DEVOIR SURVEILLÉ N°2

Mercredi 5 octobre - 8h00-10h00

On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Les assertions seront toutes justifiées avec soin, les raisonnements structurés, les résultats encadrés.

EXERCICE 1 — UNE APPLICATION DE LA FACTORISATION PAR L'ANGLE MOITIÉ

Q1 — Soit $t \in \mathbb{R}$. Énoncer et démontrer la factorisation par l'angle moitié de $1 + e^{it}$ et $1 - e^{it}$.

Soient
$$\theta \in]-\pi,\pi[$$
 et $z:=\frac{1-e^{i\theta}}{1+e^{i\theta}}.$

- Q2 Justifier que le nombre z est bien défini.
- Q3 Sans calculer la forme algébrique de z, établir que z est un nombre imaginaire pur.
- Q4 En utilisant la factorisation par l'angle moitié, calculer la forme algébrique de z.

EXERCICE 2 — AUTOUR DES RACINES n-IÈMES DE L'UNITÉ OÙ $n \in \mathbb{N}_{\geq 2}$

Soient un entier $n \ge 2$, $\mathbb{U}_n := \{z \in \mathbb{C} : z^n = 1\}$ et $\omega_n := e^{i\frac{2\pi}{n}}$.

Q5 — Démontrer que $\mathbb{U}_n = \{\omega_n^k : k \in [0, n-1]\}$ et que les n éléments $\omega_n^0, \omega_n^1, \omega_n^2, \dots, \omega_n^{n-1}$ sont deux-à-deux distincts.

Q6 — Calculer
$$\prod_{\zeta \in \mathbb{U}_n} \zeta$$
 et, pour tout $p \in \mathbb{Z}$, $S_p := \sum_{\zeta \in \mathbb{U}_n} \zeta^p$.

Soit $(O; \vec{u}, \vec{v})$ un repère orthonormé du plan \mathcal{P} . On définit les points $M_0, M_1, M_2, \ldots, M_{n-1}$ comme étant les points d'affixes respectives $\omega_n^0, \omega_n^1, \omega_n^2, \ldots, \omega_n^{n-1}$.

Q7 — Calculer la longueur de chacun des côtés du polygone $P_n := M_0 M_1 M_2 \dots M_{n-1}$. Qu'en déduire quant au polygone P_n ?

Q8 — Étudier le comportement asymptotique du périmètre p_n du polygone P_n , lorsque n tend vers +∞.

EXERCICE 3 — ÉQUATIONS ALGÉBRIQUES

- **Q9** Démontrer que tout nombre complexe non nul possède deux racines carrées complexes opposées l'une de l'autre.
- **Q10** Résoudre l'équation $z^2 = 7 6\sqrt{2}i$ d'inconnue $z \in \mathbb{C}$.
- **Q11** Résoudre l'équation $z^3 + (1+i)z^2 + (i-1)z i = 0$ d'inconnue $z \in \mathbb{C}$, sachant qu'elle possède une solution imaginaire pure.
- **Q12** Résoudre l'équation $(z-i)^6 + (z+i)^6 = 0$ d'inconnue $z \in \mathbb{C}$.

EXERCICE 4 — NOMBRES COMPLEXES ET GÉOMÉTRIE

Soit $(O; \vec{u}, \vec{v})$ un repère orthonormé du plan \mathcal{P} .

Q13 — Soient z_1 et z_2 deux nombres complexes non nuls. Démontrer que $\arg(z_1z_2) \equiv \arg(z_1) + \arg(z_2)$ [2 π].

Q14 — Déterminer l'ensemble \mathscr{E}_1 des points M d'affixe z vérifiant $\arg\left(\frac{z}{\sqrt{3}i-1}\right) \equiv \frac{\pi}{6} \ [2\pi]$.

Q15 — Déterminer l'ensemble \mathcal{E}_2 des points M d'affixe z vérifiant $\left| \frac{z-2+i}{z-1+2i} \right| = 4$.

 ${f Q16}$ — Déterminer la nature et les éléments caractéristiques de la transformation géométrique :

$$f \mid \begin{array}{c} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & (1+i\sqrt{3})z+\sqrt{3}(1-i) \end{array}$$

EXERCICE 5 — NOYAUX DE DIRICHLET ET DE FÉJER

Soient $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ tel que $x \not\equiv 0$ [2 π].

Q17 — Calculer
$$D_n(x) := \sum_{k=-n}^n e^{ikx}$$
.

Q18 — Calculer
$$F_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$$
.