DEVOIR LIBRE N°2

Pour le jeudi 15 septembre

On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Les assertions seront toutes justifiées avec soin, les raisonnements structurés, les résultats encadrés.

EXERCICE 1 (MINORATION DU PRODUIT DES PREMIÈRES FACTORIELLES DES ENTIERS PAIRS)

Q1 — Démontrer que, pour tout $n \in \mathbb{N}^*$, $2! \times 4! \times 6! \times ... \times (2n)! \geqslant ((n+1)!)^n$.

Exercice 2 (Convergence de la suite de terme général $\sum\limits_{k=1}^{n} rac{1}{k^2}$)

Q2 — Calculer
$$u_n = \sum_{k=2}^n \frac{1}{(k-1)k} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{(n-1) \times n}$$
, pour tout $n \in \mathbb{N}_{n \ge 2}$.

Q3 — Pour tout $n \in \mathbb{N}^*$, on pose $v_n = \sum_{k=1}^n \frac{1}{k^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2}$. Démontrer que la suite $(v_n)_{n \in \mathbb{N}^*}$ est croissante puis qu'elle converge. On ne demande pas la valeur de sa limite, qui par ailleurs est $\frac{\pi^2}{6}$.

EXERCICE 3 (TOUT ENTIER NATUREL NON NUL EST D'UNE UNIQUE MANIÈRE SOMME DE PUISSANCES DE 2)

Q4 — Démontrer que pour tout $n \in \mathbb{N}^*$, il existe $r \in \mathbb{N}^*$ et des entiers $0 \le \alpha_1 < \alpha_2 < ... < \alpha_r$ tels que :

$$n = \sum_{k=1}^{r} 2^{\alpha_k} = 2^{\alpha_1} + 2^{\alpha_2} + \ldots + 2^{\alpha_r}.$$

Q5 — Soit
$$x$$
 un réel différent de 1. Démontrer que, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$.

Q6 — Démontrer que la décomposition d'un entier $n \in \mathbb{N}^*$ obtenue en **Q4** est unique.

EXERCICE 4 (D'AUTRES VALEURS REMARQUABLES DE COSINUS ET SINUS)

Q7 — Soit $x \in \mathbb{R}$. À l'aide des formules d'addition et de duplication pour cosinus et sinus, exprimer $\cos(5x)$ comme une expression polynomiale en $\cos(x)$.

Q8 — En déduire la valeur de
$$\cos\left(\frac{\pi}{10}\right)$$
 et $\sin\left(\frac{\pi}{10}\right)$.

Q9 — Calculer
$$\cos\left(\frac{\pi}{5}\right)$$
 et $\sin\left(\frac{\pi}{5}\right)$.

Q10 — Calculer
$$\cos\left(\frac{2\pi}{15}\right)$$
 et $\sin\left(\frac{2\pi}{15}\right)$.