sont deux fonctions multiplicatives, alors f * g est encore multiplicative.

Q29 — Soit f une fonction multiplicative. Montrer qu'il existe une fonction multiplicative g telle que

$$\forall p \in \mathscr{P}, \ \forall k \in \mathbb{N}^*, \ g(p^k) = -\sum_{i=1}^k f(p^i)g(p^{k-i})$$

et qu'elle vérifie $f * g = \delta$.

Q30 — Que dire de l'ensemble M muni de la loi *?

Soit μ la fonction arithmétique définie par

$$\mu(n) = \begin{cases} 1 & \text{si } n = 1 \\ (-1)^r & \text{si } n \text{ est le produit de } r \text{ nombres premiers distincts} \\ 0 & \text{sinon} \end{cases}$$

Q31 — Montrer que μ est multiplicative.

Q32 — Montrer que $\mu * \mathbf{1} = \delta$.

Q33 — Soit $f \in \mathbb{A}$ et soit $F \in \mathbb{A}$ telle que, pour tout $n \in \mathbb{N}^*$, $F(n) = \sum_{d \mid n} f(d)$. Montrer que pour tout $n \in \mathbb{N}^*$,

$$f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$$

On note φ la fonction indicatrice d'Euler, définie par :

$$\forall n \in \mathbb{N}^*, \ \varphi(n) = \operatorname{Card}\{k \in [1, n], \ k \land n = 1\}$$

On admet ² que la fonction $\varphi \in M$.

Q34 — Soient $p \in \mathcal{P}$ et $k \in \mathbb{N}^*$. Calculer $\varphi(p^k)$.

Q35 — Démontrer que $\varphi = \mu * \mathbf{I}$.

Soient f une fonction arithmétique, $n \in \mathbb{N}^*$ et $g = f * \mu$. On note $M = (m_{i,j})$ la matrice de $\mathcal{M}_n(\mathbb{C})$ de terme général $m_{i,j} = f(i \wedge j)$. On définit aussi la matrice des diviseurs $D = (d_{i,j})$ par

$$d_{i,j} = \begin{cases} 1 & \text{si } j \text{ divise } i, \\ 0 & \text{sinon} \end{cases}$$

Soit M' la matrice de terme général $m'_{i,j} = \begin{cases} g(j) & \text{si j divise } i, \\ 0 & \text{sinon} \end{cases}$.

Q36 — Montrer que $M = M'D^{\top}$.

^{2.} Il s'agit d'un théorème du programme de MPI