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1 Limite de suite

1.1 Suites convergentes

C1. 1. Définition (Suite convergeant vers ` ∈ R). Soit (un)∈N une suite réelle. Soit ` ∈ R.
On dit que la suite (un)∈N converge vers ` quand n tend vers +∞, et on note un −−−−−→

n−→+∞
`, si

∀ ε ∈ R>0, ∃N ∈ N, ∀n ∈ N, n > N =⇒ |un − `| 6 ε.

Représentation d’une suite convergeant vers ` ∈ R
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C1. 2. Proposition (Unicité de la limite d’une suite convergente). Soit (un)n∈N une suite
réelle convergente. Alors le nombre réel ` tel que un −−−−−→

n−→+∞
` est unique. On l’appelle limite de la suite (un)n∈N

et on le note lim
n−→+∞

un.

C1. 3. Proposition (Convergente =⇒ bornée). Toute suite réelle convergente est bornée.

C1. 4. Question. Une suite réelle bornée est-elle nécessairement convergente ?

C1. 5. Exercice (Signe d’une suite convergeant vers un réel strictement positif ). Soit (un)n∈N une suite
réelle convergente de limite ` > 0. Démontrer : un > 0 à partir d’un certain rang.

C1. 6. Question. Une suite réelle convergente est-elle nécessairement monotone à partir d’un certain
rang ?

C1. 7. Question. Une suite de réels strictement positifs, convergente, de limite nulle est-elle néces-
sairement décroissante à partir d’un certain rang ?
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C1. 8. Exercice (Écriture formelle de deux propriétés). Soit (un)n∈N une suite réelle et soit ` ∈ R.
Exprimer les propriétés suivantes sous forme quantifiée.

1. (un)n∈N ne converge pas vers `.

2. (un)n∈N n’admet pas de limite finie.

C1. 9. Opérations sur les suites convergentes.

1. L’ensemble Sc des suites réelles convergentes indexées par N est une sous-algèbre de RN, i.e.

(a) la suite constante nulle appartient à Sc
(b) l’ensemble Sc est stable par somme :

∀(an)n∈N ∈ Sc, ∀ (bn)n∈N ∈ Sc, (an + bn)n∈N ∈ Sc

(c) l’ensemble Sc est stable par multiplication par un scalaire :

∀(an)n∈N ∈ Sc, ∀λ ∈ R, (λan)n∈N ∈ Sc

(d) l’ensemble Sc est stable par multiplication interne :

∀(an)n∈N ∈ Sc, ∀ (bn)n∈N ∈ Sc, (an bn)n∈N ∈ Sc .

2. L’application : ∣∣∣∣∣ Sc −→ R
(an)n∈N 7→ lim

n−→+∞
an

est un morphisme de R-algèbres, i.e. :

(a) l’application est linéaire :

∀(an)n∈N ∈ Sc, ∀ (bn)n∈N ∈ Sc, ∀(λ, µ) ∈ R2, lim
n−→+∞

λan+ µbn = λ lim
n−→+∞

an+ µ lim
n−→+∞

bn

(b) l’image de la suite constante égale à 1 (qui est le neutre de Sc pour la multiplication interne) est le
réel 1 (qui est le neutre de R pour la multiplication)

(c) l’application respecte le produit interne

∀(an)n∈N ∈ Sc, ∀ (bn)n∈N ∈ Sc, lim
n−→+∞

an bn =

(
lim

n−→+∞
an

) (
lim

n−→+∞
bn

)
.

3. Soit (un)n∈N ∈ Sc telle que un 6= 0 pour tout n ∈ N, i.e. (un)n∈N ∈ Sc est un élément inversible de Sc.
On suppose que ` := lim

n−→+∞
un 6= 0. Alors

(
1

un

)
n∈N
∈ Sc et lim

n−→+∞

1

un
=

1

`
.
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C1. 10. Exercice (Convergence du carré d’une suite versus convergence de la suite elle-même). Soit (un)n∈N
une suite réelle.

1. Si (u2n)n∈N converge, alors (un)n∈N converge-t-elle nécessairement ?

2. Si (u2n)n∈N converge vers 0, alors (un)n∈N converge-t-elle nécessairement vers 0 ?

C1. 11. Question. Soient (an)n∈N et (bn)n∈N deux suites réelles telles que an− bn −−−−−→
n−→+∞

0. Peut-on

a�rmer lim
n−→+∞

an = lim
n−→+∞

bn ?

C1. 12. Théorème (Passage à la limite dans une inégalité large). Soient (un)n∈N et (vn)n∈N
deux suites réelles. On suppose que :

(H1) la suite (un)n∈N est convergente ;
(H2) la suite (vn)n∈N est convergente ;
(H3) un 6 vn à partir d’un certain rang.

Alors lim
n−→+∞

un 6 lim
n−→+∞

un.

C1. 13. Question. Soient (un)n∈N et (vn)n∈N deux suites réelles convergentes. On suppose que, pour
tout n ∈ N, un < vn. A-t-on nécessairement lim

n−→+∞
un < lim

n−→+∞
un ?

C1. 14. Théorème (Encadrement). Soient (an)n∈N, (bn)n∈N et (cn)n∈N trois suites réelles. On
suppose que :

(H1) la suite (an)n∈N est convergente ;
(H2) la suite (cn)n∈N est convergente ;
(H3) lim

n−→+∞
an = lim

n−→+∞
cn ;

(H4) an 6 bn 6 cn à partir d’un certain rang.
Alors

(C1) la suite (bn)n∈N converge ;
(C2) lim

n−→+∞
bn = lim

n−→+∞
an = lim

n−→+∞
cn.

C1. 15. Exercice.

1. Démontrer :
cos(n)

n
−−−−−→
n−→+∞

0.

2. Proposer une généralisation du résultat de la question 1.

C1. 16. Exercice (Comportement asymptotique de (sin(n)n∈N). Démontrer que la suite (sin(n))n∈N est
divergente ?
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1.2 Suites divergeant vers −∞

C1. 17. Définition (Suite divergeant vers −∞). Soit (un)n∈N une suite réelle. On dit que un
tend vers −∞ quand n tend vers +∞, et on note un −−−−−→

n−→+∞
−∞, si

∀A ∈ R, ∃N ∈ N, ∀n ∈ N, n > N =⇒ un 6 A.

C1. 18. Théorème (Domination pour la divergence vers −∞). Soient (un)n∈N et (vn)n∈N
deux suites réelles telles que un 6 vn à partir d’un certain rang.

vn −−−−−→
n−→+∞

−∞ =⇒ un −−−−−→
n−→+∞

−∞

1.3 Suites divergeant vers +∞

C1. 19. Definition (Suite divergeant vers +∞). Soit (un)n∈N une suite réelle. On dit que un
tend vers +∞ quand n tend vers +∞, et on note un −−−−−→

n−→+∞
+∞, si

∀A ∈ R, ∃N ∈ N, ∀n ∈ N, n > N =⇒ un > A.

Représentation d’une suite divergeant vers +∞

−1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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C1. 20. Théorème (domination pour la divergence vers +∞). Soient (un)n∈N et (vn)n∈N
deux suites réelles telles que un 6 vn à partir d’un certain rang. Si un −−−−−→

n−→+∞
+∞ alors vn −−−−−→

n−→+∞
+∞.
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C1. 21. Exercice. Démontrer n! −−−−−→
n−→+∞

+∞, puis
n∑
k=0

k! ∼
n−→+∞

n!.

C1. 22. Exercice (Comportement asymptotique d’une suite réelle géométrique). Soit q ∈ R. Quel est le
comportement asymptotique de la suite (qn)n∈N ?

C1. 23. Exercice (Opérations sur les suites divergeant vers l’in�ni). Énoncer et démontrer les résultats
sur les opérations sur les suites réelles divergeant vers l’infini.

C1. 24. Exercice (Croissances comparées). Soient des nombres réels α, β, q strictement positifs. Énon-
cer les résultats sur les croissances comparées des suites :

(nα)n∈N
(
lnβ(n)

)
n∈N∗ (qn)n∈N (n!)n∈N .

Comment peut-on les établir ?

C1. 25. Exercice (Formalisation de la non divergence vers+∞). Soit (un)n∈N une suite réelle. Exprimer
à l’aide d’une proposition logique quantifiée l’assertion : « (un)n∈N ne tend pas vers +∞ ».

C1. 26. Question. Une suite réelle qui ne tend pas vers +∞ est-elle nécessairement majorée ?

C1. 27. Question. Une suite qui tend vers+∞ est-elle nécessairement croissante à partir d’un certain
rang ?

C1. 28. Exercice (Suite réelle non majorée). Soit (un)n∈N une suite réelle non majorée. Démontrer
qu’il existe une application ϕ : N −→ N, strictement croissante, telle que uϕ(n) −−−−−→

n−→+∞
+∞.

C1. 29. Exercice (Une version du critère de D’Alembert pour les suites). Soit (un)n∈N une suite de
nombres réels strictement positifs. On suppose qu’il existe ` ∈ R tel que

un+1

un
−−−−−→
n−→+∞

`.

1. Démontrer que un −−−−−→
n−→+∞

0 si ` < 1.

2. Démontrer que un −−−−−→
n−→+∞

+∞ si ` > 1.

3. Que peut-on dire du comportement asymptotique de (un)n∈N si ` = 1 ?

C1. 30. Exercice. Soit x ∈ R.

1. Justifier que le nombre ln
(
1 +

x

n

)
est bien défini à partir d’un certain rang nx.

2. Étudier le comportement asymptotique de la suite
((

1 +
x

n

)n)
n>nx

.
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C1. 31. Exercice (La forme indéterminée 1+∞).

1. Soit ` > 0. Donner une suite (un)n∈N convergeant vers 1 et telle que unn −−−−−→
n−→+∞

`.

2. Donner une suite (vn)n∈N convergeant vers 1 et telle que vnn −−−−−→
n−→+∞

+∞.

3. Donner une suite (wn)n∈N convergeant vers 1 et telle que la suite (wnn)n∈N n’ait ni limite finie
ni limite infinie.

C1. 32. Question. Quel peut être le comportement asymptotique d’une suite réelle ?

2 Théorème de la limite monotone et conséquences

C1. 33. Théorème (la limite monotone). Soit (un)n∈N une suite réelle croissante.

1. Si (un)n∈N est majorée, alors elle converge vers sup
n∈N

un.

2. Si (un)n∈N n’est pas majorée, alors elle diverge vers +∞.

C1. 34. Remarque. Ce théorème d’existence « abstraite » de limite est un outil puissant pour
construire de nouveaux nombres. Il a des applications très riches, dans la théorie des séries numériques
par exemple.

C1. 35. Question. Soit (un)n∈N une suite réelle, décroissante et minorée par 0. A-t-on nécessairement
un −−−−−→

n−→+∞
0 ?

C1. 36. Corollaire (Théorème des suites adjacentes). Soient (un)n∈N et (vn)n∈N des suites
réelles. On suppose que

(H1) (un)n∈N est croissante ;
(H2) (vn)n∈N est décroissante ;
(H3) un − vn −−−−−→

n−→+∞
0.

Alors
(C1) (un)n∈N converge ;
(C2) (vn)n∈N converge ;
(C3) lim

n−→+∞
un = lim

n−→+∞
vn ;

(C4) ∀ k ∈ N, u0 6 uk 6 lim
n−→+∞

un = lim
n−→+∞

vn 6 vk 6 v0.

C1. 37. Remarque. Le théorème des suites adjacentes est, avant tout, un critère de convergence pour
deux suites. Le résultat sur la valeur commune des deux limites est trivial, une fois les deux convergences
établies.

C1. 38. Question. Que peut-on dire de deux suites réelles (un)n∈N et (vn)n∈N vérifiant seulement
les hypothèses (H1) et (H2) du théorème des suites adjacentes ?
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C1. 39. Exercice (Théorème des segments emboîtés). Soient (an)n∈N et (bn)n∈N des suites réelles telles
que an 6 bn, pour tout n ∈ N. Pour tout n ∈ N, on pose Kn := [an, bn], le segment d’extrémités an, bn.
On suppose que :

(H1) la suite (Kn)n∈N est décroissante au sens de l’inclusion, i.e. Kn+1 ⊂ Kn, pour tout n ∈ N ;
(H2) longueur(Kn) := bn − an −−−−−→

n−→+∞
0.

Démontrer que
⋂
n∈N

Kn est un singleton, i.e. il existe ` ∈ R tel que
⋂
n∈N

Kn = {`}.

C1. 40. Question. Que dire d’une suite (Kn)n∈N de segments deR décroissante au sens de l’inclusion
(i.e. vérifiant uniquement l’hypothèse (H1) du théorème des segments emboîtés) ?

C1. 41. Exercice (lim inf et lim sup d’une suite réelle bornée). Soit (un)n∈N une suite réelle bornée.
Pour tout n ∈ N, on pose :

vn := inf
p>n

up et wn := sup
p>n

up.

1. Démontrer que les suites (vn)n∈N et (wn)n∈N sont convergentes.

2. Que peut-on dire de plus, dans le cas où (un)n∈N converge ?

3 Valeur d’adhérence

C1. 42. Définition (Suite extraite et valeur d’adhérence). Soit (un)n∈N une suite réelle.

1. On appelle suite extraite de (un)n∈N, toute suite (uϕ(n))n∈N, où ϕ : N −→ N est une application
strictement croissante.

2. Un nombre réel ` est appelée valeur d’adhérence de la suite (un)n∈N s’il existe une suite extraite de
(un)n∈N convergeant vers `.

C1. 43. Exercice (Calculs de quelques valeurs d’adhérence).

1. Soit (un)n∈N définie par un = (−1)n, pour tout n ∈ N. Démontrer que −1 et 1 sont des valeurs
d’adhérence de la suite (un)n∈N.

2. Soit (vn)n∈N définie par vn = n (1 + (−1)n), pour tout n ∈ N. Déterminer une valeur d’adhé-
rence de la suite (vn)n∈N.

C1. 44. Proposition (Valeur d’adhérence d’une suite convergente). Soit (un)n∈N une suite
réelle convergeant vers ` ∈ R. Toute suite extraite de (un)n∈N converge vers ` et donc la suite (un)n∈N ne possède
qu’une valeur d’adhérence : `.

C1. 45. Exercice (Suite extraite des termes d’indices pairs et suite extraite des termes d’indices impairs).
Soit (un)n∈N une suite réelle. On suppose que les suites (u2n)n∈N et (u2n+1)n∈N convergent. Donner
une condition nécessaire et su�sante portant sur ces deux suites extraites, pour que (un)n∈N converge.
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C1. 46. Exercice (Critère pour être valeur d’adhérence d’une suite). Soit (un)n∈N une suite réelle et soit
` ∈ R. Démontrer que les propositions suivantes sont équivalentes.

1. ` est une valeur d’adhérence de (un)n∈N.

2. ∀ ε > 0, ∀N ∈ N, ∃n > N, |un − `| 6 ε.

3. Pour tout ε > 0, l’ensemble {n ∈ N : |un − `| 6 ε} est infini.
4. Il existe une suite d’entiers naturels strictement croissante (kn)n∈N telle que ukn −−−−−→

n−→+∞
`.

C1. 47. Exercice (Ensemble de valeurs d’adhérence).

1. Déterminer toutes les valeurs d’adhérence des suites (un)n∈N définie par un = (−1)n, pour tout
n ∈ N.

2. Déterminer toutes les valeurs d’adhérence des suites (vn)n∈N définie par vn = n (1 + (−1)n),
pour tout n ∈ N.

C1. 48. Exemple. Grâce au Théorème décrivant les sous-groupes du groupe (Z,+) (cf. Chapitre 3
« Algèbre Générale »), on peut démontrer que l’ensemble des valeurs d’adhérence de la suite (cos(n))n∈N
est le segment [−1, 1].

C1. 49. Question. Une suite réelle ayant une unique valeur d’adhérence est-elle nécessairement
convergente ?

C1. 50. Question. Une suite réelle possède-t-elle toujours une valeur d’adhérence ?

C1. 51. Question. Soit (un)n∈N une suite réelle. Soient ϕ : N −→ N et ψ : N −→ N deux applications
strictement croissantes. Les suites

(uϕ◦ψ(n))n∈N et (uψ◦ϕ(n))n∈N

sont-elles des suites extraites de (uϕ(n))n∈N ?

4 Théorème de Bolzano-Weierstraß

C1. 52. Théorème (Bolzano-Weierstrass). Toute suite réelle bornée admet au moins une valeur
d’adhérence.

C1. 53. Corollaire (Suite réelle bornée ayant une unique valeur d’adhérence). Toute
suite réelle bornée ayant une unique valeur d’adhérence converge.

C1. 54. Exercice (Suites extraites de deux suites, convergentes et ayant des indices communs). Soient
(un)n∈N et (vn)n∈N deux suites réelles bornées. Démontrer qu’il existe une application ϕ : N −→ N
strictement croissante telle que les suites (uϕ(n))n∈N et (vϕ(n))n∈N convergent.

10



C1. 55. Exercice (Valeurs d’adhérence identiques). Soient (un)n∈N et (vn)n∈N deux suites réelles telles
que un − vn −−−−−→

n−→+∞
0. Démontrer que (un)n∈N et (vn)n∈N ont les mêmes valeurs d’adhérence.

C1. 56. Exercice (Borne supérieure, borne inférieure et valeurs d’adhérence). Soit (un)n∈N une suite
réelle bornée. Soit A l’ensemble des valeurs d’adhérence de la suite (un)n∈N. Démontrer que A admet
une borne supérieure et une borne inférieure, et que inf(A) et sup(A) appartiennent à A.

C1. 57. Exercice (Lemme de la puce). Soit (un)n∈N une suite réelle bornée telle que :

un+1 − un −−−−−→
n−→+∞

0 .

Démontrer que l’ensemble des valeurs d’adhérence de (un)n∈N est un segment.

C1. 58. Remarque. Le théorème de Bolzano-Weierstraß permet de démontrer plusieurs théorèmes
fondamentaux, portant sur les fonctions définies et continues sur un segment deR. Nous en mentionnons
deux.

1. Le théorème de Heine
Soient a et b des nombres réels tels que a < b. Soit f : [a , b] −→ R une fonction continue. Alors
f est une fonction uniformément continue, i.e. :

∀ ε > 0, ∃α > 0, ∀ (x, y) ∈ [a , b]2, |x− y| 6 α =⇒ |f(x)− f(y)| 6 ε .

2. Le théorème des bornes atteintes
Soient a et b des nombres réels tels que a < b. Soit f : [a , b] −→ R une fonction continue. Alors
f est bornée et atteint ses bornes, i.e. :

∃ (xm, xM) ∈ [a , b]2, ∀x ∈ [a , b], f (xm) 6 f(x) 6 f (xM) .

5 Limite inférieure et limite supérieure (HP)

On étudie plus en profondeur des notions rencontrées lors de la résolution de l’exercice C1.41.

C1. 59. Définition (Limite supérieure et limite inférieure). Soit (un)n∈N une suite réelle
bornée.

1. La suite
(
sup
p>n

up

)
n∈N

est décroissante et minorée. Elle converge donc vers inf
n∈N

sup
p>n

up. On appelle limite

supérieure de (un)n∈N et on note lim supun la limite de la suite
(
sup
p>n

up

)
n∈N

, i.e. :

lim supun := inf
n∈N

sup
p>n

up = lim
n−→+∞

sup
p>n

up.

2. La suite
(
inf
p>n

up

)
n∈N

est croissante et majorée. Elle converge donc vers sup
n∈N

inf
p>n

up. On appelle limite
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inférieure de (un)n∈N et on note lim inf un la limite de la suite
(
inf
p>n

up

)
n∈N

, i.e. :

lim inf un := sup
n∈N

inf
p>n

up = lim
n−→+∞

inf
p>n

up.

C1. 60. Proposition (Limite inférieure, limite supérieure et valeur d’adhérence). Soit
(un)n∈N une suite réelle bornée.

1. lim supun et lim inf un sont des valeurs d’adhérence de la suite (un)n∈N.

2. lim supun est la plus grande valeur d’adhérence de la suite (un)n∈N.

3. lim inf un est la plus petite valeur d’adhérence de la suite (un)n∈N.

C1. 61. Exercice (Un critère de convergence via lim sup et lim inf). Soit (un)n∈N une suite réelle bornée.
Démontrer que (un)n∈N converge si et seulement si lim supun = lim inf un.

C1. 62. Exercice (Suites sous-additives). Soit (un)n∈N une suite de nombres réels positifs telle que :

∀ (n,m) ∈ N2, un+m 6 un + um.

1. Soit (n,m) ∈ N∗ ×N∗ tel que n < m. Démontrer qu’il existe r ∈ N tel que r < n et :

um
m

6
un
n

+
ur
m
.

2. On suppose
(un
n

)
n∈N

bornée. Démontrer que
(un
n

)
n∈N

converge.

6 Suites complexes

C1. 63. Definition (Convergence d’une suite à valeurs complexes). Soit (un)n∈N une suite
de nombres complexes, soit ` ∈ C. On dit que la suite (un)n∈N converge vers ` et on écrit un −−−−−→

n−→+∞
` si :

∀ ε > 0, ∃Nε ∈ N, ∀n ∈ N, n > Nε =⇒ |un − `| 6 ε.

C1. 64. Remarque. Dans la définition C1.63, le symbole | · | désigne le module.

C1. 65. Proposition (Convergence via les parties réelle et imaginaire). Soit (un)n∈N une
suite de nombres complexes, soit ` ∈ C. La suite (un)n∈N converge vers ` si et seulement si la suite (Re(un))n∈N
converge vers Re(`) et la suite (Im(un))n∈N converge vers Im(`).

C1. 66. Concepts et résultats sur les suites réelles qui s’étendent aux suites complexes.
• Les Théorèmes d’opérations.
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• La notion de valeur d’adhérence.
• Le Théorème de Bolzano-Weierstraß.

C1. 67. Concepts et résultats sur les suites réelles qui ne s’étendent pas aux suites complexes.
• La notion de suite monotone et le Théorème de convergence monotone.
• Le Théorème de passage à la limite dans une inégalité large.
• Le Théorème d’encadrement.
• La notion de suites adjacentes, le théorème des suites adjacentes.
• La notion de limite supérieure et de limite inférieure.

C1. 68. Exercice (Comportement asymptotique d’une suite complexe géométrique). Soit q ∈ C. Quel est
le comportement asymptotique de la suite (qn)n∈N ?

C1. 69. Exercice (Module et arguments). Soit (ρn)n∈N une suite de réels positifs. Soit (θn)n∈N une
suite de réels. On suppose que la suite (zn)n∈N, de terme général

zn := ρne
iθn

est convergente et on note z = ρeiθ sa limite (que l’on suppose non nulle), où ρ est un réel positif et θ
un réel.

1. Les suites (ρn)n∈N et (θn)n∈N convergent-elles nécessairement ?

2. Reprendre la question 1 avec l’hypothèse additionnelle suivante.

(H1) ∀n ∈ N, θn ∈ ]θ − π, θ + π]

3. Reprendre la question 1 avec les hypothèses additionnelles suivantes.

(H1) ∀n ∈ N, θn ∈ ]θ − π, θ + π]
(H2) ρ > 0

C1. 70. Remarque. Le théorème des segments emboîtés (cf. Exercice C1.39) n’a pas de sens tel
quel dans C, mais peut être reformulé de manière satisfaisante (cf. Exercice C1.71).

C1. 71. Exercice (Une version du Théorème des segments emboîtés dansC). Soit une suite
(
B(an, rn)

)
n∈N

de boules fermées de C, décroissante au sens de l’inclusion, telle que rn −−−−−→
n−→+∞

0. Démontrer qu’il

existe ` ∈ C tel que : ⋂
n∈N

B(an, rn) = {`} .
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7 Une sélection d’exercices

C1. 72. Exercice (Suite arithmético-géométrique). Déterminer l’expression du terme général de la
suite (un)n∈N définie par u0 = 2 et la relation de récurrence :

un+1 = 3un + 2

valable pour tout n ∈ N.

C1. 73. Exercice (Suite récurrente linéaire d’ordre 2). Déterminer l’expression du terme général de
la suite (un)n∈N définie par u0 = 1, u1 = 2, et relation de récurrence :

un+2 = 3un+1 − 2un

valable pour tout n ∈ N.

C1. 74. Exercice (Suite récurrente linéaire d’ordre 2). Déterminer l’expression du terme général de
la suite (un)n∈N définie par u0 = 0, u1 = 1 et la relation de récurrence :

un+2 = 6un+1 − 9un

valable pour tout n ∈ N.

C1. 75. Exercice (Suite d’entiers qui converge). Soit (un)n∈N une suite réelle telle que pour tout
n ∈ N, un ∈ Z. On suppose que (un)n∈N converge vers un réel `. Démontrer que ` ∈ Z et que (un)n∈N
est constante à partir d’un certain rang.

C1. 76. Exercice (Sous-suite des termes d’indices congrus à 0 (resp. 1, 2) modulo 3). Soit (un)n∈N une
suite réelle. On suppose que les suites (u3n)n∈N, (u3n+1)n∈N et (u3n+2)n∈N convergent respectivement
vers `0, `1, `2.

1. La suite (un)n∈N converge-t-elle ?

2. Supposons que `0 = `1 = `2. Démontrer que la suite (un)n∈N converge.

C1. 77. Exercice (Banque CCINP).

1. Soient (un)n∈N, (vn)n∈N deux suites de nombres réels telles que un ∼ vn. Démontrer que un et
vn ont même signe à partir d’un certain rang.

2. Déterminer le signe de un = sh

(
1

n

)
− tan

(
1

n

)
au voisinage de +∞.
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C1. 78. Exercice (Banque CCINP). Étudier la convergence de la suite (un)n∈N définie par :

un =
n∑
k=0

1(
n
k

)
pour tout n ∈ N.

C1. 79. Exercice (Banque CCINP, Irrationalité de e). Pour tout n ∈ N, notons :

un =
n∑
k=0

1

k!
et vn = un +

1

n!
.

1. Démontrer que les suites (un)n∈N et (vn)n∈N sont adjacentes.

2. On admet que un −−−−−→
n−→+∞

e. Démontrer que e ∈ R \Q.

Indication : Raisonner par l’absurde et supposer que e peut s’écrire
p

q
avec p ∈ N et q ∈ N∗.

C1. 80. Exercice (Banque CCINP).

1. Démontrer que pour, tout x ∈ [0, 1], 0 6 ex − x− 1 6
e

2
x2.

2. Pour tout n ∈ N∗, notons un =

(
n∑
k=1

e
1

n+k

)
− n. Déterminer la limite de (un)n∈N∗ .

Indication : on pourra utiliser le résultat suivant :
n∑
k=1

1

k
=

n−→+∞
ln(n) + o(1).

C1. 81. Exercice (Banque CCINP). Soit (un)n∈N une suite réelle décroissante telle que un+un+1 ∼
1

n
.

Démontrer que un −−−−−→
n−→+∞

0 et déterminer un équivalent de un.

C1. 82. Exercice (Banque CCINP). Étudier la convergence de la suite (un)n∈N∗ définie par :

un =
n∑
k=1

E
(√

k + 1
)
− E

(√
k
)

k

pour tout n ∈ N∗.

Indication : on pourra admettre que la suite de terme général
n∑
k=1

1

k
√
k
converge.
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C1. 83. Exercice (Banque CCINP). Considérons une suite (un)n∈N telle que u0 ∈ R+ et pour tout

n ∈ N, un+1 =

√√√√ n∑
k=0

uk.

Déterminer une relation entre un+1 et un, puis étudier la limite de (un)n∈N.

C1. 84. Exercice (Banque CCINP). Pour tout n ∈ N∗, notons un =
n∑
k=1

sin

(
kπ

n

)
. Démontrer que

un ∼
2n

π
.

C1. 85. Exercice (Banque CCINP). Soit (un)n∈N une suite réelle telle que u0, u1, u2 ∈ R>0 et pour
tout n ∈ N :

un+3 = (unun+1un+2)
1/3.

Étudier la convergence de (un)n∈N et déterminer son éventuelle limite en fonction de u0, u1, u2.

C1. 86. Exercice (Banque CCINP). Déterminer la limite de la suite (un)n∈N∗ de terme général

un =
1

n

n∏
k=1

(k + n)1/n.

C1. 87. Exercice (Banque CCINP). Considérons une suite réelle (un)n∈N telle que u0 > 0 et pour

tout n ∈ N, un+1 = un +
1

u2n
.

1. Étudier la convergence de (un)n∈N.

2. Déterminer un équivalent de un.

C1. 88. Exercice (Banque CCINP). Pour tout n ∈ N∗, notons sn la somme des chi�res de l’écriture
décimale de n.

1. Démontrer que pour tout n ∈ N∗, sn 6 9(log(n) + 1) où log désigne le logarithme décimal.

2. Démontrer que la suite
(
sn+1

sn

)
n∈N∗

est bornée. Atteint-elle ses bornes ?

C1. 89. Exercice (Banque CCINP). Considérons deux suites (xn)n∈N et (vn)n∈N telles que 0 6 x0,
y0 6 7 et les relations de récurrence

xn+1 =
√

7− yn et yn+1 =
√
7− xn

valable pour tout n ∈ N. Étudier la convergence des suites (xn)n∈N et (yn)n∈N.
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C1. 90. Exercice (Banque CCINP).

1. Démontrer que pour tout n ∈ N∗, l’équation

tan
(xπ

2

)
=

π

2nx

admet une unique solution xn dans ]0, 1[.

2. Démontrer que xn −−−−−→
n−→+∞

0 et déterminer un équivalent de xn.

C1. 91. Exercice (Banque CCINP). Pour tout n ∈ N∗, notons un =
n∑
k=1

sin

(
k

n

)
sin

(
k

n2

)
. Étudier

la convergence de (un)n∈N∗ .

C1. 92. Exercice (Banque CCINP).

1. Démontrer que pour tout n ∈ N>2, l’équation

1 + ln(x+ n) = x

admet une unique solution un ∈ R>0.

2. Démontrer que la suite (un)n∈N>2
est croissante.

3. Démontrer qu’à partir d’un certain rang, on a : ln(n) 6 un 6 n.

4. Déterminer un équivalent de un.

C1. 93. Exercice (Banque CCINP). Soient a, b ∈ R tels que a < b, soit f : [a, b] −→ [a, b] une
fonction 1-lipschitzienne. Soit (xn)n∈N une suite réelle définie par la donnée de x0 ∈ [a, b] et la relation
de récurrence

xn+1 =
1

2
(xn + f(xn))

valable pour tout n ∈ N. Démontrer que la suite (xn)n∈N converge vers un point fixe de f .

C1. 94. Exercice (Mines-Ponts).

1. Démontrer que pour tout n ∈ N, l’équation

x = cotan(x)

admet une unique solution xn dans l’intervalle ]nπ, (n+ 1)π[.

2. Démontrer que pour tout n ∈ N, xn = nπ + arctan

(
1

xn

)
.

3. Déterminer un équivalent de xn, puis un développement asymptotique à deux termes de xn.
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C1. 95. Exercice (Moyenne arithmético-géométrique). Soient deux nombres réels a > 0 et b > 0.
Soient (un)n∈N et (vn)n∈N les deux suites définies par u0 := a, v0 := b et les relations de récurrence

un+1 =
un + vn

2
et vn+1 =

√
unvn .

1. Démontrer que, pour tout x > 0 et pour tout y > 0,
√
xy 6

x+ y

2
.

2. Démontrer que, pour tout n > 1, un > vn, un > un+1 et vn+1 > vn.

3. Démontrer que les suites (un)n∈N et (vn)n∈N convergent vers une limite commune. Cette limite
est appelée moyenne arithmético-géométrique de a et b et est notée M(a, b).

4. Calculer M(a, a) et M(a, 0).

5. Démontrer que, pour tout λ > 0, M(λa, λb) = λM(a, b).

6. Écrire une fonction Python moyenne(a, b, ecart) qui donne un encadrement de la moyenne
arithmético-géométrique de deux réels a et b, avec une erreur inférieure ou égale à ecart.

C1. 96. Exercice (Mines-Ponts).

1. Démontrer que pour tout n > 3, l’équation

xn − nx+ 1 = 0

admet une unique solution xn dans l’intervalle ]0, 1[.

2. Démontrer que (xn)n>3 converge et déterminer sa limite.

3. Déterminer un développement asymptotique à deux termes de xn.

C1. 97. Exercice (Centrale).

1. Démontrer que pour tout n ∈ N∗, l’équation

e−x cos(x) =
x

n

admet une solution maximale xn sur R.

2. Démontrer que la suite (xn)n∈N∗ est croissante et diverge vers +∞.

C1. 98. Exercice (Centrale).

1. Soit a > 0. Démontrer que pour tout n ∈ N, il existe un unique xn > n tel que :

n∑
k=0

1

xn − k
= a.

2. Étudier les variations de la suite (xn)n∈N et déterminer un équivalent de xn.
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C1. 99. Exercice (Mines-Ponts). Pour tout n ∈ N∗ et tout x ∈ R, posons :

fn(x) = −1 +
n∑
k=1

kxk.

1. Démontrer que pour tout n ∈ N∗, l’équation fn(x) = 0 admet une unique solution positive ou
nulle, que l’on notera xn.

2. Étudier la convergence et déterminer l’éventuelle limite de (xn)n∈N∗ .

C1. 100. Exercice (Mines-Ponts).

1. Démontrer que pour tout n ∈ N∗, l’équation

n∑
k=1

xk

k
= 1

admet une unique solution positive notée xn.

2. Étudier la convergence de la suite (xn)n∈N∗ .

C1. 101. Exercice (Mines-Ponts). Soient h, k ∈ N tels que 1 6 k < h. Étudier la convergence de la
suite de terme général

un =
hn∑

i=kn+1

ln

(
1 +

i

n2

)
.

C1. 102. Exercice (Mines-Ponts). Soit (un)n∈N une suite réelle telle que u0 > 0 et pour tout n ∈ N

un+1 = un +
1
√
un
.

Déterminer un équivalent de un.

C1. 103. Exercice (Mines-Ponts). Soit (xn)n∈N une suite réelle, convergeant vers un réel `, et notons
(yn)n∈N la suite définie par

∀n ∈ N, yn =
1

2n

n∑
k=0

(
n

k

)
xk.

Étudier la convergence de (yn)n∈N et déterminer son éventuelle limite.
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C1. 104. Exercice. Soit f : [0, 1] −→ [0, 1] une fonction continue, soit (un)n∈N une suite d’éléments
de [0, 1] telle que pour tout n ∈ N :

un+1 = f(un).

Démontrer que (un)n∈N converge si et seulement si un+1 − un −−−−−→
n−→+∞

0.

C1. 105. Exercice (Mines-Ponts).

1. Pour tout n ∈ N, posons :

un =
n∏
k=0

cos

(
1

2k

)
.

Pour tout n ∈ N, calculer : un sin
(

1

2n

)
.

2. Démontrer que un −−−−−→
n−→+∞

sin(1) cos(1).

3. Posons z0 = rei, avec r > 0. Considérons la suite (zn)n∈N de nombres complexes vérifiant :

∀n ∈ N zn+1 =
1

2
(zn + |zn|).

Étudier la convergence de (zn)n∈N.

C1. 106. Exercice (Centrale). Soit a ∈]− 1, 1[. Soit (un)n∈N une suite réelle. Démontrer que :

un −−−−−→
n−→+∞

0 ⇐⇒ un+1 − aun −−−−−→
n−→+∞

0 .

C1. 107. Exercice (Mines-Ponts). Soit un)n∈N une suite réelle bornée telle que :

un+1 − un−1 −−−−−→
n−→+∞

0.

Démontrer que l’ensemble de ses valeurs d’adhérence est soit infini, soit de cardinal inférieur ou égal
à 2.

C1. 108. Exercice (X). Soit λ ∈]0, 1]. Étudier la suite (xn)n∈N définie par x0 ∈]0, 1] et la relation
de récurrence :

xn+1 = 1− λx2n
valable pour tout n ∈ N.
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C1. 109. Exercice (Centrale).

1. Soit (an)n∈N une suite de réels strictement positifs. On suppose qu’il existe a > 1 vérifiant

an+1

an
−−−−−→
n−→+∞

a.

Démontrer que an −−−−−→
n−→+∞

+∞.

2. Soit I un intervalle de R. Soit f : I −→ I une fonction dérivable. Soit (un)n∈N une suite
d’éléments de I telle que pour tout n ∈ N

un+1 = f(un).

On suppose que un −−−−−→
n−→+∞

` ∈ I et que |f ′(`)| > 1. Démontrer que la suite (un)n∈N est

stationnaire.

3. Soit a ∈ R, posons pour tout n ∈ N :

un = 2 cos(2na).

(a) Déterminer une fonction f telle que, pour tout n ∈ N, un+1 = f(un).

(b) Déterminer les points fixes de f .

(c) Déterminer les réels a tels que (un)n∈N converge.

C1. 110. Exercice (X). Soit f : [0, 1] −→ [0, 1] une fonction continue admettant en 0 un dévelop-
pement asymptotique de la forme

f(x) =
x−→0+

x− axα + o(xα)

1. Démontrer que pour u0 assez petit, la suite (un)n∈N vérifiant :

∀n ∈ N un+1 = f(un)

converge vers 0.

2. Déterminer un équivalent de un.
Indication : on pourra examiner uβn+1 − uβn pour un certain β.

3. Traiter l’exemple de la fonction sinus.

C1. 111. Exercice (X). Soit (un)n∈N∗ une suite de nombres complexes. Pour tout n ∈ N∗, on note :

Sn =
n∑
k=1

uk et σn =
1

n

n∑
k=1

Sk.

1. On suppose (dans cette question seulement) que la suite (un)n∈N∗ est à termes réels positifs.
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Démontrer que les deux a�rmations suivantes sont équivalentes :

(a) La suite (Sn)n∈N∗ converge.

(b) Le suite (σn)n∈N∗ converge.

2. On suppose que un =
n−→+∞

O

(
1

n

)
. Démontrer que si (σn)n∈N∗ converge, alors (Sn)n∈N∗ converge.
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