CHAPITRE N°16 POLYNÔMES

NOTATION C16.1 — Dans ce chapitre, K désigne un corps.

§ 1. CONSTRUCTION DE L'ALGÈBRE K[X]

NOTATION C16.2 — On note $K^{(N)}$ l'ensemble des suites presque nulles d'éléments de K, qui sont indexées par N, i.e.

 $\mathbf{K}^{(\mathbf{N})} := \{ (a_n)_{n \in \mathbf{N}} \in \mathbf{K}^{\mathbf{N}} : \exists n_0 \in \mathbf{N}, \ \forall \ n \geqslant n_0, \ a_n = 0_{\mathbf{K}} \}.$

PROPOSITION-DÉFINITION C16.3 (ADDITION SUR K^(N))

Si $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ sont deux éléments de $\mathbf{K}^{(\mathbb{N})}$, alors la suite $(a_n + b_n)_{n \in \mathbb{N}}$ est presque nulle et on pose

$$(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} := (a_n +_{\mathbb{K}} b_n)_{n\in\mathbb{N}}$$

On définit ainsi une application :

$$+ \left| \begin{array}{ccc} \mathbf{K}^{(\mathbf{N})} \times \mathbf{K}^{(\mathbf{N})} & \longrightarrow & \mathbf{K}^{(\mathbf{N})} \\ \left((a_n)_{n \in \mathbf{N}}, (b_n)_{n \in \mathbf{N}} \right) & \longmapsto & (a_n +_{\mathbf{K}} b_n)_{n \in \mathbf{N}} \end{array} \right.$$

Proposition C16.4 (structure de $(K^{(N)}, +)$)

Le magma $(\mathbf{K}^{(\mathbf{N})}, +)$ est un groupe abélien, dont l'élément neutre est la suite nulle. L'opposé d'un élément $(a_n)_{n \in \mathbf{N}}$ de $\mathbf{K}^{(\mathbf{N})}$ est

$$-(a_n)_{n\in\mathbb{N}}:=(-a_n)_{n\in\mathbb{N}}$$

PROPOSITION-DÉFINITION C16.5 (MULTIPLICATION PAR UN SCALAIRE SUR $K^{(N)}$) Si $(a_n)_{n\in\mathbb{N}}$ est un élément de $K^{(N)}$ et $\lambda \in K$, alors la suite $(\lambda \times_K a_n)_{n\in\mathbb{N}}$ est presque nulle et on pose

$$\lambda \cdot (a_n)_{n \in \mathbb{N}} := (\lambda \times_{\mathbb{K}} a_n)_{n \in \mathbb{N}}$$

On définit ainsi une application

$$\cdot \mid \begin{matrix} \mathbf{K} \times \mathbf{K}^{(\mathbf{N})} & \longrightarrow & \mathbf{K}^{(\mathbf{N})} \\ \left(\lambda, (a_n)_{n \in \mathbf{N}}\right) & \longmapsto & (\lambda \times_{\mathbf{K}} a_n)_{n \in \mathbf{N}} \end{matrix}$$

PROPOSITION C16.6 (STRUCTURE DE $(K^{(N)}, +, \cdot)$)

Le magma $(\mathbf{K}^{(\mathbf{N})}, +)$ est un groupe abélien et, pour tout $(a_n)_{n \in \mathbf{N}} \in \mathbf{K}^{(\mathbf{N})}$, $(b_n)_{n \in \mathbf{N}} \in \mathbf{K}^{(\mathbf{N})}$, $\lambda \in \mathbf{K}$ et $\mu \in \mathbf{K}$

- 1) $\lambda \cdot ((a_n)_{n \in \mathbb{N}} + (b_n)_{n \in \mathbb{N}}) = \lambda \cdot (a_n)_{n \in \mathbb{N}} + \lambda \cdot (b_n)_{n \in \mathbb{N}}$
- 2) $(\lambda + \mu) \cdot (a_n)_{n \in \mathbb{N}} = \lambda \cdot (a_n)_{n \in \mathbb{N}} + \mu \cdot (a_n)_{n \in \mathbb{N}}$
- 3) $(\lambda \times_{\mathbf{K}} \mu) \cdot (a_n)_{n \in \mathbf{N}} = \lambda \cdot (\mu \cdot (a_n)_{n \in \mathbf{N}})$
- 4) $1_{\mathbf{K}} \cdot (a_n)_{n \in \mathbf{N}} = (a_n)_{n \in \mathbf{N}}$

Proposition-Définition C16.7 (multiplication interne \times sur $K^{(N)}$)

Si $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont deux éléments de $\mathbf{K}^{(\mathbb{N})}$, alors la suite $\left(\sum_{k=0}^n a_k \times_{\mathbf{K}} b_{n-k}\right)_{n\in\mathbb{N}}$ est presque nulle et on pose

$$(a_n)_{n \in \mathbf{N}} \times (b_n)_{n \in \mathbf{N}} := \left(\sum_{k=0}^n a_k \times_{\mathbf{K}} b_{n-k}\right)_{n \in \mathbf{N}}$$

On définit ainsi une application

$$\times \left| \begin{array}{ccc} \mathbf{K}^{(\mathbf{N})} \times \mathbf{K}^{(\mathbf{N})} & \longrightarrow & \mathbf{K}^{(\mathbf{N})} \\ \left((a_n)_{n \in \mathbf{N}}, (b_n)_{n \in \mathbf{N}} \right) & \longmapsto & \left(\sum_{k=0}^n a_k \times_{\mathbf{K}} b_{n-k} \right)_{n \in \mathbf{N}} \end{array} \right.$$

PROPOSITION C16.8 (STRUCTURE DE $(K^{(N)}, +, \cdot, \times)$)

On vérifie alors que $(K^{(N)}, +, \times)$ est un anneau commutatif, dont le neutre pour la multiplication est la suite

$$\left(\delta_{0,n}\right)_{n\in\mathbb{N}}=\left(1,0,\ldots,0,\ldots\right).$$

De plus, pour tout $(a_n)_{n \in \mathbb{N}} \in \mathbb{K}^{(\mathbb{N})}$, $(b_n)_{n \in \mathbb{N}} \in \mathbb{K}^{(\mathbb{N})}$, $\lambda \in \mathbb{K}$

$$\left(\lambda \cdot (a_n)_{n \in \mathbb{N}}\right) \times (b_n)_{n \in \mathbb{N}} = (a_n)_{n \in \mathbb{N}} \times \left(\lambda \cdot (b_n)_{n \in \mathbb{N}}\right) = \lambda \cdot \left((a_n)_{n \in \mathbb{N}} \times (b_n)_{n \in \mathbb{N}}\right)$$

Proposition-Définition C16.9 (l'élément X de $\mathbf{K}^{(N)}$ et ses puissances)

Soit X la suite d'éléments de \mathbf{K} , dont tous les termes sont nuls, à l'exception de celui d'indice 1, qui vaut 1, i.e. :

$$X := (\delta_{1,n})_{n \in \mathbb{N}} = (0,1,0,\ldots,0,\ldots)$$
.

La suite X est presque nulle et ses puissances sont données pas

$$\forall k \in \mathbf{N}, \qquad X^k = (\delta_{k,n})_{n \in \mathbf{N}} = \left(0, \dots, 0, \underbrace{1}_{\text{indice } k}, 0, \dots, 0, \dots\right)$$

en d'autres termes, pour tout $k \in \mathbb{N}$, X^k est la suite d'éléments de **K** indexée par **N**, dont tous les termes sont nuls, à l'exception de celui d'indice k qui vaut 1.

Proposition C16.10 (ÉCRITURE CANONIQUE D'UN ÉLÉMENT DE $K^{(N)}$)

Si $(a_n)_{n \in \mathbb{N}}$ est un élément de $\mathbf{K}^{(\mathbb{N})}$, alors

$$(a_n)_{n \in \mathbb{N}} = \sum_{n=0}^{+\infty} a_n \cdot X^n$$
 [somme finie puisque les coefficients a_n sont nuls à partir d'un certain rang].

EXEMPLE C16.11 — L'élément (13,0,25,18,0,-61,0,...,0,...) de $\mathbf{K}^{(\mathbf{N})}$ s'écrit $13+25X^2+18X^3-61X^5$.

DÉFINITION C16.12 (POLYNÔME ET ENSEMBLE K[X])

- 1) L'ensemble $\mathbf{K}^{(\mathbf{N})}$ sera plutôt noté $\mathbf{K}[X]$.
- 2) Un polynôme à coefficient dans \mathbf{K} est un élément de $\mathbf{K}[X]$, i.e. une suite presque nulle d'éléments de \mathbf{K} .

PROPOSITION C16.13 (ÉCRITURE CANONIQUE D'UN POLYNÔME)

1) Tout polynôme $P \in \mathbf{K}[X]$ s'écrit de manière unique sous la forme

$$P = \sum_{k=0}^{+\infty} a_k \cdot X^k$$
 [somme finie puisque les coefficients a_k sont nuls à partir d'un certain rang].

où $(a_k)_{k\in\mathbb{N}}$ est un élément de $\mathbf{K}^{(\mathbb{N})}$.

2) Si $P = (a_k)_{k \in \mathbb{N}}$ est un élément non nul de K[X] et si $n := \max\{k \in \mathbb{N} : a_k \neq 0_K\}$ alors

$$P = \sum_{k=0}^{n} a_k \cdot X^k.$$

Dans toute la suite, nous écrirons les polynômes sous l'une des formes 1) ou 2) introduite en C16.13, plus jamais comme des suites presque nulles d'éléments de **K**.

DÉFINITION C16.14 (COEFFICIENTS D'UN POLYNÔME)

Soit $P \in \mathbf{K}[X]$ d'écriture canonique

$$P = \sum_{k=0}^{+\infty} a_k \cdot X^k$$

où $(a_k)_{k \in \mathbb{N}}$ est une suite presque nulle d'éléments de **K**. Pour tout $k \in \mathbb{N}$, on appelle coefficient de P de degré k le scalaire noté $[P]_k$ défini par

$$[P]_k := a_k$$
.

§ 2. SYNTHÈSE DES OPÉRATIONS DÉFINIES SUR K[X]

1) Addition de deux polynômes

$$\forall (P,Q) \in \mathbf{K}[X]^2 \quad P + Q := \sum_{k=0}^{+\infty} ([P]_k +_{\mathbf{K}} [Q]_k) X^k$$

donc

$$\forall k \in \mathbf{N} \quad [P+Q]_k = [P]_k +_{\mathbf{K}} [Q]_k.$$

2) Multiplication d'un polynôme par un scalaire

$$\forall (\lambda, P) \in \mathbf{K} \times \mathbf{K}[X] \quad \lambda \cdot P = \sum_{k=0}^{+\infty} \lambda[P]_k X^k$$

donc

$$\forall k \in \mathbb{N} \quad [\lambda \cdot P]_k = \lambda \times_{\mathbb{K}} [P]_k$$
.

3) Multiplication de deux polynômes

$$\forall (P,Q) \in \mathbf{K}[X]^2 \quad P \times Q := \sum_{k=0}^{+\infty} \left(\sum_{i=0}^{k} [P]_i \times_{\mathbf{K}} [Q]_{k-i} \right) X^k$$

donc

$$\forall k \in \mathbf{N} \quad [P \times Q]_k = \sum_{i=0}^k [P]_i \times_{\mathbf{K}} [Q]_{k-i}.$$

4) Composition de deux polynômes

$$\forall (P,Q) \in \mathbf{K}[X]^2 \quad P \circ Q := \sum_{i=0}^{n} [P]_i \times Q^i.$$

EXEMPLE C16.15 — Soient les deux polynômes $P = X^3 - 2X^2 + 1$ et $Q = X^2 - X + 3$ à coefficients dans **K**. Alors

$$P \circ Q = (X^2 - X + 3)^3 - 2(X^2 - X + 3)^2 + 1 = X^6 - 3X^5 + 10X^4 - 15X^3 + 22X^2 - 15X + 10.$$

§ 3. SYNTHÈSE SUR LA STRUCTURE DE $(K[X], +, \cdot, \times)$

1) (K[X], +) est un groupe abélien dont l'élément neutre est le polynôme noté $0_{K[X]}$ dont tous les coefficients sont nuls et

$$\forall P \in \mathbf{K}[X] \quad -P = \sum_{k=0}^{+\infty} -[P]_k X^k.$$

- 2) $\forall (P,Q,\lambda) \in \mathbf{K}[X] \times \mathbf{K}[X] \times \mathbf{K} \quad \lambda \cdot (P+Q) = \lambda \cdot P + \lambda \cdot Q$
- 3) $\forall (P, \lambda, \mu) \in \mathbf{K}[X] \times \mathbf{K} \times \mathbf{K} \quad (\lambda + \mu) \cdot P = \lambda \cdot P + \mu \cdot P$
- **4)** $\forall (P, \lambda, \mu) \in \mathbf{K}[X] \times \mathbf{K} \times \mathbf{K} \quad (\lambda \times_{\mathbf{K}} \mu) \cdot P = \lambda \cdot (\mu \cdot P)$
- $5) \quad \forall P \in \mathbf{K}[X] \quad 1_{\mathbf{K}} \cdot P = P$
- **6)** ($K[X], +, \times$) est un anneau commutatif dont le neutre pour la multiplication est le polynôme noté $1_{K[X]}$ dont tous les coefficients sont nuls, à l'exception de celui de degré 0 qui vaut 1.
- 7) $\forall (P,Q,\lambda) \in \mathbf{K}[X] \times \mathbf{K}[X] \times \mathbf{K} \quad (\lambda \cdot P) \times Q = P \times (\lambda \cdot Q) = \lambda \cdot (P \times Q)$

THÉORÈME C16.16 (FORMULE DU BINÔME DE NEWTON DANS K[X])

Pour tout $(n, P, Q) \in \mathbb{N} \times \mathbb{K}[X] \times \mathbb{K}[X]$

$$(P+Q)^n = \sum_{k=0}^n \binom{n}{k} P^k Q^{n-k} = \sum_{k=0}^n \binom{n}{k} Q^k P^{n-k}.$$

THÉORÈME C16.17 (FACTORISATION D'UNE DIFFÉRENCE DE DEUX PUISSANCES n-IÈMES, OÙ $n \in \mathbb{N}^*$)

Pour tout $(n, P, Q) \in \mathbf{N}^* \times \mathbf{K}[X] \times \mathbf{K}[X]$

$$P^{n} - Q^{n} = (P - Q) \sum_{k=0}^{n-1} P^{k} Q^{n-1-k}$$
.

EXERCICE C16.18 — 1) Démontrer, pour tout $(P, Q, R) \in \mathbf{K}[X]^3$, P(QR) = (PQ)R.

- 2) Démontrer, pour tout $(P, Q) \in \mathbf{K}[X]^2$, PQ = QP.
- 3) A-t-on, $(P,Q) \in \mathbf{K}[X]^2$, $P \circ Q = Q \circ P$ pour tout $(P,Q) \in \mathbf{K}[X]^2$?

EXERCICE C16.19 — 2) Démontrer de deux manières la «formule des comités »

$$\forall n \in \mathbb{N}$$
 $\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n}.$

l'une combinatoire, l'autre en appliquant la formule du binôme de Newton à $(X+1)^{2n}$ et à $(X+1)^n$. 2) Proposer une généralisation de la formule énoncée en 1).

§ 4. DEGRÉ

DÉFINITION C16.20 (DEGRÉ D'UN POLYNÔME)

Le degré d'un polynôme $P \in \mathbf{K}[X]$, noté deg(P), est l'élément de $\mathbf{N} \cup \{-\infty\}$ défini par

$$\deg(P) := \begin{cases} \max\{k \in \mathbf{N} : [P]_k \neq 0_{\mathbf{K}}\} & \text{si } P \neq 0_{\mathbf{K}[X]} \\ -\infty & \text{si } P = 0_{\mathbf{K}[X]} \end{cases}.$$

EXEMPLE C16.21 — $deg(4X^5 - 3X^4 + X^3 - 7X^2 - 18X + 42) = 5$.

DÉFINITION C16.22 (COEFFICIENT DOMINANT D'UN POLYNÔME NON NUL)

Le coefficient dominant d'un polynôme P non nul est défini par

$$dom(P) := [P]_{deg(P)}$$
.

EXEMPLE C16.23 — $dom(1+4X^2+4X^5-3X^8)=-3$.

DÉFINITION C16.24 (POLYNÔME UNITAIRE)

Un polynôme P est dit unitaire s'il est non nul et si son coefficient dominant est 1_K.

EXEMPLE C16.25 — Le polynôme $X^4 - 4X^2 + 3X$ est unitaire, contrairement au polynôme $X^2 - 4X^5 + 3$.

EXERCICE C16.26 — Soit $P \in \mathbf{K}[X]$ un polynôme non nul. Donner une propriété remarquable du polynôme $\frac{1}{\text{dom}(P)} \cdot P$.

Définition C16.27 (relation d'ordre et addition sur $\mathbb{N} \cup \{-\infty\}$)

On étend la relation d'ordre usuelle \leq et l'addition + sur \mathbb{N} à $\mathbb{N} \cup \{-\infty\}$ en posant, pour tout $(n, m) \in (\mathbb{N} \cup \{-\infty\})^2$:

o})²:
$$n \leqslant m \iff \begin{cases} (n,m) \in \mathbf{N}^2 \text{ et } n \leqslant m \text{ au sens de la relation d'ordre usuelle sur } \mathbf{N} \\ \text{ou} \\ n = -\infty \end{cases}$$

$$n+m = \begin{cases} n+m \text{ au sens de l'addition usuelle sur } \mathbf{N}, \text{ si } (n,m) \in \mathbf{N}^2 \\ -\infty \text{ sinon } . \end{cases}$$

THÉORÈME C16.28 (PROPRIÉTÉS DU DEGRÉ)

Soit $(P, Q) \in \mathbf{K}[X]^2$.

- 1) $\deg(P+Q) \leq \max\{\deg(P), \deg(Q)\}$, avec égalité si et seulement si l'une des trois propriétés suivantes est vraie
 - (C1) $\deg(P) \neq \deg(Q)$
 - (C2) $\deg(P) = \deg(Q) = -\infty$
 - (C3) $\deg(P) = \deg(Q) \neq -\infty \text{ et dom } (P) + \dim(Q) \neq 0_{\mathbf{K}}.$
- 2) $\deg(P \times Q) = \deg(P) + \deg(Q)$.

COROLLAIRE C16.29 (INTÉGRITÉ DE K[X])

L'anneau ($K[X], +, \times$) est intègre.

EXERCICE C16.30 — Soit $(P,Q) \in \mathbf{K}[X]^2$ un couple de polynômes non nuls. Démontrer que

$$dom(PQ) = dom(P) dom(Q) .$$

EXERCICE C16.31 — Soit $(P,Q) \in \mathbf{K}[X]^2$ tel que deg $(Q) \geqslant 1$.

- 1) Démontrer que $deg(P \circ Q) = deg(P) deg(Q)$.
- 2) Conjecturer puis démontrer un résultat concernant le coefficient dominant de $P \circ Q$.

EXERCICE C16.32 — Résoudre $P \circ P = P$ d'inconnue $P \in \mathbf{K}[X]$.

EXERCICE C16.33 — Résoudre $Q^2 = XP^2$ d'inconnue $(P,Q) \in \mathbf{K}[X]^2$.

EXERCICE C16.34 — Résoudre $P(X^2) = X^2 P$ d'inconnue $P \in \mathbf{K}[X]$.

EXERCICE C16.35 — Donner une CNS sur $P \in \mathbf{K}[X]$ pour qu'il existe $Q \in \mathbf{K}[X]$ tel que $P \circ Q = X$.

DÉFINITION C16.36 (ENSEMBLE DES COMBINAISONS LINÉAIRES D'UNE FAMILLE FINIE DE POLYNÔMES) Soient $n \in \mathbb{N}^*$ et $(P_1, ..., P_n) \in \mathbb{K}[X]^n$. L'ensemble des combinaisons linéaires de $(P_1, ..., P_n)$ est noté $\text{Vect}(P_1, ..., P_n)$, i.e.

$$\operatorname{Vect}(P_1,\ldots,P_n) = \left\{ \sum_{k=1}^n \lambda_k \cdot P_k : (\lambda_1,\ldots,\lambda_n) \in \mathbf{K}^n \right\}.$$

Proposition C16.37 (propriétés de $Vect(P_1,...,P_n)$ où $(P_1,...,P_n) \in \mathbf{K}[X]^n$)

Soient $n \in \mathbb{N}^*$ et $(P_1, \dots, P_n) \in \mathbb{K}[X]^n$.

- 1) $0_{\mathbf{K}[X]} \in \text{Vect}(P_1, \dots, P_n)$
- 2) Vect $(P_1, ..., P_n)$ est stable par combinaison linéaire.

REMARQUE C16.38 — Si $n \in \mathbb{N}$, alors l'ensemble des polynômes de K[X] de degré n n'est pas stable par combinaison linéaire. En effet $X^n - X^n = 0_{K[X]}$ et $\deg \left(0_{K[X]} \right) = -\infty \neq n$.

DÉFINITION C16.39 ($K_n[X]$)

Pour tout $n \in \mathbb{N}$, on note $\mathbb{K}_n[X]$ l'ensemble des polynômes de $\mathbb{K}[X]$ de degré inférieur ou égal à n, i.e.

$$\mathbf{K}_n[X] := \{ P \in \mathbf{K}[X] : \deg(P) \leqslant n \}.$$

REMARQUE C16.40 — $\mathbf{K}_0[X]$ est l'ensemble des polynômes constants.

PROPOSITION C16.41 (STRUCTURE DE $K_n[X]$ ET BASE CANONIQUE)

Soit $n \in \mathbb{N}$.

- 1) $\mathbf{K}_n[X] = \text{Vect}(1, X, X^2, ..., X^n)$
- 2) $\mathbf{K}_n[X]$ contient le polynôme nul $\mathbf{0}_{\mathbf{K}[X]}$ et est stable par combinaison linéaire.
- 3) $\forall P \in \mathbf{K}_n[X] \quad \exists ! (\lambda_0, \lambda_1, \dots, \lambda_n) \in \mathbf{K}^{n+1} \quad P = \sum_{k=0}^n \lambda_k \cdot X^k$

NOTATION C16.42 — U(K[X]) désigne l'ensemble des éléments inversibles de l'anneau $(K[X], +, \times)$, i.e.

$$U\left(\mathbf{K}[X]\right) := \left\{P \in \mathbf{K}[X] \ : \exists \, Q \in \mathbf{K}[X] \quad PQ = 1_{\mathbf{K}[X]} = QP\right\}.$$

PROPOSITION C16.43 (CARACTÉRISATION DES INVERSIBLES DE L'ANNEAU ($K[X], +, \times$))

$$U(\mathbf{K}[X]) = \{ P \in \mathbf{K}[X] : \deg(P) = 0 \} = \mathbf{K}^*$$

§ 5. DIVISIBILITÉ ET DIVISION EUCLIDIENNE

DÉFINITION C16.44 (DIVISIBILITÉ, DIVISEUR, MULTIPLE) Soit $(A, B) \in \mathbf{K}[X]^2$.

1) Le polynôme *A* est divisible par le polynôme *B* si

$$\exists Q \in \mathbf{K}[X] \quad A = BQ$$
.

Dans ce cas, on note $B \mid A$.

2) Si $B \mid A$, alors on dit que B est un diviseur de A ou que A est un multiple de B.

EXERCICE C16.45 — Donner une CNS sur $\lambda \in \mathbf{K}$ pour que $X^3 - 1$ divise $X^6 + \lambda$.

EXERCICE C16.46 — Soient A, B, C des polynômes de K[X].

- 1) Justifier que *A* divise *A*.
- 2) On suppose que *A* divise *B* et que *B* divise *C*. Démontrer que *A* divise *C*.
- 3) On suppose que A divise B et que B divise A. Les polynômes A et B sont-ils nécessairement égaux?

EXERCICE C16.47 — Soient $A \in K[X]$ et $B \in K[X] \setminus \{0_{K[X]}\}$.

- 1) Démontrer que, si *A* divise *B*, alors $\deg(A) \leq \deg(B)$.
- 2) La réciproque est-elle vraie?

DÉFINITION C16.48 (POLYNÔMES ASSOCIÉS)

Deux polynômes A et B de K[X] sont dits associés si $A \mid B$ et $A \mid B$.

PROPOSITION C16.49 (CRITÈRE POUR QUE DEUX POLYNÔMES SOIENT ASSOCIÉS)

Soit $(A, B) \in \mathbf{K}[X]^2$. Alors A et B sont associés si et seulement si

$$\exists \lambda \in \mathbf{K}^* \quad A = \lambda \cdot B$$
.

REMARQUE C16.50 — La relation « être associés » sur K[X] est une relation d'équivalence.

THÉORÈME C16.51 (DIVISION EUCLIDIENNE DANS K[X])

Soit $(A, B) \in \mathbf{K}[X]^2$. On suppose $B \neq 0_{\mathbf{K}[X]}$. Alors, existe un unique couple $(Q, R) \in \mathbf{K}[X]^2$ tel que

$$\begin{cases} A = BQ + R \\ \text{et} \\ \deg(R) < \deg(B). \end{cases}$$

Le polynôme *Q* (resp. *R*) est appelé quotient (resp. reste) de la division euclidienne de *A* par *B*.

EXEMPLE C16.52 — La division euclidienne de $A := X^5 - 2X^4 + 3X^3 - 4X^2 + 5X + 2$ par $B := 3X^2 - 2X + 1$ est

$$A = \underbrace{\left(\frac{X^3}{3} - \frac{4}{9}X^2 + \frac{16}{27}X - \frac{64}{81}\right)}_{\text{quotient}} B + \underbrace{\left(\frac{229}{81}X + \frac{226}{81}\right)}_{\text{reste}}.$$

EXERCICE C16.53 — Effectuer la division euclidienne de $A := X^5 + X^4 + X^3 + X^2 + X + \alpha$ par $B := X^2 + X + 1$, où $\alpha \in \mathbf{K}$.

ALGORITHME C16.54 (DIVISION EUCLIDIENNE DANS K[X])

donnée: $(A, B) \in \mathbf{K}[X]^2$ tel que $0 \le \deg(B) \le \deg(A)$

résultat: (Q, R) où Q (resp. R) est le quotient (resp. reste) de la division euclidienne de A par B

 $A' \leftarrow A$ /* copie de la valeur de A */

 $Q \leftarrow 0_{\mathbf{K}[X]}$ /* initialisation du quotient à $0_{\mathbf{K}[X]}$ */

tant que $\deg(A') \geqslant \deg(B)$ faire

 $M \leftarrow \frac{\operatorname{dom}(A')}{\operatorname{dom}(B)} X^{\operatorname{deg}(A') - \operatorname{deg}(B)}$ /* nouveau monôme apparaissant dans le quotient */

 $Q \leftarrow Q + M$ /* actualisation du quotient */

 $A' \leftarrow A' - MB$ /* on retranche à A' un multiple de B en diminuant son degré */

fin

renvoie (Q, A')

PROPOSITION C16.55 (CORRECTION TOTALE DE L'ALGORITHME DE LA DIVISION EUCLIDIENNE DANS K[X])

- 1) Le degré de A' est un variant de boucle.
- 2) La relation A = QB + A' est un invariant de boucle.

PROPOSITION C16.56 (CRITÈRE DE DIVISIBILITÉ VIA LA DIVISION EUCLIDIENNE)

Soit $(A, B) \in \mathbf{K}[X]^2$. On suppose $B \neq 0_{\mathbf{K}[X]}$. Alors A est divisible par B si et seulement si le reste de la division euclidienne de A par B est nul.

Démonstration — Considérons la division euclidienne de *A* par *B*

$$(\star)$$
 $A = BQ + R$

où $(Q, R) \in \mathbf{K}[X]^2$ et $\deg(R) < \deg(B)$.

Si $R = 0_{\mathbf{K}[X]}$ alors (*) se réécrit A = BQ et donc B divise A.

Supposons que A est divisible par B. Alors il existe $Q_1 \in K[X]$ tel que $A = BQ_1$. Nous pouvons donc écrire

$$(\star\star)$$
 $A = BQ_1 + R_1$

en posant $R_1 := 0_{\mathbb{K}[X]}$. Comme $\deg(R_1) = -\infty < \deg(B)$, les identités (\star) et $(\star \star)$ sont des divisions euclidiennes de A par B. Par unicité d'une telle, il vient $R = R_1 = 0_{\mathbb{K}[X]}$ (et $Q = Q_1$).

EXERCICE C16.57 — Donner une condition nécessaire et suffisante sur $\alpha \in \mathbf{K}$ pour que le polynôme $A := X^5 + X^4 + X^3 + X^2 + X + \alpha$ soit divisible par $B := X^2 + X + 1$.

EXERCICE C16.58 — Soit $(A, B) \in \mathbf{K}[X]^2$. On suppose $B \neq 0_{\mathbf{K}[X]}$. Écrire la division euclidienne de A par B, si $\deg(A) < \deg(B)$.

EXERCICE C16.59 — Soit $P \in \mathbf{K}[X]$ et soit $a \in \mathbf{K}$. Écrire le reste de la division euclidienne de P par X - a en fonction de P(a).

EXERCICE C16.60 — Soit $P \in \mathbf{K}[X]$ et soit $(a, b) \in \mathbf{K}^2$ tel que $a \neq b$. Écrire le reste de la division euclidienne de P par (X - a)(X - b) en fonction de P(a) et P(b).

EXERCICE C16.61 — Soit $B \in \mathbf{K}[X]$ de degré $n \ge 1$. Soit

$$f \mid \mathbf{K}[X] \longrightarrow \mathbf{K}_{n-1}[X]$$

$$P \longmapsto \text{reste de la division euclidienne de } P \text{ par } B \ .$$

Démontrer que f est une application bien définie, qui est linéaire, i.e.

$$\forall (P, Q, \lambda, \mu) \in \mathbf{K}[X] \times \mathbf{K}[X] \times \mathbf{K} \times \mathbf{K} \quad f(\lambda \cdot P + \mu \cdot Q) = \lambda \cdot f(P) + \mu \cdot f(Q)$$

et surjective. Est-elle injective?

§ 6. FONCTIONS POLYNOMIALES ET RACINES

DÉFINITION C16.62 (FONCTION POLYNOMIALE ASSOCIÉE À UN POLYNÔME) Soit $P \in \mathbf{K}[X]$. La fonction polynomiale associée au polynôme P, notée \widetilde{P} , est définie par

$$\widetilde{P} \mid \mathbf{K} \longrightarrow \mathbf{K}$$
 $x \longmapsto \sum_{k=0}^{+\infty} [P]_k x^k$.

REMARQUE C16.63 — Notons $\mathbb{Z}/2\mathbb{Z}$ le corps à deux éléments $\{\overline{0},\overline{1}\}$, où $\overline{0}$ est le neutre de l'addition et $\overline{1}$ est le neutre de la multiplication. Alors les fonctions

$$\widetilde{P} \mid \mathbf{Z}/2\mathbf{Z} \longrightarrow \mathbf{Z}/2\mathbf{Z}$$
 et $\widetilde{Q} \mid \mathbf{Z}/2\mathbf{Z} \longrightarrow \mathbf{Z}/2\mathbf{Z}$

$$x \longmapsto x+1$$

associée aux polynômes P = X + 1 et $Q = X^3 + X^2 + X + 1$ sont égales, bien que les polynômes P et Q soient différents.

PROPOSITION C16.64 (PROPRIÉTÉS ALGÉBRIQUES DE L'ÉVALUATION EN UN POINT)

Soit $x \in \mathbf{K}$. L'application

eval_x
$$K[X] \longrightarrow K$$

 $P \longmapsto \widetilde{P}(x) := \sum_{k=0}^{+\infty} [P]_k x^k$

est un morphisme d'anneaux, qui est de plus linéaire, i.e.

- 1) pour tout $(\lambda, \mu, P, Q) \in \mathbf{K} \times \mathbf{K} \times \mathbf{K}[X] \times \mathbf{K}[X], (\lambda \cdot P + \mu \cdot Q)(x) = \lambda \widetilde{P}(x) + \mu \widetilde{Q}(x);$
- 2) pour tout $(P,Q) \in \mathbf{K}[X]^2$, $\widetilde{PQ}(x) = \widetilde{P}(x) \widetilde{Q}(x)$;
- 3) $\widetilde{1}_{\mathbf{K}[X]}(x) = 1_{\mathbf{K}}$.

REMARQUE C16.65 — Comme les opérations +, \times et \cdot sur les fonctions de K dans K sont définies point par point, nous déduisons de C16.64 que l'application

$$\varphi \mid \begin{matrix} \mathbf{K}[X] & \longrightarrow & \mathscr{F}(\mathbf{K}, \mathbf{K}) \\ & & & \mathbf{K} & \longrightarrow & \mathbf{K} \\ P & \longmapsto & \widetilde{P} \mid x & \longmapsto & \sum_{k=0}^{+\infty} [P]_k x^k \end{matrix}$$

est un morphisme d'anneaux, qui est de plus linéaire, i.e.

- 1) pour tout $(\lambda, \mu, P, Q) \in \mathbf{K} \times \mathbf{K} \times \mathbf{K}[X] \times \mathbf{K}[X], (\lambda \cdot P + \mu \cdot Q) = \lambda \cdot \widetilde{P} + \mu \cdot \widetilde{Q};$
- 2) pour tout $(P, Q) \in \mathbf{K}[X]^2$, $\widetilde{PQ} = \widetilde{P} \widetilde{Q}$;
- 3) $1_{\mathbf{K}[X]} = 1_{\mathscr{F}(\mathbf{K},\mathbf{K})}$.

DÉFINITION C16.66 (RACINE D'UN POLYNÔME ET SPECTRE D'UN POLYNÔME) Soient $P \in \mathbf{K}[X]$.

- 1) Un élément $\alpha \in \mathbf{K}$ est appelé racine du polynôme P si $\widetilde{P}(\alpha) = 0$.
- 2) Le spectre de P dans K, noté $\operatorname{Spec}_K(P)$, est l'ensemble des racines du polynôme P dans K, i.e.

$$\operatorname{Spec}_{\mathbf{K}}(P) = \left\{ \alpha \in \mathbf{K} : \widetilde{P}(\alpha) = 0 \right\}.$$

EXERCICE C16.67 — Soit $P := X^5 + 32$. Déterminer $\operatorname{Spec}_{\mathbf{C}}(P)$, puis $\operatorname{Spec}_{\mathbf{R}}(P)$.

EXERCICE C16.68 — Justifier qu'un polynôme à coefficients réels, de degré impair, possède une racine réelle.

PROPOSITION C16.69 (CARACTÉRISATION D'UNE RACINE PAR UNE RELATION DE DIVISIBILITÉ)

Soient $P \in \mathbf{K}[X]$ et $\alpha \in \mathbf{K}$.

 α est racine de $P \iff X - a$ divise P

PROPOSITION C16.70 (FACTORISATION D'UN POLYNÔME CONNAISSANT DES RACINES DISTINCTES)

Soient $P \in \mathbf{K}[X]$, $r \in \mathbf{N}^*$ et $\alpha_1, \dots, \alpha_r$ des racines deux-à-deux distinctes de P. Alors

$$\prod_{k=1}^{r} (X - \alpha_k) \text{ divise } P.$$

EXERCICE C16.71 — Soient des entiers naturels r et n tels que $1 \le r < n$ et $\alpha_1, \ldots, \alpha_r$ des nombres réels distincts. Déterminer l'ensemble

$$F = \{P \in \mathbf{R}_n[X] : \alpha_1, \dots, \alpha_r \text{ sont racines de } P\}$$
.

On écrira F comme l'ensemble des combinaisons linéaires d'une famille finie de polynômes.

PROPOSITION C16.72 (MAJORATION DU NOMBRE DE RACINES D'UN POLYNÔME)

Soit P un polynôme non nul de K[X]. L'ensemble $Spec_K(P)$ est fini et

$$\operatorname{card}\left(\operatorname{Spec}_{\mathbf{K}}(P)\right) \leqslant \operatorname{deg}(P)$$
.

EXERCICE C16.73 — Soit $n \in \mathbb{N}$. Que dire d'un polynôme P de $\mathbb{K}_n[X]$ qui possède n+1 racines?

PROPOSITION C16.74 (POLYNÔME VERSUS FONCTION POLYNOMIALE ASSOCIÉ LORSQUE K EST INFINI)

Supposons le corps K infini. L'application

$$\varphi \mid \begin{matrix} \mathbf{K}[X] & \longrightarrow & \mathscr{F}(\mathbf{K}, \mathbf{K}) \\ P & \longmapsto & \widetilde{P} \mid \begin{matrix} \mathbf{K} & \longrightarrow & \mathbf{K} \\ x & \longmapsto & \sum_{k=0}^{+\infty} [P]_k x^k \end{matrix}$$

que l'on sait être un morphisme d'anneaux, qui est de plus linéaire, est en outre injective. La fonction polynomiale associée à un polynôme détermine donc le polynôme.

PROPOSITION-DÉFINITION C16.75 (MULTIPLICITÉ D'UNE RACINE)

Soient $P \in \mathbf{K}[X]$ un polynôme de degré $n \ge 1$ et $\alpha \in \mathbf{K}$ une racine de P.

- L'ensemble $\{k \in \mathbb{N}^* : (X a)^k \text{ divise } P\}$ est une partie non vide de \mathbb{N} , incluse dans [1, n].
- On définit la multiplicité de la racine α de P, notée mult (P, α) , par

$$\operatorname{mult}(P, \alpha) := \max \left\{ k \in \mathbb{N}^* : (X - \alpha)^k \text{ divise } P \right\} \in [1, n]$$

Démonstration — Posons $\mathscr{E} := \{k \in \mathbb{N}^* : (X - a)^k \text{ divise } P\}.$

- L'ensemble $\mathscr E$ est par définition une partie de N.
- Comme α est une racine de P, le polynôme $X \alpha$ divise n, donc $1 \in \mathcal{E}$.
- Si $k \in \mathcal{E}$ alors il existe $Q \in \mathbf{K}[X]$ tel que

$$P = (X - \alpha)^k Q.$$

En analysant les degrés il vient

$$k + \deg(Q) = \deg(P) \in \mathbf{N}^*$$

Nous en déduisons que $\deg(Q) \in \mathbb{N}^*$ puis $k \leq n$. Ainsi $\mathscr{E} \subset [1, n]$ et \mathscr{E} est finie.

PROPOSITION C16.76 (UNE CARACTÉRISATION DE LA MULTIPLICITÉ D'UNE RACINE)

Soient P un polynôme non constant de K[X], $\alpha \in K$ une racine de P et $k \in N^*$. Alors

$$k = \operatorname{mult}(P, \alpha) \iff \begin{cases} (X - \alpha)^k \text{ divise } P \\ \text{et} \\ (X - \alpha)^{k+1} \text{ ne divise pas } P \end{cases}$$

Démonstration — Posons $\mathscr{E} := \{k \in \mathbb{N}^* : (X - a)^k \text{ divise } P\}.$

 \implies Supposons $k = \text{mult}(P, \alpha)$.

Comme $k \in \mathcal{E}$, $(X - \alpha)^k$ divise P.

Puisque k est le plus grand élément de \mathcal{E} , k+1 n'appartient pas à \mathcal{E} et donc $(X-\alpha)^{k+1}$ ne divise pas P.

Supposons que $(X - \alpha)^k$ divise P et $(X - \alpha)^{k+1}$ ne divise pas P.

Nous en déduisons que $k \in \mathcal{E}$. Démontrons que k est le plus grand élément de \mathcal{E} , en raisonnant par l'absurde.

Supposons que k n'est pas le plus grand élément de $\mathscr E$. Alors il existe un élément ℓ de $\mathscr E$ tel que $\ell > k$. Ainsi $k+1 \leqslant \ell$ et

$$(\star)$$
 $(X-\alpha)^{\ell}$ divise P

Comme $k+1 \le \ell$, $(X-\alpha)^{\ell-k-1} \in \mathbf{K}[X]$ et, de la factorisation

$$(X - \alpha)^{\ell} = (X - \alpha)^{k+1} (X - \alpha)^{\ell - k - 1}$$

nous déduisons

$$(\star\star)$$
 $(X-\alpha)^{k+1}$ divise $(X-\alpha)^{\ell}$

De (\star) , $(\star\star)$ et de la transitivité de la relation de divisibilité dans K[X], nous déduisons que $(X-\alpha)^{k+1}$ divise P. Contradiction.

EXEMPLE C16.77 — Soit le polynôme $P := X^5 - X^4 - 2X^3 + 2X^2 + X - 1$. Nous observons 1 est racine de P et savons donc que X - 1 divise P. Nous effectuons la division euclidienne de P par X - 1 pour trouver

$$P = (X - 1)Q$$

où

$$Q := X^4 - 2X^2 + 1 = (X^2 - 1)^2 = (X - 1)^2(X + 1)^2$$
.

Ainsi $P = (X-1)^3(X+1)^2$. Nous en déduisons que $(X-1)^3$ divise P et que $(X-1)^4$ ne divise pas P. Nous avons établi mult $(P,\alpha)=3$.

DÉFINITION C16.78 (POLYNÔME SCINDÉ)

Soit P un polynôme de K[X] de degré $n \ge 1$. On dit que P est scindé sur le corps K s'il existe des éléments $\alpha_1, \ldots, \alpha_n$ de K, non nécessairement deux-à-deux distincts, tels que

$$P = \operatorname{dom}(P) \cdot \prod_{k=1}^{n} (X - \alpha_k) .$$

EXEMPLE C16.79 — Le polynôme $X^2 - 2$ n'est pas scindé sur **Q**, mais est scindé sur **R**.

EXEMPLE C16.80 — Si $n \in \mathbb{N}_{\geq 2}$ alors le polynôme $X^n - 1$ est scindé sur **C**.

$$X^{n} - 1 = \prod_{\zeta \in \mathbf{H}_{n}} (X - \zeta) = \prod_{k=0}^{n-1} \left(X - e^{i\frac{2k\pi}{n}} \right)$$

PROPOSITION C16.81 (MULTIPLICITÉS DES RACINES D'UN POLYNÔME SCINDÉ SUR UN CORPS)

Soit P un polynôme non nul de $\mathbf{K}[X]$, scindé sur le corps \mathbf{K} . Alors, en regroupant les racines de P égales, on peut écrire le polynôme P sous la forme

$$P = \operatorname{dom}(P) \cdot \prod_{k=1}^{r} (X - \alpha_k)^{m_k}$$

 $r \in \mathbb{N}^*$, $\alpha_1, ..., \alpha_r$ sont des éléments de **K** deux-à-deux distincts et $m_1, ..., m_r$ sont des entiers naturels non nuls. Alors

- 1) Spec_{**K**}(P) = { $\alpha_1, ..., \alpha_r$ } est de cardinal r;
- 2) pour tout $k \in [1, r]$, mult $(P, \alpha_k) = m_k$.

EXERCICE C16.82 — Soient $(\lambda, \alpha_1, \alpha_2, \alpha_3) \in \mathbf{K}^* \times \mathbf{K} \times \mathbf{K} \times \mathbf{K}$ et

$$P := \lambda \cdot \prod_{k=1}^{3} (X - \alpha_k).$$

Exprimer les coefficients de P en fonction de son coefficient dominant λ et de ses racines $\alpha_1, \alpha_2, \alpha_3$.

THÉORÈME C16.83 (FORMULES DE VIÈTE OU RELATIONS COEFFICIENTS-RACINES)

Soit P un polynôme de degré $n \ge 2$, scindé sur **K**. Alors P peut être écrit sous la forme

$$P = \operatorname{dom}(P) \cdot \prod_{k=1}^{n} (X - \alpha_k)$$

où $\alpha_1, \ldots, \alpha_n$ sont des éléments de **K**. Alors

$$\forall k \in [1, n] \quad [P]_{n-k} = (-1)^k \operatorname{dom}(P) \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \alpha_{i_1} \alpha_{i_2} \dots \alpha_{i_k}$$

et

$$\prod_{k=1}^{n} \alpha_k = \frac{(-1)^n [P]_0}{\text{dom}(P)} \qquad \text{et} \qquad \sum_{k=1}^{n} \alpha_k = \frac{-[P]_{n-1}}{\text{dom}(P)}.$$

EXERCICE C16.84 — Déterminer les couples (x, y) de nombres complexes tels que x + y = 2i et xy = 1 + i.

EXERCICE C16.85 — Déterminer les triplets (x, y, z) de nombres complexes non nuls vérifiant les trois équations suivantes.

$$\begin{cases} x+y+z &= 1\\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} &= 1\\ xyz &= -4 \end{cases}$$

EXEMPLE C16.86 — Si $n \in \mathbb{N}_{\geq 2}$ alors du scindage de $X^n - 1$ sur **C**

$$X^{n} - 1 = \prod_{\zeta \in \mathbf{U}_{n}} (X - \zeta) = \prod_{k=0}^{n-1} \left(X - e^{i\frac{2k\pi}{n}} \right)$$

et des formules de Viète, nous déduisons

$$\prod_{\zeta \in \mathbf{U}_n} \zeta = \prod_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = (-1)^{n+1} \qquad \text{et} \qquad \sum_{\zeta \in \mathbf{U}_n} \zeta = \sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = 0 \; .$$

THÉORÈME C16.87 (DE D'ALEMBERT-GAUSS)

Tout polynôme $P \in \mathbb{C}[X]$ tel que deg $(P) \geqslant 1$ possède une racine dans \mathbb{C} .

COROLLAIRE C16.88 (SCINDAGE SUR C D'UN POLYNÔME DE C[X])

Pour tout $P \in \mathbb{C}[X]$ tel que $n := \deg(P) \geqslant 1$, il existe $(\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$ tel que

$$P = \operatorname{dom}(P) \cdot \prod_{k=1}^{n} (X - \alpha_k)$$

Démonstration — Nous raisonnons par récurrence. Nous notons, pour tout $n \in \mathbb{N}^*$

 $\mathcal{P}(n)$: « tout polynôme de $\mathbb{C}[X]$ de degré n est scindé sur \mathbb{C} »

• Initialisation à n = 1. Soit P un polynôme de degré n. Alors il existe $(a_1, a_0) \in \mathbb{C}^* \times \mathbb{C}$ tel que $P = a_1 X + a_0$. Ainsi

$$P = a_1 \cdot \left(X - \frac{a_0}{a_1} \right) = \operatorname{dom}(P) \cdot (X - \alpha_1)$$

où $\alpha_1 := \frac{a_0}{a_1} \in \mathbb{C}$.

• Hérédité. Soit $n \in \mathbb{N}^*$ tel que, tout polynôme de $\mathbb{C}[X]$ de degré n est scindé sur \mathbb{C} . Soit P un polynôme de $\mathbb{C}[X]$ de degré n+1. D'après le théorème de d'Alembert-Gauß, il existe $\alpha_{n+1} \in \mathbb{C}$ tel que $\widetilde{P}(\alpha_{n+1}) = 0$. D'après C16.69, il existe $Q \in \mathbb{C}[X]$ tel que

$$(\star)$$
 $P = Q(X - \alpha_{n+1}).$

En analysant les degrés et coefficients dominants de chacun des membres de cette identité, nous observons

que $\deg(Q) = n$ et $\operatorname{dom}(Q) = \operatorname{dom}(P)$. D'après l'hypothèse de récurrence il existe $(\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$ tel que

$$(\star\star)$$
 $Q = \operatorname{dom}(Q) \cdot \prod_{k=1}^{n} (X - \alpha_k) = \operatorname{dom}(P) \cdot \prod_{k=1}^{n} (X - \alpha_k)$

D'après (★) et (★★), il vient

$$P = \operatorname{dom}(P) \cdot \prod_{k=1}^{n+1} (X - \alpha_k)$$

§ 7. POLYNÔMES INTERPOLATEURS DE LAGRANGE

PROPOSITION C16.89 (EXISTENCE ET UNICITÉ DES INTERPOLATEURS ÉLÉMENTAIRES DE LAGRANGE)

Soient un entier naturel $n \ge 2$ et x_1, \dots, x_n des éléments de **K** deux-à-deux distincts.

1) Pour tout $i \in [1, n]$, il existe un unique polynôme $L_i \in \mathbf{K}[X]$ tel que

$$\left\{ \begin{array}{ll} \deg (L_i) = n-1 \\ \text{et} \\ \forall j \in \llbracket 1, n \rrbracket & L_i(x_j) = \delta_{i,j} \,. \end{array} \right.$$

2) Pour tout $i \in [1, n]$, $L_i = \prod_{\substack{j=1 \ j \neq i}}^n \frac{X - x_j}{x_i - x_j}$.

THÉORÈME C16.90 (POLYNÔME INTERPOLATEUR DE LAGRANGE)

Soient un entier naturel $n \ge 2, x_1, ..., x_n$ des éléments de **K** deux-à-deux distincts et $y_1, ..., y_n$ des éléments de **K**.

- 1) Il existe un unique polynôme $L \in \mathbf{K}_{n-1}[X]$ tel que, pour tout $i \in [1, n]$, $L(x_i) = y_i$.
- 2) Si $L_1, ..., L_n$ sont les polynômes interpolateurs associés aux points $x_1, ..., x_n$ introduits en C16.89 alors

$$L = \sum_{i=1}^{n} y_i \cdot L_i = \sum_{i=1}^{n} y_i \cdot \prod_{\substack{j=1 \ i \neq i}}^{n} \frac{X - x_j}{x_i - x_j}.$$

EXERCICE C16.91 — Déterminer l'unique polynôme $P \in \mathbf{K}_3[X]$ tel que P(0) = 5, P(1) = -2, P(2) = 7, P(3) = -1.

EXERCICE C16.92 — Soient un entier naturel $n \ge 2$ et $x_1, ..., x_n$ des éléments de **K** deux-à-deux distincts. Démontrer que l'application

$$\varphi \mid \mathbf{K}_{n-1}[X] \longrightarrow \mathbf{K}^n$$

$$P \longmapsto (\widetilde{P}(x_1), \widetilde{P}(x_2), \dots, \widetilde{P}(x_n))$$

est bijective et expliciter son application réciproque.

§ 8. DÉRIVATION

NOTATION C16.93 — Dans cette partie, K n'est pas un corps quelconque, mais désigne R ou C.

DÉFINITION C16.94 (POLYNÔME DÉRIVÉ FORMEL ET POLYNÔMES DÉRIVÉS ITÉRÉS FORMELS) Soit $P \in \mathbf{K}[X]$.

1) Le polynôme dérivé formel P' de P est l'unique élément de $\mathbf{K}[X]$ défini par

$$\forall k \in \mathbf{N} \quad [P']_k = (k+1)[P]_{k+1}$$

de sorte que

$$P' = \sum_{k=0}^{+\infty} (k+1) [P]_{k+1} X^k = \sum_{k=1}^{+\infty} k [P]_k X^{k-1}$$

2) On définit par récurrence les polynômes dérivés itérés (ou successifs) formels de *P* en posant

$$\begin{cases} & P^{(0)} = P \\ \text{et} & \\ & \forall k \in \mathbf{N} \quad P^{(k+1)} = \left(P^{(k)}\right)' \end{cases}$$

EXEMPLE C16.95 — Si $P = 2X^4 - 7X^3 + 4X^2 - 3X + 1$ alors

$$P' = P^{(1)} = 8X^3 - 21X^2 + 8X - 3$$
 $P^{(2)} = 24X^2 - 42X + 8$ $P^{(3)} = 48X - 42$ $P^{(4)} = 48$

et, pour tout $k \ge 5 = \deg(P) + 1$, $P^{(k)} = 0$.

REMARQUE C16.96 — Soit $P \in \mathbf{R}[X]$.

- 1) Nous pouvons dériver formellement le polynôme P pour obtenir $P' \in \mathbf{R}[X]$, puis considérer la l'application $(P') \in \mathcal{F}(\mathbf{K}, \mathbf{K})$ canoniquement associée à P'.
- 2) Il est également possible de d'abord introduire la fonction $\widetilde{P} \in \mathcal{F}(\mathbf{R}, \mathbf{R})$, puis de la dériver au sens du calcul différentiel pour obtenir la fonction $(\widetilde{P})'$.

Les deux constructions livrent la même fonction de **R** dans **R**, i.e. $(\widetilde{P'}) = (\widetilde{P})'$.

PROPOSITION C16.97 (DEGRÉ DU POLYNÔME DÉRIVÉ)

Soit $P \in \mathbf{K}[X]$. Alors

$$\deg(P') = \begin{cases} -\infty & \text{si } P \in \mathbf{K}_0[X] \\ \deg(P) - 1 & \text{si } \deg(P) \geqslant 1. \end{cases}$$

Démonstration — • Supposons que $P \in \mathbf{K}_0[X]$. Alors, pour tout $k \in \mathbf{N}^*$, $[P]_k = 0_{\mathbf{K}}$. Nous en déduisons que, pour tout $k \in \mathbf{N}$

$$[P']_k = (k+1)[P]_{k+1} = 0_{\mathbf{K}}$$

Le polynôme P' est donc nul.

• Supposons que $n := deg(P) \ge 1$. Alors

$$P = \sum_{k=0}^{n} [P]_k \cdot X^k \quad \text{et} \quad [P]_n \neq 0_{\mathbf{K}}.$$

Nous en déduisons

$$P' = \sum_{k=1}^{n} k [P]_k \cdot X^{k-1} = \sum_{k=0}^{n-1} (k+1) [P]_{k+1} \cdot X^k \in \text{Vect}(1, X, \dots, X^{n-1}) = \mathbb{K}_{n-1}[X]$$

d'où deg(P') ≤ n-1. Comme de plus

$$[P']_{n-1} = n [P]_n \neq 0_{\mathbf{K}}$$

il vient $\deg(P') = n - 1$.

PROPOSITION C16.98 (DE L'ANNULATION DES DÉRIVÉES ITÉRÉES D'UN POLYNÔME)

Soit P un polynôme non nul de K[X] dont le degré est noté n.

- 1) $P^{(n+1)} = 0_{\mathbf{K}[X]}$
- 2) Pour tout $k \ge n+1$, $P^{(k)} = 0_{\mathbf{K}[X]}$.

Démonstration — L'assertion 2) est conséquence immédiate de 1). Nous établissons 1) en raisonnant par récurrence sur le degré $n \in \mathbb{N}$ du polynôme P. Posons, pour tout $n \in \mathbb{N}$

$$\mathscr{P}(n)$$
: « $P^{(n+1)} = 0_{\mathbf{K}[X]}$ »

- Initialisation à n = 0. Soit P un polynôme de K[X] de degré 0. Nous avons déjà établi en C16.97 qu'alors $P^{(1)} = P' = 0_{K[X]}$.
- Hérédité. Soit $n \in \mathbb{N}$ tel que $\mathscr{P}(n)$ est vrai. Considérons un polynôme P de $\mathbb{K}[X]$ de degré n+1. Comme $n+1 \ge 1$, C16.97 livre deg(P') = n. D'après l'hypothèse de récurrence

$$(P')^{(n+1)} = 0_{\mathbf{K}[X]}.$$

Nous concluons à $P^{(n+2)} = 0_{K[X]}$ en remarquant que $P^{(n+2)} = (P')^{(n+1)}$.

PROPOSITION C16.99 (PROPRIÉTÉS ALGÉBRIQUES DE LA DÉRIVATION DES POLYNÔMES)

1) Dérivée d'une combinaison linéaire

$$\forall (P, Q, \lambda, \mu) \in \mathbf{K}[X] \times \mathbf{K}[X] \times \mathbf{K} \times \mathbf{K} \quad \left(\lambda \cdot P + \mu \cdot Q\right)' = \lambda \cdot P' + \mu \cdot Q'$$

2) Dérivée d'un produit de deux polynômes

$$\forall (P,Q) \in \mathbf{K}[X]^2 \quad (P \times Q)' = P' \times Q + P \times Q'$$

3) Dérivée de produit d'un nombre fini de polynômes

$$\forall n \in \mathbf{N}_{\geqslant 2} \quad \forall (P_1, P_2, \dots, P_n) \in \mathbf{K}[X]^n \quad \left(\prod_{i=1}^n P_i\right)' = \sum_{i=1}^n \left(P_i' \times \prod_{\substack{j=1 \ j \neq i}}^n P_j\right)$$

Démonstration — 1) Soient $(P, Q, \lambda, \mu) \in \mathbf{K}[X] \times \mathbf{K}[X] \times \mathbf{K} \times \mathbf{K}$ et $k \in \mathbb{N}$. Nous calculons les coefficients de degré k des polynômes $(\lambda \cdot P + \mu \cdot Q)'$ et $\lambda \cdot P' + \mu \cdot Q'$.

$$\begin{split} \left[\left(\lambda \cdot P + \mu \cdot Q \right)' \right]_{k} &= (k+1) \left[\lambda \cdot P + \mu \cdot Q \right]_{k+1} = (k+1) \left(\lambda \cdot [P]_{k+1} + \mu \cdot [Q]_{k+1} \right) \\ \left[\lambda \cdot P' + \mu \cdot Q' \right]_{k} &= \lambda \left[P' \right]_{k} + \mu \left[Q' \right]_{k} = \lambda (k+1) \left[P]_{k+1} + \mu (k+1) \left[Q \right]_{k+1} = (k+1) \left(\lambda \cdot [P]_{k+1} + \mu \cdot [Q]_{k+1} \right) \end{split}$$

et observons qu'ils sont égaux.

Soit $(P,Q) \in \mathbf{K}[X]^2$. Soit $k \in \mathbf{N}$. Nous calculons les coefficients des polynômes $(P \times Q)'$ et $P' \times Q + P \times Q'$

$$\begin{split} \left[(P \times Q)' \right]_k &= (k+1) \left[P \times Q \right]_{k+1} \\ &= (k+1) \sum_{i=0}^{k+1} [P]_i [Q]_{k+1-i} \\ \\ \left[P' \times Q + P \times Q' \right]_k &= \left[P' \times Q \right]_k + \left[P \times Q' \right]_k \\ &= \sum_{i=0}^k \left[P' \right]_i \left[Q \right]_{k-i} + \sum_{i=0}^k [P]_i \left[Q' \right]_{k-i} \\ &= \sum_{i=0}^k (i+1) \left[P \right]_{i+1} [Q]_{k-i} + \sum_{i=0}^k (k-i+1) \left[P \right]_i [Q]_{k-i+1} \\ &= \sum_{i=1}^{k+1} i \left[P \right]_i [Q]_{k-i+1} + \sum_{i=0}^k (k-i+1) \left[P \right]_i [Q]_{k-i+1} \quad \text{[changement d'indice]} \\ &= \sum_{i=0}^{k+1} i \left[P \right]_i [Q]_{k-i+1} + \sum_{i=0}^{k+1} (k-i+1) \left[P \right]_i [Q]_{k-i+1} \quad \text{[ajout de deux termes nuls]} \\ &= \sum_{i=0}^{k+1} (i+k-i+1) \left[P \right]_i [Q]_{k-i+1} \\ &= (k+1) \sum_{i=0}^{k+1} [P]_i [Q]_{k+1-i} \end{split}$$

et observons qu'ils sont égaux.

3) Nous raisonnons par récurrence sur le nombre $n \ge 2$ de facteurs. Posons, pour tout $n \in \mathbb{N}_{\ge 2}$

$$\mathscr{P}(n): \langle \forall (P_1, P_2, \dots, P_n) \in \mathbb{K}[X]^n \quad \left(\prod_{i=1}^n P_i\right)' = \sum_{i=1}^n \left(P_i' \times \prod_{\substack{j=1 \ j \neq i}}^n P_j\right) \rangle$$

• Initialisation à n = 2. Soient P_1 et P_2 des polynômes de $\mathbf{K}[X]$. On observe que

$$\left(\prod_{i=1}^{2} P_{i}\right)' = (P_{1}P_{2})'$$
 et $\sum_{i=1}^{2} \left(P'_{i} \times \prod_{\substack{j=1 \ j \neq i}}^{n} P_{j}\right) = P'_{1}P_{2} + P'_{2}P_{1}$

L'identité à établir résulte de 2).

• Hérédité. Soit $n \ge 2$ tel que $\mathcal{P}(n)$ est vrai. Considérons des polynômes P_1, \dots, P_n, P_{n+1} de $\mathbb{K}[X]$. D'après 2)

$$\left(\prod_{i=1}^{n+1} P_i\right)' = \left(\left(\prod_{i=1}^n P_i\right) P_{n+1}\right)' = \left(\prod_{i=1}^n P_i\right)' P_{n+1} + \left(\prod_{j=1}^n P_j\right) P'_{n+1}$$

Grâce à l'hypothèse de récurrence, nous pouvons réécrire le polynôme $\left(\prod_{i=1}^{n} P_{i}\right)'$ et obtenir

$$\left(\prod_{i=1}^{n+1} P_i \right)' = \left(\sum_{i=1}^n \left(P_i' \times \prod_{j=1}^n P_j \right) \right) P_{n+1} + \left(\prod_{j=1}^n P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) + P_{n+1}' \left(\prod_{j=1}^{n+1} P_j \right) = \sum_{i=1}^{n+1} \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n+1} P_j \right) P_{n+1}' = \sum_{i=1}^n \left(P_i' \times \prod_{j=1}^{n$$

EXEMPLE C16.100 — Soient $a \in \mathbf{K}$ et $k \in \mathbb{N}_{\geq 2}$. Nous avons

$$(X-a)'=1$$

et nous en déduisons

$$\left((X-a)^k \right)' = \left(\prod_{i=1}^k (X-a) \right)' = \sum_{i=1}^k \left((X-a)' \times \prod_{\substack{j=1 \ j \neq i}}^k (X-a) \right) = \sum_{i=1}^k \left(1 \times (X-a)^{k-1} \right) = k (X-a)^{k-1}$$

Proposition C16.101 (formule de Leibniz)

$$\forall (n, P, Q) \in \mathbf{N} \times \mathbf{K}[X] \times \mathbf{K}[X] \quad (PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$$

Démonstration — Soient P et Q des polynômes de K[X]. Nous démontrons le résultat en raisonnant par récurrence sur $n \in \mathbb{N}$. Posons, pour tout $n \in \mathbb{N}$

$$\mathscr{P}(n) : (PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$$

• Initialisation à n = 0. Comme

$$(PQ)^{(0)} = PQ$$
 et $\sum_{k=0}^{0} {0 \choose k} P^{(0)} Q^{(0-k)} = PQ$

l'identité à démontrer est vraie.

• Hérédité. Soit $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$ est vrai. D'après l'hypothèse de récurrence

$$(PQ)^{(n+1)} = ((PQ)^{(n)})' = \left(\sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}\right)'$$

D'après C16.99

$$(PQ)^{(n+1)} = \sum_{k=0}^{n} \binom{n}{k} \left(\left(P^{(k)} \right)' Q^{(n-k)} + P^{(k)} \left(Q^{(n-k)} \right)' \right) = \sum_{k=0}^{n} \binom{n}{k} P^{(k+1)} Q^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n+1-k)}$$

Grâce à un changement d'indice

$$(PQ)^{(n+1)} = \sum_{k=1}^{n+1} \binom{n}{k-1} P^{(k)} Q^{(n+1-k)} + \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n+1-k)}$$

$$= \binom{n}{n} P^{(n+1)} Q^{(0)} + \sum_{k=1}^{n} \binom{n}{k-1} P^{(k)} Q^{(n+1-k)} + \sum_{k=1}^{n} \binom{n}{k} P^{(k)} Q^{(n+1-k)} + \binom{n}{0} P^{(0)} Q^{(n+1)}$$

$$= \binom{n}{n} P^{(n+1)} Q^{(0)} + \sum_{k=1}^{n} \binom{n}{k-1} + \binom{n}{k} P^{(k)} Q^{(n+1-k)} + \binom{n}{0} P^{(0)} Q^{(n+1)}$$

Comme
$$\binom{n}{n} = 1 = \binom{n+1}{n+1}, \binom{n}{0} = 1 = \binom{n+1}{0}$$
 et, pour tout $k \in [1, n]$

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$
 [relation de Pascal]

il vient

$$(PQ)^{(n+1)} = \binom{n+1}{n+1} P^{(n+1)} \ Q^{(0)} + \sum_{k=1}^n \binom{n+1}{k} P^{(k)} \ Q^{(n+1-k)} + \binom{n+1}{0} P^{(0)} \ Q^{(n+1)} = \sum_{k=0}^{n+1} \binom{n+1}{k} P^{(k)} \ Q^{(n+1-k)} + \binom{n+1}{0} P^{(n+1)} = \sum_{k=0}^{n+1} \binom{n+1}{k} P^{(k)} \ Q^{(n+1-k)} + \binom{n+1}{0} P^{(n+1)} = \sum_{k=0}^{n+1} \binom{n+1}{k} P^{(k)} \ Q^{(n+1-k)} + \binom{n+1}{0} P^{(n+1)} = \sum_{k=0}^{n+1} \binom{n+1}{k} P^{(n+1)} = \sum_{k=0}^{n+1} \binom{$$

THÉORÈME C16.102 (FORMULE DE TAYLOR EXACTE DANS K[X] EN UN POINT DE K)

Soit $a \in \mathbf{K}$. Alors, pour tout $n \in \mathbf{N}$, pour tout $P \in \mathbf{K}_n[X]$

$$P = \sum_{k=0}^{n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k}$$

Démonstration — Nous raisonnons par récurrence sur $n \in \mathbb{N}$. Posons, pour tout $n \in \mathbb{N}$

$$\mathscr{P}(n): \forall P \in \mathbf{K}_n[X] \quad P = \sum_{k=0}^n \frac{\widetilde{P^{(k)}}(a)}{k!} (X-a)^k.$$

• Initialisation à n = 0. Soit $P \in \mathbf{K}_0[X]$. Alors P est constant et nous pouvons l'écrire sous la forme $P = \lambda$, où $\lambda \in \mathbf{K}$. Comme

$$\sum_{k=0}^{0} \frac{\widetilde{P^{(k)}}(a)}{k!} (X-a)^k = \frac{\widetilde{P^{(0)}}(a)}{0!} (X-a)^0 = \widetilde{P^{(0)}}(a) = \lambda \qquad \text{[évaluer le polynôme constant } \lambda \text{ en } a \text{ donne } \lambda\text{]}$$

l'identité est établie pour ce polynôme P.

• Hérédité. Soit $n \in \mathbb{N}$ tel que $\mathscr{P}(n)$ est vrai. Soit $P \in \mathbb{K}_{n+1}[X]$. D'après le résultat sur le degré d'un polynôme dérivé (C16.97), $\deg(P') \leq n$. L'hypothèse de récurrence nous livre alors

$$(\star) \quad P' = \sum_{k=0}^{n} \frac{\widetilde{(P')^{(k)}}(a)}{k!} (X - a)^k = \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{k!} (X - a)^k$$

Introduisons le polynôme

$$Q := \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{(k+1)!} (X - a)^{k+1}$$

À l'aide des propriétés algébriques de la dérivation (C16.99) et

$$\forall k \in [0, n] \quad ((X - a)^{k+1})' = (k+1)(X - a)^k \quad [cf. C16.100]$$

nous calculons

$$(\star\star)$$
 $Q' = \sum_{k=0}^{n} \frac{P^{(k+1)}(a)}{k!} (X-a)^k$

Des propriétés algébriques de la dérivation, (*) et (**), nous déduisons

$$(P-Q)' = P' - Q' = 0_{\mathbf{K}[X]}$$

D'après le résultat sur le degré d'un polynôme dérivé (C16.97), le polynôme P-Q est constant. Il existe donc un scalaire $\lambda \in \mathbf{K}$ tel que

$$(\star \star \star)$$
 $P = \lambda + \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{(k+1)!} (X-a)^{k+1} = \lambda + \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X-a)^{k}$

En évaluant au point a (evala est un morphisme de K-algèbres, cf. C16.64), il vient

$$\widetilde{P}(a) = \lambda + \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} 0^k = \lambda$$

d'où $\lambda = \widetilde{P}(a) = \widetilde{P}^{(0)}(a) = \frac{P^{(0)}(a)}{\Omega!} (X - a)^0$. L'identité $(\star \star \star)$ se réécrit alors

$$P = \frac{\widetilde{P}^{(0)}(a)}{0!} (X - a)^0 + \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k = \sum_{k=0}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k$$

EXEMPLE C16.103 — Soit $P \in X^4 + X^3 + X^2 + X + 1$. Nous calculons

$$P^{(0)}(1) = 5$$

 $P^{(1)} = 4X^3 + 3X^2 + 2X + 1$ et $P^{(1)}(1) = 10$
 $P^{(2)} = 12X^2 + 6X + 2$ et $P^{(2)}(1) = 20$
 $P^{(3)} = 24X + 6$ et $P^{(3)}(1) = 30$
 $P^{(4)} = 24$ et $P^{(4)}(1) = 24$

D'après la formule de Taylor exacte dans K[X] (cf. C16.102)

$$P = 5 + 10(X - 1) + 20\frac{(X - 1)^2}{2} + 30\frac{(X - 1)^3}{6} + 24\frac{(X - 1)^4}{24} = 5 + 10(X - 1) + 10(X - 1)^2 + 5(X - 1)^3 + (X - 1)^4$$

EXERCICE C16.104 — Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{K}$. Démontrer que l'application

$$\varphi \mid \mathbf{K}_{n}[X] \longrightarrow \mathbf{K}^{n+1}$$

$$P \longmapsto \left(\widetilde{(P^{(0)})}(a), \widetilde{(P^{(1)})}(a), \widetilde{(P^{(2)})}(a), \dots, \widetilde{(P^{(n)})}(a) \right)$$

est bijective et expliciter son application réciproque.

THÉORÈME C16.105 (CARACTÉRISATION DE L'ORDRE DE MULTIPLICITÉ D'UNE RACINE VIA LES DÉRIVÉES) Soient $P \in \mathbf{K}[X]$ tel que $\deg(P) \geqslant 1$ et $\alpha \in \operatorname{Spec}_{\mathbf{K}}(P)$. L'ensemble $\left\{k \in \mathbf{N}^* : \widehat{P^{(k)}}(\alpha) \neq 0_{\mathbf{K}}\right\}$ possède un minimum et

 $\operatorname{mult}(\alpha, P) = \min \left\{ k \in \mathbf{N}^* : \widetilde{P^{(k)}}(\alpha) \neq 0_{\mathbf{K}} \right\}$

La multiplicité de la racine α de P est donc le premier rang k où le polynôme dérivé itéré $P^{(k)}$ prend une valeur non nulle en α .

Démonstration — • La formule de Taylor exacte dans K[X] appliquée à P au point α livre

$$(\star) \quad P = \sum_{k=0}^{+\infty} \frac{\widetilde{P^{(k)}}(\alpha)}{k!} (X - \alpha)^k = \sum_{k=1}^{+\infty} \frac{\widetilde{P^{(k)}}(\alpha)}{k!} (X - \alpha)^k \qquad [\alpha \text{ est racine de } P]$$

De la non-nullité de P et de (\star) nous déduisons que la partie

$$I := \left\{ k \in \mathbb{N}^* : \widetilde{P^{(k)}}(\alpha) \neq 0_{\mathbb{K}} \right\}$$

de \mathbb{N}^* est non vide. D'après l'axiome du bon ordre, I possède un minimum. Posons

$$v := \min(I) \in \mathbf{N}^*$$

et démontrons que $v = \text{mult}(\alpha, P)$, i.e. que $(X - \alpha)^v$ divise P et $(X - \alpha)^{v+1}$ ne divise pas P.

• D'après la définition de v, l'identité (*) se réécrit

$$(\star\star) \quad P = \sum_{k=\nu}^{+\infty} \frac{\widetilde{P^{(k)}}(\alpha)}{k!} (X - \alpha)^k = (X - \alpha)^{\nu} \underbrace{\sum_{k=\nu}^{+\infty} \frac{\widetilde{P^{(k)}}(\alpha)}{k!} (X - \alpha)^{k-\nu}}_{=:Q \in \mathbf{K}[X]}$$

De la factorisation ($\star\star$) nous déduisons que ($X-\alpha$) $^{\nu}$ divise P.

• Démontrons que $(X - \alpha)^{\nu+1}$ ne divise pas P, en raisonnant par l'absurde. Supposons donc qu'il existe un polynôme R de $\mathbf{K}[X]$ tel que

$$(\star \star \star) \quad P = (X - \alpha)^{\nu+1} R$$

De $(\star\star)$, $(\star\star\star)$ et de la régularité de K[X] (conséquence de son intégrité), nous déduisons

$$(X - \alpha)R = O$$

puis, en évaluant en α

$$0_{\mathbf{K}} = \widetilde{Q}(\alpha) = \sum_{k=\nu}^{+\infty} \frac{\widetilde{P^{(k)}}(\alpha)}{k!} 0_{\mathbf{K}}^{k-\nu} = \frac{\widetilde{P^{(\nu)}}(\alpha)}{\nu!} \qquad \left[0_{\mathbf{K}}^{0} = 1_{\mathbf{K}}\right]$$

ce qui contredit $v \in I$.

EXEMPLE C16.106 — Soit $P := X^5 + 7X^4 + 19X^3 + 26X^2 + 20X + 8$. Nous calculons

$$P^{(0)}(-2) = 0$$

 $P^{(1)} = 5X^4 + 28X^3 + 57X^2 + 52X + 20$ et $P^{(1)}(-2) = 0$
 $P^{(2)} = 20X^3 + 84X^2 + 114X + 52$ et $P^{(2)}(-2) = 0$
 $P^{(3)} = 60X^2 + 168X + 114$ et $P^{(3)}(-2) = 18$

Ainsi -2 est racine de P et mult (-2, P) = 3.