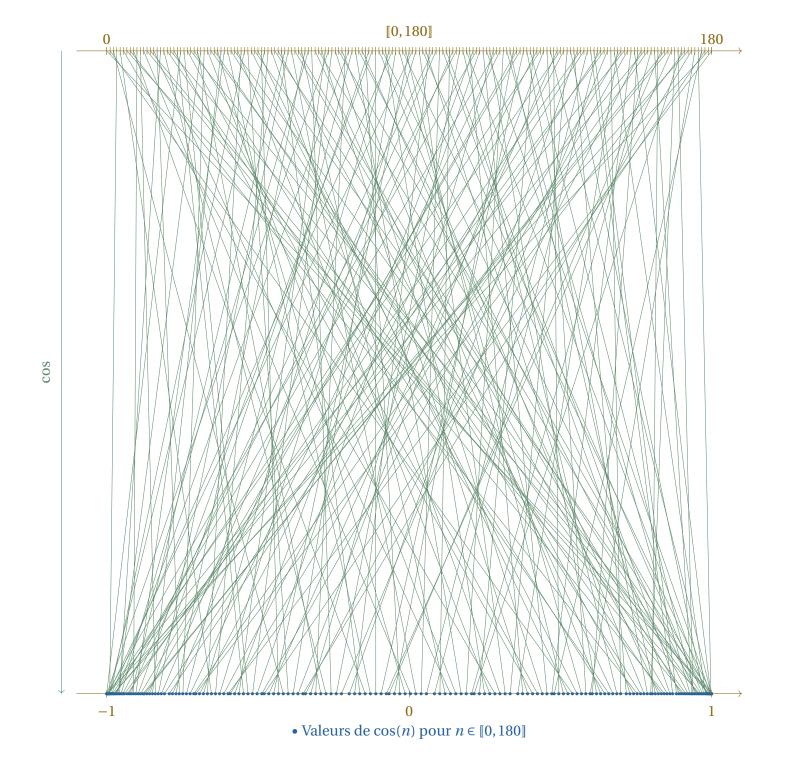
DEVOIR LIBRE N°10

Pour le mercredi 11 janvier

- (1) On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.
- (2) Les assertions seront toutes justifiées avec soin, les raisonnements structurés, les résultats encadrés.

Nous classifions les sous-groupes additifs de \mathbb{R} et en déduisons que l'ensemble $\{\cos(n) : n \in \mathbb{N}\}$ est une partie de [-1,1] dense dans [-1,1], i.e. que, pour tout $(x,y) \in [-1,1]^2$ tel que x < y, il existe $n \in \mathbb{N}$ vérifiant $x < \cos(n) < y$.



Q1 — Soit $\alpha \in \mathbb{R}_{>0}$. Démontrer que

$$\alpha \mathbb{Z} := \{\alpha \cdot n : n \in \mathbb{Z}\}$$

est un sous-groupe de $(\mathbb{R}, +)$ qui n'est pas une partie de \mathbb{R} dense dans \mathbb{R} .

Soit H un sous-groupe de (\mathbb{R} , +) *distinct de* {0}. *On pose*

$$H_{>0} := \{ h \in H : h > 0 \}$$
.

Q2 — Justifier que $\alpha := \inf(H_{>0})$ est un nombre réel bien défini.

Q3 — On suppose que $\alpha \in H_{>0}$. Démontrer que $H = \alpha \mathbb{Z}$.

Q4 — On suppose que $\alpha \notin H_{>0}$. Démontrer que $\alpha = 0$, puis que H est une partie de \mathbb{R} dense de \mathbb{R} .

Nous avons établi que si H est un sous-groupe non trivial de $(\mathbb{R}, +)$ *alors*

- soit il existe $\alpha \in \mathbb{R}_{>0}$ tel que $H = \alpha \mathbb{Z}$ (H est alors dit monogène);
- soit H est une partie de \mathbb{R} dense dans \mathbb{R} .

On rappelle que π est un nombre irrationnel.

Q5 — Démontrer que

$$\mathbb{Z} + 2\pi\mathbb{Z} := \left\{ n + 2 \cdot \pi \cdot m : (n, m) \in \mathbb{Z}^2 \right\}$$

est un sous-groupe de $(\mathbb{R}, +)$ qui est une partie de \mathbb{R} dense dans \mathbb{R} .

Q6 — Soit $(x, y) \in [-1, 1]^2$ tel que x < y. Démontrer qu'il existe $n \in \mathbb{N}$ vérifiant $x < \cos(n) < y$.