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1 Limite de suite

1.1 Suites convergentes

C1. 1. DEFINITION (SUITE CONVERGEANT VERS ¢ € R). —  Soit (uy,)en une suite réelle. Soit { € R.
On dit que la suite (u,,)en converge vers { quand n tend vers +00, et on note u,, —+—> 0, si
n—-+0oo
Ve € Ry, dN € N, Vn e N, nz2N= |u,— ¢ <e.

Représentation d’une suite convergeant vers { € R

50
X X
4+t X
{+¢ <
+ X
14 3 X X X X
X
2 4 X X X : X X
1t X :

C1. 2. PROPOSITION (UNICITE DE LA LIMITE D’UNE SUITE CONVERGENTE). —  S0if (Uy )neN une suite
réelle convergente. Alors le nombre réel { tel que u,, ——— ( est unique. On Uappelle limite de la suite (uy,)nen
n—>- 400

et on le note lim w,,.
n—-+oo

C1. 3. PROPOSITION (CONVERGENTE == BORNEE). —  Toute suite réelle convergente est bornée. J

C1. 4. Question. — Une suite réelle bornée est-elle nécessairement convergente ?

C1. 5. Exercice (Signe d’une suite convergeant vers un réel strictement positif). —  Soit (u,)nen une suite
réelle convergente de limite ¢/ > 0. Démontrer : u,, > 0 a partir d’un certain rang.

C1. 6. Question. — Une suite réelle convergente est-elle nécessairement monotone a partir d’un certain
rang?

C1.7. Question. — Une suite de réels strictement positifs, convergente, de limite nulle est-elle néces-
sairement décroissante a partir d’un certain rang?



C1.8. Exercice (Ecriture formelle de deux propriétés). —  Soit (un)nen une suite réelle et soit £ € R.
Exprimer les propriétés suivantes sous forme quantifiée.

1. (un)nen ne converge pas vers (.

2. (un)nen n’admet pas de limite finie.

C1. 9. OPERATIONS SUR LES SUITES CONVERGENTES. —

1. Lensemble S, des suites réelles convergentes indexées par N est une sous-algébre de RN, i.e.
(a) la suite constante nulle appartient a S,

(b) Uensemble S. est stable par somme :
V(an)nen € Se, ¥ (bn)nen € Se,  (an + bn)nen € Se
(¢) Uensemble S, est stable par multiplication par un scalaire :
V(an)nen € Sey, YA ER, (Aap)nen € Se
(d) Uensemble S, est stable par multiplication interne :
V(an)nen € Se; V¥V (bn)nen € Se,  (an bp)nen € Se -

2. Lapplication :

est un morphisme de R-algeébres, i.e. :

(a) Uapplication est linéaire :

Y(an)nen € Sey V (bp)nen € Se, V(A 1) € R?, E{E X, + b, =X lim a,+p lim b,

n—-+4o00 n—> —+00

(b) limage de la suite constante égale a 1 (qui est le neutre de S, pour la multiplication interne) est le
réel 1 (qui est le neutre de R pour la multiplication)

(c) lapplication respecte le produit interne

n——+o0o n——+o0o n—-—+o0o

V(an)nen € Sey, YV (bn)nen € S, lim a,b, = ( lim an) ( lim bn).

3. Soit (up)nen € S. telle que u,, # 0 pour tout n € N, i.e. (up)nen € S. est un élément inversible de S...
On suppose que  := lirE u, # 0. Alors
n—-—+0o0o

1 1 1
(£) es a m —-7
Un neN n—>-+00 Uy, l




C1. 10. Exercice (Convergence du carré d’une suite versus convergence de la suite elle-méme). —  Soit (up)nen
une suite réelle.

1. Si (u2), cn converge, alors (u,),en converge-t-elle nécessairement ?

. 2 - . 2
2. Si (u;,),cn converge vers 0, alors (u,)n,en converge-t-elle nécessairement vers 0

C1.11. Question. — Soient (a,)nen €t (b, )nen deux suites réelles telles que a, —b, —— 0. Peut-on
n—>-4oo
affirmer lim a, = lim b,?
n—-—+o0o n—>-—+o0o
C1. 12. THEOREME (PASSAGE A LA LIMITE DANS UNE INEGALITE LARGE). —  Soient (Up )neN €t (Un)neN

deux suites réelles. On suppose que :
(H1) la suite (up,)nen est convergente;
(H2) la suite (v,)neN est convergente;
(H3) w,, < vy, a partir d’'un certain rang.

Alors lim wu, < lim wu,.
n—-+oo n—-—+o0o

C1.13. Question. — Soient (U )nen €t (v, )nen deux suites réelles convergentes. On suppose que, pour

tout n € N, u,, < v,,. A-t-on nécessairement lim wu, < lim w,?
n——+00 n—>—400

C1. 14. THEOREME (ENCADREMENT). —  Soient (an)neNs (bn)neN €t (Cn)nen trois suites réelles. On
suppose que :

(H1) la suite (a,)neN est convergente;

(H2) la suite (¢;,)nen est convergente,

(H3) lim a,= lim c,;

n—>+400 n—>+400
(H4) a, < b, < ¢, d partir d’un certain rang.
Alors
(C1) la suite (b,)nen converge;

(C2) lim b,= Ilim a,= lim c,.
n—>+oo n—>+oo n—>+oo

C1. 15. Exercice. —
cos(n)

1. Démontrer :
n n—--+o0o

2. Proposer une généralisation du résultat de la question 1.

C1.16. Exercice (Comportement asymptotique de (sin(n),en). — Démontrer que la suite (sin(n)),en est
divergente ?




1.2 Suites divergeant vers —oo

C1. 17. DEFINITION (SUITE DIVERGEANT VERS —00). —  S0it (U )nen une suite réelle. On dit que u,
tend vers —oo quand n tend vers 400, et on note v, ——— —00, Si
n—-4oo

VAeR, JN e N, VYneN, n>N—=— u, <A

C1.18. THEOREME (DOMINATION POUR LA DIVERGENCE VERS —00). —  Soient (Up)neN € (Un)neN
deux suites réelles telles que u,, < v, @ partir d’un certain rang.

Un —— —C9 - Unp ——> =09
n—>-+o00 n—-+4oo

1.3 Suites divergeant vers 400

C1. 19. DEFINITION (SUITE DIVERGEANT VERS +00). —  Soit (uy,)nen une suite réelle. On dit que u,
tend vers +00 quand n tend vers +00, et on note u, —+> +00, i
n—-—+0o0o

VAeR, JN e N, VneN, n>N=u, > A

Représentation d’une suite divergeant vers 400

X

— \o} w >~ >U! (=) ~N o Nej
| | | | | | | | |
+ + + + + + + + +

T T T T Y

-1 101 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

14 N

C1. 20. THEOREME (DOMINATION POUR LA DIVERGENCE VERS +00). —  Soient (uy)neN €t (Un)neN

deux suites réelles telles que w,, < v, a partir d’un certain rang. Si v,, ——— 400 alors v, ——— +o00.
n—-+4oo n—->-+o0o




n
C1. 21. Exercice. — Démontrer n! ——— 400, puis Z k!~ nl
n
k=0

n—>-+40o0 —r40o0

C1. 22. Exercice (Comportement asymptotique d’une suite réelle géométrique). — Soit ¢ € R. Quel est le
comportement asymptotique de la suite (¢"), .n 7

C1. 23. Exercice (Opérations sur les suites divergeant vers 'infini). — Enoncer et démontrer les résultats
sur les opérations sur les suites réelles divergeant vers I'infini.

C1. 24. Exercice (Croissances comparées). — Soient des nombres réels «, 3, ¢ strictement positifs. Enon-
cer les résultats sur les croissances comparées des suites :

(”a)neN (lnﬁ(n))neN* (qn)neN (n!)nEN :

Comment peut-on les établir?

C1. 25. Exercice (Formalisation de la non divergence vers +00). — Soit (u,, )nen une suite réelle. Exprimer
a I’aide d’une proposition logique quantifiée I’assertion : « (u,),en ne tend pas vers +00 ».

C1. 26. Question. — Une suite réelle qui ne tend pas vers 400 est-elle nécessairement majorée ?
C1. 27. Question. — Une suite qui tend vers 400 est-elle nécessairement croissante a partir d’un certain
rang ?
C1. 28. Exercice (Suite réelle non majorée). —  Soit (u,)nen une suite réelle non majorée. Démontrer
qu’il existe une application ¢: N — N, strictement croissante, telle que () — +00.
n—-4+oo

C1. 29. Exercice (Une version du critére de D’Alembert pour les suites). —  Soit (u,)nen une suite de

Un+1

— L.

nombres réels strictement positifs. On suppose qu’il existe / € R tel que
Up, n—--+o0o

1. Démontrer que u, —— 0si ¢ < 1.
n—>-—+oo

2. Démontrer que v, —— +o00 si { > 1.
n—-4+oo

3. Que peut-on dire du comportement asymptotique de (u,)pen si € =17

C1. 30. Exercicee. — Soit z € R.

1. Justifier que le nombre In (1 + E) est bien défini a partir d’un certain rang n,.
n

2. Etudier le comportement asymptotique de la suite ((1 + E) ) .
n n>ng




C1. 31. Exercice (La forme indéterminée 17°°). —

1. Soit ¢ > 0. Donner une suite (u,),en convergeant vers 1 et telle que u! —— /.
n—-4oo

2. Donner une suite (v,,),eN convergeant vers 1 et telle que v]! m ~+00.

n

3. Donner une suite (w,),en convergeant vers 1 et telle que la suite (w]”

ni limite infinie.

9 . o 1 . .
Jnen Wait ni limite finie

C1. 32. Question. — Quel peut étre le comportement asymptotique d’une suite réelle ?

2 Théoréme de la limite monotone et conséquences

C1. 33. THEOREME (LA LIMITE MONOTONE). —  S0if (Uy )neN Une suite réelle croissante.

1. Si (un)nen est majorée, alors elle converge vers sup u,,.
neN

2. Si (Up)nen nest pas majorée, alors elle diverge vers +oc.

C1. 34. Remarque. — Ce théoréme d’existence « abstraite » de limite est un outil puissant pour
construire de nouveaux nombres. Il a des applications trés riches, dans la théorie des séries numériques
par exemple.

C1. 35. Question. — Soit (u,)nen une suite réelle, décroissante et minorée par 0. A-t-on nécessairement
U, — 07?

n—>-+00
C1. 36. COROLLAIRE (THEOREME DES SUITES ADJACENTES). —  Soient (Uy)nen €t (Vn)nen des suites

réelles. On suppose que
(H1) (Un)nen est croissante;
(H2) (vn)nen est décroissante;
(H3) u, — v, — 0.
n—>-+oo
Alors
(C7) (up)nen comverge;

(C2) (Vy)nenN converge;

(C3) lm wu,= lim v,
n—+00 n—s-+oo

(C4) Vke N, wvy<uy< lim u,= lim v, < <.
n—>—+00 n—>—+00
C1. 37. Remarque. — Le théoréme des suites adjacentes est, avant tout, un critére de convergence pour

deux suites. Le résultat sur la valeur commune des deux limites est trivial, une fois les deux convergences
établies.

C1. 38. Question. — Que peut-on dire de deux suites réelles (u,)nen €t (v,)nen vérifiant seulement
les hypothéses (H1) et (H2) du théoréme des suites adjacentes?



C1. 39. Exercice (Théoréme des segments emboités). —  Soient (a,)nen €t (bn)nen des suites réelles telles
que a, < by, pour tout n € N. Pour tout n € N, on pose K, := [a,, b,], le segment d’extrémités a,,, b,,.
On suppose que :
(H1) la suite (K,),en est décroissante au sens de linclusion, i.e. K, 11 C K,,, pour tout n € N;
(H2) longueur(K,) := b, — a, — 0.

Démontrer que ﬂ K, est un singleton, i.e. il existe ¢ € R tel que ﬂ K, ={l}.

neN neN

v

C1. 40. Question. — Que dire d’une suite (X, ),en de segments de R décroissante au sens de I'inclusion
(i.e. vérifiant uniquement ’hypothése (H1) du théoréme des segments emboités) ?

C1. 41. Exercice (liminf et limsup d’une suite réelle bornée). —  Soit (u,)nen une suite réelle bornée.
Pour tout n» € N, on pose :
vy, 1= inf u, et Wy, = SUP Up.
p=n p=n

1. Démontrer que les suites (v, )nen €t (wy,)nen sont convergentes.

2. Que peut-on dire de plus, dans le cas ou (u,),en converge?

3 Valeur d’adhérence

C1. 42. DEFINITION (SUITE EXTRAITE ET VALEUR D’ADHERENCE). —  S0it (uy, )neN une suite réelle.

1. On appelle suite extraite de (U, )nen, toute suite (Upn))nen, 0@t ©: N — N est une application
strictement croissante.

2. Un nombre réel { est appelée valeur d’adhérence de la suite (u,)nen S'il existe une suite extraite de
(Un)nen convergeant vers (.

C1. 43. Exercice (Calculs de quelques valeurs d’adhérence). —

1. Soit (uy)nen définie par u, = (—1)", pour tout n € N. Démontrer que —1 et 1 sont des valeurs
d’adhérence de la suite (u,),eN-

2. Soit (v,)nen définie par v, = n (1 + (—1)"), pour tout n € N. Déterminer une valeur d’adhé-
rence de la suite (v,,)neN-

C1. 44. PROPOSITION (VALEUR D’ADHERENCE D’UNE SUITE CONVERGENTE). —  S0it (U, )neN Une suite
réelle convergeant vers { € R. Toute suite extraite de (uy,)neN converge vers et donc la suite (uy,)nen ne posséde
qu’une valeur d’adhérence : (.

C1. 45. Exercice (Suite extraite des termes d’indices pairs et suite extraite des termes d’indices impairs). —
Soit (uy)nen une suite réelle. On suppose que les suites (U2, )nen €t (Ug,+1)nen convergent. Donner
une condition nécessaire et suffisante portant sur ces deux suites extraites, pour que (u,),en converge.

v




C1. 46. Exercice (Critére pour étre valeur d’adhérence d’une suite). —  Soit (u,),en une suite réelle et soit
¢ € R. Démontrer que les propositions suivantes sont équivalentes.

1. 7 est une valeur d’adhérence de (uy,)neN-
2.Ve>0, VNeN, In>=N, |u,—/{ <e.
3. Pour tout € > 0, 'ensemble {n € N : |u, — ¢| < ¢} est infini.

4. 1l existe une suite d’entiers naturels strictement croissante (k,),en telle que wuy, —+> L.
n—-—+0oo

C1. 47. Exercice (Ensemble de valeurs d’adhérence). —

1. Déterminer toutes les valeurs d’adhérence des suites (u,,),en définie par u,, = (—1)", pour tout
n € N.

2. Déterminer toutes les valeurs d’adhérence des suites (v,,),en définie par v, = n (14 (—1)"),
pour tout n € N.

C1. 48. Exemple. — Grace au Théoréme décrivant les sous-groupes du groupe (Z, +) (cf. Chapitre 3
« Algébre Générale »), on peut démontrer que ’ensemble des valeurs d’adhérence de la suite (cos(n)),en
est le segment [—1, 1].

C1. 49. Question. — Une suite réelle ayant une unique valeur d’adhérence est-elle nécessairement
convergente ?

C1. 50. Question. — Une suite réelle posséde-t-elle toujours une valeur d’adhérence ?

C1. 51. Question. — Soit (uy,)nen une suite réelle. Soient p: N — Net¢: N — N deux applications

strictement croissantes. Les suites

(u@ow(n))neN et (u’ljlogp(n))TLEN

sont-elles des suites extraites de (Up(n))nen ?

4 Théoréme de Bolzano-Weierstraf3

C1. 52. THEOREME (BOLZANO-WEIERSTRASS). —  Toute suite réelle bornée admet au moins une valeur
d’adhérence.
C1. 53. COROLLAIRE (SUITE REELLE BORNEE AYANT UNE UNIQUE VALEUR D’ADHERENCE). —  Toute

suite réelle bornée ayant une unique valeur d’adhérence converge.

C1. 54. Exercice (Suites extraites de deux suites, convergentes et ayant des indices communs). —  Soient
(Un)nen €t (Uy)nen deux suites réelles bornées. Démontrer qu’il existe une application p: N — N
strictement croissante telle que les suites (uy(n))nen €t (Vp(n))nen convergent.

10



C1. 55. Exercice (Valeurs d’adhérence identiques). — Soient (u,,)nen €t (v,)nen deux suites réelles telles

ue u, — v, — 0. Démontrer que (u N et (v ~ ont les mémes valeurs d’adhérence.
n n n)ne n)ne
n—-+o0o

C1. 56. Exercice (Borne supérieure, borne inférieure et valeurs d’adhérence). —  Soit (un)nen une suite
réelle bornée. Soit A ’ensemble des valeurs d’adhérence de la suite (u,),en. Démontrer que A admet
une borne supérieure et une borne inférieure, et que inf(A) et sup(A) appartiennent a A.

C1. 57. Exercice (Lemme de la puce). —  Soit (u,)nen une suite réelle bornée telle que :

gt —tin 00

Démontrer que ’ensemble des valeurs d’adhérence de (u,),en €st un segment.

7

C1. 58. Remarque. — Le théoréme de Bolzano-Weierstral permet de démontrer plusieurs théorémes
fondamentaux, portant sur les fonctions définies et continues sur un segment de R. Nous en mentionnons
deux.

1. Le théoréme de Heine
Soient a et b des nombres réels tels que a < b. Soit f: [a, b)) —> R une fonction continue. Alors
f est une fonction uniformément continue, i.e. :

Ve>0, 3a>0, V(r.y)€la, ), lz-yl<a = |flz)-fly)l<e.

2. Le théoréme des bornes atteintes
Soient a et b des nombres réels tels que a < b. Soit f: [a, ] — R une fonction continue. Alors
f est bornée et atteint ses bornes, i.e. :

3 (@m,xyr) € [a, B, Vo ela, b, f(am) < fl@) < flam) .

5 Limite inférieure et limite supérieure (HP)

On étudie plus en profondeur des notions rencontrées lors de la résolution de I’exercice C1.41.

C1. 59. DEFINITION (LIMITE SUPERIEURE ET LIMITE INFERIEURE). —  S0if (Uy)nen une suite réelle
bornée.

1. La suite | sup u, est décroissante et minorée. Elle converge donc vers inf sup u,. On appelle limite
p=>n neN neN p>p

supérieure de (u,,)nen €t on note lim sup u,, la limite de la suite <Sup up> ,de:
neN

p=n
limsup w, := inf supu, = lim supuw,.
neN p>n n—+00 p>n

2. La suite | inf u, est croissante et majorée. Elle converge donc vers sup inf w,. On appelle limite
e neN neN p=>n

11



inférieure de (U, )nen €t on note liminf u,, la limite de la suite <i1>1f up) , ie:
p/n
neN

liminf u, := supinf u, = lim inf u,.
neN p=n n—>4o00 p=>n
C1. 60. PROPOSITION (LIMITE INFERIEURE, LIMITE SUPERIEURE ET VALEUR D’ADHERENCE). —  Soit

(Un)nen une suite réelle bornée.
1. limsup u,, et liminf u,, sont des valeurs d’adhérence de la suite (uy,)neN-
2. limsup u,, est la plus grande valeur d’adhérence de la suite (uy,)nen.

3. iminf u,, est la plus petite valeur d’adhérence de la suite (u,)neN-

C1. 61. Exercice (Un critére de convergence via lim sup et lim inf). —  Soit (u,,),en une suite réelle bornée.
Démontrer que (uy,),en converge si et seulement si lim sup u,, = lim inf w,,.

C1. 62. Exercice (Suites sous-additives). —  Soit (u,,)nen une suite de nombres réels positifs telle que :
Y (n,m) € N?, Unsm < Uy + U,

1. Soit (n,m) € N* x N* tel que n < m. Démontrer qu’il existe » € N tel que r < n et :

Um Up | Up
gty L
m n m

Up, , , Up,
2. On suppose (—) bornée. Démontrer que (—) converge.
n / neN N / neN

6 Suites complexes

C1. 63. DEFINITION (CONVERGENCE D’UNE SUITE A VALEURS COMPLEXES). —  S0it (U )neN une suite

de nombres complexes, soit ¢ € C. On dit que la suite (u,,),eN converge vers { et on écrit u, e lsi:
n—--4+oo

Ve>0, dN.e€N, VneN, n>2 N = |u, —{| <e.

C1. 64. Remarque. — Dans la définition C1.63, le symbole | - | désigne le module.

C1. 65. PROPOSITION (CONVERGENCE VIA LES PARTIES REELLE ET IMAGINAIRE). — S0t (Up, )neN Une
suite de nombres complexes, soit { € C. La suite (U, )nen converge vers { si et seulement si la suite (Re(uy,))nen
converge vers Re(() et la suite (Im(u,,))nen converge vers Im(().

C1. 66. Concepts et résultats sur les suites réelles qui s’étendent aux suites complexes. —
e Les Théorémes d’opérations.

12




e La notion de valeur d’adhérence.
e Le Théoréme de Bolzano-WeierstraB3.

C1. 67. Concepts et résultats sur les suites réelles qui ne s’étendent pas aux suites complexes. —
La notion de suite monotone et le Théoréme de convergence monotone.

Le Théoréme de passage a la limite dans une inégalité large.

Le Théoréme d’encadrement.

La notion de suites adjacentes, le théoréme des suites adjacentes.

La notion de limite supérieure et de limite inférieure.

C1. 68. Exercice (Comportement asymptotique d’une suite complexe géométrique). — Soit g € C. Quel est
le comportement asymptotique de la suite (¢"),

C1. 69. Exercice (Module et arguments). —  Soit (p,)nen une suite de réels positifs. Soit (6,,),en une
suite de réels. On suppose que la suite (z,),en, de terme général

Zy 1= ppetn

est convergente et on note z = pe? sa limite (que Pon suppose non nulle), ot p est un réel positif et ¢
un réel.

1. Les suites (p,)nen et (0,)nen convergent-elles nécessairement ?

2. Reprendre la question 1 avec ’hypothése additionnelle suivante.
(H1) Vn €N, 0, €10 —m, 0+ 7]
3. Reprendre la question 1 avec les hypothéses additionnelles suivantes.

(H1) Vn e N, 0, €10 —m, 0+ 7]
(H2) p>0

J

C1.70. Remargue. — Le théoréme des segments emboités (cf. Exercice C1.39) n’a pas de sens tel
quel dans C, mais peut étre reformulé de maniére satisfaisante (cf. Exercice C1.71).

C1. 71. Exercice (Une version du Théoréme des segments emboités dans C). — Soit une suite (E(an, Tn))neN
de boules fermées de C, décroissante au sens de I'inclusion, telle que 7, —+> 0. Démontrer qu’il
n—-—+oo

existe £ € C tel que :

() Blan,ra) = {¢}.

neN

13



7 Une sélection d’exercices

C1.72. Exercice (Suite arithmético-géométrique). — Déterminer I'expression du terme général de la
suite (u,,)nen définie par uy = 2 et la relation de récurrence :

Upy1 = Uy + 2

valable pour tout n € N.

C1.73. Exercice (Suite récurrente linéaire d'ordre 2). — Déterminer I’expression du terme général de
la suite (u,),en définie par ug = 1, u; = 2, et relation de récurrence :

Unp+2 = 3un+1 — 2u,

valable pour tout n € N.

C1. 74. Exercice (Suite récurrente linéaire dordre 2). — Déterminer I’expression du terme général de
la suite (u,),en définie par ug = 0, u; = 1 et la relation de récurrence :

Un42 = 6Un+1 - gun

valable pour tout n € N.

C1.75. Exercice (Suite d’entiers qui converge). —  Soit (u,),en une suite réelle telle que pour tout
n € N, u, € Z. On suppose que (u,),en converge vers un réel £. Démontrer que ¢ € Z et que (U, )neN
est constante a partir d’un certain rang.

C1. 76. Exercice (Sous-suite des termes d’indices congrus a O (resp. 1, 2) modulo 3). — Soit (up)nen une
suite réelle. On suppose que les suites (43, )neN, (Usn+1)nen €t (Usni2)nen convergent respectivement
Vers go, 61, 62.

1. La suite (u,),en converge-t-elle?

2. Supposons que g = {1 = {5. Démontrer que la suite (u,),en converge.

C1. 77. Exercice (Banque CCINP). —
1. Soient (uy)neN, (Un)nen deux suites de nombres réels telles que u,, ~ v,. Démontrer que u,, et

v, ont méme signe a partir d’un certain rang.

1 1
2. Déterminer le signe de u,, = sh (—> — tan (—) au voisinage de +o0.
n n
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C1.78. Exercice (Banque CCINP). —  Etudier la convergence de la suite (u,),cn définie par :

pour tout n € N.

C1.79. Exercice (Banque CCINP, Irrationalité de ¢). — Pour tout n € N, notons :

"1 1
u”:ZH et vn:un—km.
k=0

1. Démontrer que les suites (u,)nen €t (v )nen sont adjacentes.

2. On admet que u,, —— e. Démontrer que e € R\ Q.

n—-—+oo

Indication : Raisonner par Uabsurde et supposer que e peut s’écrire P avec p &€ Netqe N".
q

C1. 80. Exercice (Banque CCINP). —

2

1. Démontrer que pour, tout x € [0,1],0 < e® —z — 1 < —a°.

DO ™

n
1
2. Pour tout n € N*, notons u,, = (Z em) — n. Déterminer la limite de (u,),en+.

k=1
Indication : on pourra utiliser le résultat suivant : 2”: - In(n) + o(1).
— k’ n—>-4oo
1
C1. 81. Exercice (Banque CCINP). — Soit (u,),en une suite réelle décroissante telle que w,, +up, 11 ~ —.
n
Démontrer que u, —+> 0 et déterminer un équivalent de wu,,.
n—-—+oo
C1.82. Exercice (Banque CCINP). —  Etudier la convergence de la suite (u,),cn- définie par :

n BE(WVEk+1)-E(Vk
o B2 ()

k=1

pour tout n € N*.

n

Indication : on pourra admettre que la suite de terme général Z

1
i kvk

converge.
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C1. 83. Exercice (Banque CCINP). — Considérons une suite (u,)nen telle que ug € RT et pour tout

Déterminer une relation entre u,; et u,, puis étudier la limite de (u,),eN.

= k
C1. 84. Exercice (Banque CCINP). — Pour tout n € N*, notons u,, = Zsin (l) Démontrer que
n
k=1
2n
Uy ~ —.
T
C1. 85. Exercice (Bangque CCINP). —  Soit (uy,)nen une suite réelle telle que wug, u1, us € R+ et pour
toutn € N :

Up4+3 = (unun+1un+2 ) 1/3 .

Etudier la convergence de (u,),en et déterminer son éventuelle limite en fonction de g, uy, us.

C1. 86. Exercice (Banque CCINP). —  Déterminer la limite de la suite (u,),en+ de terme général

1 n
n=— [k +n)/
U ng( +n)

C1. 87. Exercice (Banque CCINP). — Considérons une suite réelle (u,).en telle que ug > 0 et pour
1

tout n € N, upy1 = up, + — -
un

1. Etudier la convergence de (u,)neN-

2. Déterminer un équivalent de u,,.

C1. 88. Exercice (Bangue CCINP). — Pour tout n € IN*, notons s,, la somme des chiffres de I’écriture
décimale de n.

1. Démontrer que pour tout n € N*, 5, < 9(log(n) + 1) ou log désigne le logarithme décimal.

3n+1
Snp,

2. Démontrer que la suite ( ) est bornée. Atteint-elle ses bornes?
neN*

C1. 89. Exercice (Banque CCINP). — Considérons deux suites (Z,)n,en €t (Un)nen telles que 0 < o,
Yo < 7 et les relations de récurrence

Tpy1 =T —Yn € Yny1 = V71— Ty

valable pour tout n € N. Etudier la convergence des suites (2,,)nen €t (Y )nen.
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C1. 90. Exercice (Banque CCINP). —
1. Démontrer que pour tout n € N*, I’équation
tan (x_7r> =T
2 2nx
admet une unique solution z,, dans |0, 1].

2. Démontrer que z,, —— 0 et déterminer un équivalent de z,,.
n—-—+oo

o k EY\
C1.91. Exercice (Banque CCINP). — Pour tout n € N*, notons u,, = E sin (—) sin (—2> Etudier
n n
k=1

la convergence de (u,)nen-.

C1. 92. Exercice (Banque CCINP). —

1. Démontrer que pour tout n € N, ’équation
l+In(x+n)=2x

admet une unique solution u,, € R.
2. Démontrer que la suite (uy)nen., est croissante.
3. Démontrer qu’a partir d’un certain rang, on a : In(n) < u, < n.

4. Déterminer un équivalent de wu,,.

C1. 93. Exercice (Bangque CCINP).. —  Soient a,b € R tels que a < b, soit f : [a,b] — [a,b] une
fonction 1-lipschitzienne. Soit (x,,),cn une suite réelle définie par la donnée de z( € [a, ] et la relation

de récurrence )
Tpt1 = 5(% + f(n))

valable pour tout n € N. Démontrer que la suite (z,),en converge vers un point fixe de f.

C1. 94. Exercice (Mines-Ponts). —

1. Démontrer que pour tout n € N, I’équation
x = cotan(z)
admet une unique solution z,, dans l'intervalle |nm, (n + 1)7][.
2. Démontrer que pour tout n € N, z,, = n7 + arctan (i)

Tn

3. Déterminer un équivalent de z,,, puis un développement asymptotique a deux termes de x,,.
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C1.95. Exercice (Moyenne arithmético-géométrique). —  Soient deux nombres réels a > 0 et b > 0.
Soient (uy,)nen €t (Vn)nen les deux suites définies par ug := a, vy := b et les relations de récurrence

Uy + Uy,

Upt1 = T et Untl = /UnpUy -

:L’—l—y

1. Démontrer que, pour tout x > 0 et pour tout y > 0, ,/xy
1

>
2. Démontrer que, pour tout n > 1, u, = vy, Uy = Upy1 et Uy 2 Up-

3. Démontrer que les suites (uy,)nen €t (Un)nen convergent vers une limite commune. Cette limite
est appelée moyenne arithmético-géométrique de a et b et est notée M(a,b).

4. Calculer M (a,a) et M(a,0).
5. Démontrer que, pour tout A > 0, M (Aa, A\b) = A\ M (a, b).

6. Ecrire une fonction Python moyenne(a, b, ecart) qui donne un encadrement de la moyenne
arithmético-géométrique de deux réels a et b, avec une erreur inférieure ou égale a ecart.

C1. 96. Exercice (Mines-Ponts). —
1. Démontrer que pour tout n > 3, ’équation
2" —nr+1=0

admet une unique solution z,, dans l'intervalle ]0, 1].
2. Démontrer que (x,,),>3 converge et déterminer sa limite.

3. Déterminer un développement asymptotique & deux termes de x,,.

C1. 97. Exercice (Centrale). —

1. Démontrer que pour tout n € N*, ’équation
x
e "cos(x) = —

admet une solution maximale z,, sur R.

2. Démontrer que la suite (n)nen+ est croissante et diverge vers +oo0.

C1. 98. Exercice (Centrale). —

1. Soit a > 0. Démontrer que pour tout n € N, il existe un unique z,, > n tel que :

2. Etudier les variations de la suite (7,),cn et déterminer un équivalent de .
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C1.99. Exercice (Mines-Ponts). — Pour tout n € N* et tout x € R, posons :

folz) =—1+ Zn: ka*.
k=1

1. Démontrer que pour tout n € N*, équation f,(z) = 0 admet une unique solution positive ou
nulle, que 'on notera x,,.

2. Etudier la convergence et déterminer I’éventuelle limite de (2, ),en:-

C1. 100. Exercice (Mines-Ponts). —

1. Démontrer que pour tout n € N*, ’équation
>
k
k=1

admet une unique solution positive notée x,,.

2. Etudier la convergence de la suite (z,),eNv.

C1.101. Exercice (Mines-Ponts). — Soient h,k € N tels que 1 < k < h. Etudier la convergence de la
suite de terme général
hn .
7
=3 1n<1+ﬁ>.
i=kn+1
C1. 102. Exercice (Mines-Ponis). —  Soit (u,)n,en une suite réelle telle que ug > 0 et pour tout n € N
1

Up4+1 = Up +

Nom

Déterminer un équivalent de u,,.

C1. 103. Exercice (Mines-Ponis). — Soit (x,,)nen une suite réelle, convergeant vers un réel ¢, et notons
(Yn)nen la suite définie par
1 < /n
vneNa yn:2_nkz_0(k>xk

Etudier la convergence de (4, ),en et déterminer son éventuelle limite.
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C1.104. Exercice. — Soit f: [0,1] — [0, 1] une fonction continue, soit (u,),en une suite d’éléments
de [0, 1] telle que pour tout n € N :

Unp+1 = f(un)

Démontrer que (u,),en converge si et seulement si w1 — u, — 0.
n—-+o0o

C1. 105. Exercice (Mines-Ponts). —

1. Pour tout n € N, posons :
" 1
Uy = H cos (?)
k=0

1
Pour tout n € N, calculer : u,, sin (§>

2. Démontrer que u,, — sin(1) cos(1).

—+00

3. Posons z, = re’, avec r > 0. Considérons la suite (z,),cn de nombres complexes vérifiant :
1
VneN z,11 = §(zn + |zn])-

Etudier la convergence de (z,)nen.

C1. 106. Exercice (Centrale). — Soit a €] — 1, 1[. Soit (u,)nen une suite réelle. Démontrer que :

Uy, —— 0 <= Upy1 — au, — 0.

n—>-+o0o n—-+4oo

C1. 107. Exercice (Mines-Ponts). —  Soit u,),en une suite réelle bornée telle que :

Unep1 = Un—1 T 0.

Démontrer que ’ensemble de ses valeurs d’adhérence est soit infini, soit de cardinal inférieur ou égal
a2

C1.108. Exercice (X). — Soit A €]0,1]. Etudier la suite (2,,),en définie par z €]0, 1] et la relation
de récurrence :
Tpi1=1— Axi

valable pour tout n € N.
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C1.109. Exercice (Centrale). —

1. Soit (ay)nen une suite de réels strictement positifs. On suppose qu’il existe a > 1 vérifiant

Ap+1

a.
an n—>-+o0o

Démontrer que a,, ——— +o00.
n—-4oo

2. Soit [ un intervalle de R. Soit f: I — [ une fonction dérivable. Soit (u,),eNn une suite
d’éléments de I telle que pour tout n € N

Up1 = f(un)

On suppose que u, — ¢ € I et que |f'(¢)|] > 1. Démontrer que la suite (u,),en est
n—--—+oo
stationnaire.

3. Soit a € R, posons pour tout n € N :
u, = 2cos(2"a).

(a) Déterminer une fonction f telle que, pour tout n € N, u,, 11 = f(uy).
(b) Déterminer les points fixes de f.

(c) Déterminer les réels a tels que (u,),en converge.

C1.110. Exercice (X). — Soit f: [0,1] — [0, 1] une fonction continue admettant en 0 un dévelop-
pement asymptotique de la forme

f(x) = x —ax® + o(z%)

1. Démontrer que pour ug assez petit, la suite (u,),en vérifiant :
Vn e N w1 = fuy)

converge vers 0.

2. Déterminer un équivalent de wu,,.

. . . . B8 Jél .
Indication : on pourra examiner w,  , — u, pour un certain [3.

3. Traiter 'exemple de la fonction sinus.

C1. 111. Exercice (X). — Soit (u,)nen+ une suite de nombres complexes. Pour tout n € N*, on note :

n n
1
Sn = kgl Up et Op = E kgl Sk

1. On suppose (dans cette question seulement) que la suite (u,),en+ est & termes réels positifs.
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Démontrer que les deux affirmations suivantes sont équivalentes :
(a) La suite (S),)nen+ converge.

(b) Le suite (0,,),en+ converge.

2. Onsupposequeu, = O (—) . Démontrer que si (0,,),en+ converge, alors (S, )N+ converge.
n—-+o0o n

J
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