UN CORRIGÉ DU DEVOIR LIBRE N°14

Soit un entier $n \ge 2$. On considère l'équation

$$(E_n)$$
 $2 \cdot n \cdot \tan(x) = \tan(n \cdot x)$

d'inconnue $x \in \left]0, \frac{\pi}{2n}\right[$. *On note*

$$Sol_n := \left\{ x \in \left[0, \frac{\pi}{2n} \right[: 2 \cdot n \cdot \tan(x) = \tan(n \cdot x) \right\}$$

l'ensemble solution de (E_n) .

Q1 — Démontrer qu'il existe $\delta_n \in \left]0, \frac{\pi}{2n}\right[$ tel que $Sol_n \cap]0, \delta_n[=\emptyset]$.

Introduisons la fonction

$$f_n \mid \begin{bmatrix} 0, \frac{\pi}{2n} \end{bmatrix} \longrightarrow \mathbb{R}$$

$$x \longmapsto 2 \cdot n \cdot \tan(x) - \tan(n \cdot x)$$

Comme pour tout $x \in \left[0, \frac{\pi}{2n}\right]$, $x \in \left[0, \frac{\pi}{2}\right]$ et $n \cdot x \in \left[0, \frac{\pi}{2}\right]$, la fonction f_n est bien définie. Elle est en outre de classe \mathscr{C}^{∞} sur $\left[0, \frac{\pi}{2n}\right]$ par théorème d'opérations.

Le sujet propose d'étudier les racines de la fonction f_n , plus exactement sa plus petite racine strictement positive, en commençant par démontrer qu'une telle existe.

Il est classique d'étudier les variations de la fonction f_n , à l'aide du calcul différentiel, pour en déduire des propriétés des racines de f_n (e.g. leur nombre), grâce au théorème de la bijection appliqué de manière idoine (sur plusieurs intervalles le cas échéant). Le calcul de la dérivée de f_n donne

$$\forall x \in \left[0, \frac{\pi}{2n}\right[\quad f'_n(x) = 2n(1 + \tan^2(x)) - n(1 + \tan^2(nx)) = n \cdot \left(1 + 2 \cdot \tan^2(x) - \tan^2(n \cdot x)\right)$$

et étudier le signe de cette quantité paraît fort délicat. C'est au fond ici que réside la difficulté et le charme du sujet. À l'aide d'un traceur, on peut cependant conjecturer que f_n a une unique racine strictement positive pour $n \in [2, 10]$.

Dans cette question, nous cherchons à démontrer qu'il existe $\delta_n \in \left]0, \frac{\pi}{2n}\right[$ tel que la fonction f_n ne s'annule pas sur l'intervalle $]0, \delta_n[$, sachant qu'une étude du signe de la dérivée f_n paraît hors de portée. Comme

$$f_n'(x) \xrightarrow[x \to 0^+]{} n > 0$$

il existe $\delta_n > 0$ tel que

$$\forall \, x \in \left[0, \frac{\pi}{2n}\right[\, \cap \, [0, \delta_n[\quad f_n'(x) > 0] \right]$$

Quitte à remplacer δ_n par min $\left\{\delta_n, \frac{\pi}{4n}\right\}$, nous pouvons supposer $\delta_n \in \left]0, \frac{\pi}{2n}\right[$ et ainsi obtenir

$$\forall x \in [0, \delta_n[f'_n(x) > 0$$

La fonction f_n est donc strictement croissante sur l'intervalle $[0, \delta_n[$ et comme elle est nulle en 0, il vient

$$\forall x \in [0, \delta_n[f_n(x) > 0]$$

La fonction f_n ne s'annule donc pas sur]0, δ_n [.]

Q2 — Démontrer que $Sol_n \neq \emptyset$.

D'après Q1, $f_n\left(\frac{\delta_n}{2}\right) > 0$. Comme $f_n(x)$ tend vers $-\infty$ lorsque x tend vers $\frac{\pi}{2n}$ par valeurs inférieures, il existe $\gamma_n \in \left[\frac{\delta_n}{2}, \frac{\pi}{2n}\right]$ tel que $f_n(\gamma_n) < 0$.

La fonction f_n est continue sur le segment $\left[\frac{\delta_n}{2}, \gamma_n\right]$ prend des valeurs de signes opposés aux extrémités. D'après le théorème

des valeurs intermédiaires, la fonction f_n s'annule au moins une fois sur

$$\left[\frac{\delta_n}{2}, \gamma_n\right] \subset \left]0, \frac{\pi}{2n}\right[$$

et donc $\operatorname{Sol}_n \neq \emptyset$.

Q3 — Justifier l'existence de $x_n = \inf(\operatorname{Sol}_n)$.

La partie Sol_n de \mathbb{R} est non vide (\mathbb{Q}^2) et minorée par 0. D'après la propriété de la borne inférieure, \mathbb{Q}^2 inf (Sol_n) existe dans \mathbb{R} .

Q4 — Démontrer que $x_n \in Sol_n$.

• Un minorant de l'ensemble

$$\operatorname{Sol}_n \subset \left]0, \frac{\pi}{2n}\right[$$

est strictement inférieur à $\frac{\pi}{2n}$. En particulier, $x_n < \frac{\pi}{2n}$. D'après 1, le nombre δ_n minore Sol_n et donc $0 < \delta_n \leqslant x_n$. Ainsi

$$\boxed{0 < x_n < \frac{\pi}{2n}}$$

• D'après la caractérisation séquentielle de la borne inférieure, il existe une suite $(x_{n,p})_{p\in\mathbb{N}}$ de points de Sol_n telle que

$$x_{n,p} \xrightarrow[p \to +\infty]{} x_n$$

Comme, pour tout $p \in \mathbb{N}$, $x_{n,p} \in \operatorname{Sol}_n$

$$(\star) \qquad f_n\left(x_{n,p}\right) = 0$$

Comme la fonction f est continue en $x_n \in \left]0, \frac{\pi}{2n}\right[$, il vient en faisant tendre p vers $+\infty$ dans (\star)

$$f_n(x_n) = 0$$

• D'après les deux points précédents, $x_n \in Sol_n$.

Nous nous proposons de trouver un développement asymptotique de x_n , avec précision $\frac{1}{n^3}$, lorsque n tend vers $+\infty$.

Q5 — Démontrer que l'équation

$$2 \cdot x = \tan(x)$$

d'inconnue $x \in \left]0, \frac{\pi}{2}\right[$ possède une unique solution ℓ et que $\ell \in \left]\frac{\pi}{4}, \frac{\pi}{2}\right[$.

La fonction

$$g \mid \left] 0, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$$

$$x \longmapsto 2 \cdot x - \tan(x)$$

est bien définie et de classe \mathscr{C}^{∞} par théorème d'opérations sur $\left]0,\frac{\pi}{2}\right[$. Nous calculons

$$\forall x \in \left]0, \frac{\pi}{2}\right[g'(x) = 1 - \tan^2(x) = (1 - \tan(x)) \cdot \underbrace{(1 + \tan(x))}_{>0}$$

Comme la fonction tan est strictement croissante sur $\left]0,\frac{\pi}{2}\right[$ et prend la valeur 1 en $\frac{\pi}{4}$, il vient

x	0		$\frac{\pi}{4}$		$\frac{\pi}{2}$
g'(x)		+	0	-	
g	0		$\frac{\pi}{2}-1$		→ -∞

• La fonction f est strictement croissante et continue sur l'intervalle $\left]0,\frac{\pi}{4}\right]$. Elle induit donc une bijection de $\left]0,\frac{\pi}{4}\right]$ sur

$$\left| \lim_{x \to 0^{-}} g(x), g\left(\frac{\pi}{4}\right) \right| = \left| 0, \frac{\pi}{2} - 1 \right| \not\ni 0$$

L'équation f(x) = 0 n'a donc aucune solution sur $\left[0, \frac{\pi}{4}\right]$.

• La fonction f est strictement décroissante et continue sur l'intervalle $\left|\frac{\pi}{4}, \frac{\pi}{2}\right|$. Elle induit donc une bijection de $\left|\frac{\pi}{4}, \frac{\pi}{2}\right|$ sur

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x), \quad \lim_{x \to \left(\frac{\pi}{4}\right)^{+}} g(x) = \left] -\infty, \frac{\pi}{2} - 1 \right[\ni 0$$

L'équation f(x) = 0 possède donc une unique solution, notée ℓ , sur $\left| \frac{\pi}{4}, \frac{\pi}{2} \right|$.

Nous introduisons la fonction φ définie par

$$\varphi \mid \frac{\pi}{4}, \frac{\pi}{2} \mid \longrightarrow \mathbb{R}$$

$$x \longmapsto 2 \cdot x - \tan(x)$$

Q6 — Démontrer que la fonction φ induit une bijection

$$\widetilde{\varphi} \mid \frac{\pi}{4}, \frac{\pi}{2} \mid \longrightarrow \varphi(\frac{\pi}{4}, \frac{\pi}{2})$$
 $x \mapsto 2 \cdot x - \tan(x)$

et déterminer $\varphi(\left]\frac{\pi}{4}, \frac{\pi}{2}\right[$).

Le résultat a été établi à la question précédente où nous avons de plus établi que $\left[\varphi\left(\left[\frac{\pi}{4},\frac{\pi}{2}\right]\right)=\left]-\infty,\frac{\pi}{2}-1\right[$.

Nous notons ψ l'application réciproque de la fonction $\widetilde{\varphi}$.

Q7 — Démontrer que la fonction ψ est de classe \mathscr{C}^{∞} sur $\varphi(\left[\frac{\pi}{4}, \frac{\pi}{2}\right])$.

La fonction

$$\widetilde{\varphi} \quad \left| \begin{array}{c} \left| \frac{\pi}{4}, \frac{\pi}{2} \right| & \longrightarrow \end{array} \right| -\infty, \frac{\pi}{2} - 1 \left[x & \longmapsto 2 \cdot x - \tan(x) \end{array} \right|$$

est de classe \mathscr{C}^{∞} sur $\left]\frac{\pi}{4}, \frac{\pi}{2}\right[$ et bijective. Comme

$$\forall x \in \left] \frac{\pi}{4}, \frac{\pi}{2} \right[\quad \widetilde{\varphi}'(x) = (1 - \tan(x)) \cdot (1 + \tan(x)) \neq 0$$

la fonction réciproque de $\widetilde{\varphi}$, notée ψ , est de classe \mathscr{C}^{∞} sur $\left]-\infty, \frac{\pi}{2}-1\right[$ (cf. C15.164).

Q8 — Donner le $DL_1(0)$ de ψ .

Comme la fonction ψ est dérivable en $0 \in \left] -\infty, \frac{\pi}{2} - 1\right[$ (Q7)

$$\psi(x) = \psi(0) + \psi'(0) \cdot x + o(x)$$

Nous avons $\psi(0) = \ell$ et d'après le cours

$$\psi'(0) = \frac{1}{\widetilde{\varphi}'(\psi(0))} = \frac{1}{\widetilde{\varphi}'(\ell)} = \frac{1}{1 - \tan^2(\ell)} = \frac{1}{1 - 4 \cdot \ell^2} \qquad [\operatorname{car} 2 \cdot \ell - \tan(\ell) = 0]$$

Ainsi

$$\psi(x) = \underbrace{\chi_{0} + \frac{\chi}{1 - 4 \cdot \ell^{2}} + o(\chi)}_{\text{odd}}$$

Q9 — Démontrer que $x_n \in \left] \frac{\pi}{4n}, \frac{\pi}{2n} \right[$.

Il reste à démontrer que $x_n > \frac{\pi}{4n}$. Reprenons l'étude proposée en Q1, pour la raffiner. Soit $x \in \mathbb{R}$.

$$0 < x \leqslant \frac{\pi}{4n} \implies 0 < n \cdot x \leqslant \frac{\pi}{4} \quad [n > 0]$$

$$\implies 0 < \tan(n \cdot x) \leqslant 1 \quad \left[\text{la fonction tan est strictement croissante sur } \left[0, \frac{\pi}{4} \right] \right]$$

$$\implies 0 < \tan^2(n \cdot x) \leqslant 1 \quad \left[\text{la fonction carr\'e est strictement croissante sur } \left[0, 1 \right] \right]$$

$$\implies f'_n(x) = n \cdot \left(1 + 2 \cdot \tan^2(x) - \tan^2(n \cdot x) \right) > 0 \quad \left[\tan(x)^2 > 0 \right]$$

Nous en déduisons que la fonction f_n , qui est continue sur $\left[0, \frac{\pi}{4n}\right]$, est strictement croissante sur ce segment. Comme elle est nulle en 0, nous en déduisons que

$$\forall x \in \left]0, \frac{\pi}{4n}\right] \quad f_n(x) > 0$$

et donc f_n n'a aucune racine dans l'intervalle $\left]0,\frac{\pi}{4n}\right]$. Comme x_n est une racine de f_n dans l'intervalle $\left]0,\frac{\pi}{2n}\right[$ (Q4) il vient

$$\boxed{\frac{\pi}{4n} < x_n < \frac{\pi}{2n}}.$$

Q10 — En déduire que $2 \cdot n \cdot x_n - \tan(n \cdot x_n) \xrightarrow[n \to +\infty]{} 0$.

Comme $x_n \in Sol_n$ (Q4)

$$2 \cdot n \cdot \tan(x_n) = \tan(n \cdot x_n)$$

donc

$$(\star) = 2 \cdot n \cdot x_n - \tan(n \cdot x_n) = 2 \cdot n \cdot (x_n - \tan(x_n))$$

De Q9 et du théorème d'encadrement nous déduisons que

$$x_n \xrightarrow[n \to +\infty]{} 0$$

puis, grâce au DL₃(0)

$$\tan(x) = x + \frac{x^3}{3} + o(x^3)$$

que

$$(\star\star)$$
 $\tan(x_n) = x_n + \frac{x_n^3}{3} + o(x_n^3)$

D'après (★) et (★★) il vient

$$2 \cdot n \cdot x_n - \tan(n \cdot x_n) = -\frac{2}{3} \cdot n \cdot \left(x_n^3 + o\left(x_n^3\right)\right) = -\frac{2}{3} \cdot n \cdot x_n \cdot \left(x_n^2 + o\left(x_n^2\right)\right) \underset{n \to +\infty}{\sim} -\frac{2}{3} \cdot n \cdot x_n \cdot x_n^2$$

Puisque la suite $(x_n \cdot n)_{n \ge 2}$ est bornée (Q9), nous en déduisons $2 \cdot n \cdot x_n - \tan(n \cdot x_n) \xrightarrow[n \to +\infty]{} 0$.

Q11 — En exprimant $n \cdot x_n$ à l'aide de la fonction ψ , démontrer que $x_n \sim \frac{\ell}{n \to +\infty} \frac{\ell}{n}$.

D'après Q9

$$n \cdot x_n \in \left] \frac{\pi}{4}, \frac{\pi}{2} \right[$$

et d'après Q10

$$\widetilde{\varphi}(n \cdot x_n) = 2 \cdot n \cdot x_n - \tan(n \cdot x_n) \xrightarrow[n \to +\infty]{} 0 = \widetilde{\varphi}(\ell)$$

La fonction ψ (Q7) est continue sur $\left]-\infty, \frac{\pi}{2}-1\right[$, intervalle qui contient tous les $\widetilde{\varphi}(n\cdot x_n)$ et 0. Par caractérisation séquentielle de la continuité, il vient

$$n\cdot x_n = \psi\left(\widetilde{\varphi}(n\cdot x_n)\right) \xrightarrow[n \to +\infty]{} \psi(0) = \psi\left(\widetilde{\varphi}(\ell)\right) = \ell$$

Ainsi $x_n \sim \frac{\ell}{n \to +\infty}$, i.e.

$$x_n \underset{n \to +\infty}{\sim} \frac{\ell}{n} + o\left(\frac{1}{n}\right)$$
 DA de x_n à la précision $\frac{1}{n}$

Q12 — Démontrer qu'il existe une constante α , que l'on exprimera en fonction de ℓ , telle que

$$x_n \stackrel{=}{\underset{n \to +\infty}{=}} \frac{\ell}{n} + \frac{\alpha}{n^3} + o\left(\frac{1}{n^3}\right)$$

La stratégie est classique : nous recherchons un équivalent de $x_n - \frac{\ell}{n}$.

Rappelons qu'en Q10 nous avons établi

$$\widetilde{\varphi}(n \cdot x_n) = 2 \cdot n \cdot x_n - \tan(n \cdot x_n) \sim -\frac{2}{3} \cdot n \cdot x_n^3$$

D'après Q11, il vient

$$\widetilde{\varphi}(n \cdot x_n) \underset{n \to +\infty}{\sim} -\frac{2 \cdot \ell^3}{3} \cdot \frac{1}{n^2}$$

i.e.

$$\widetilde{\varphi}(n \cdot x_n) \underset{n \to +\infty}{=} -\frac{2 \cdot \ell^3}{3} \cdot \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

Nous en déduisons

$$n \cdot x_n = \underset{n \to +\infty}{=} \psi \left(-\frac{2 \cdot \ell^3}{3} \cdot \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \right)$$

Comme $-\frac{2 \cdot \ell^3}{3} \cdot \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \xrightarrow[n \to +\infty]{} 0$ nous pouvons apppliquer **Q8** pour obtenir

$$n \cdot x_n \underset{n \to +\infty}{=} \ell + \frac{1}{1 - 4 \cdot \ell^2} \cdot \left(-\frac{2 \cdot \ell^3}{3} \right) \cdot \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

Ainsi

$$\left[x_n \underset{n \to +\infty}{=} \frac{\ell}{n} + \frac{2 \cdot \ell^3}{12 \cdot \ell^2 - 3} \cdot \frac{1}{n^3} + o\left(\frac{1}{n^3}\right)\right]$$