M P

Lycée Chrestien de Troyes

Mathématique

Programme de khôlle de la semaine 7

11-15 octobre

Espaces vectoriels normés I

David BLOTTIÈRE

Déroulement de la khôlle

La khôlle comporte trois phases.

- 1. Rédaction d'une question de cours (6 points 15 minutes maximum) : la khôlle débute par une des questions de cours listées dessous.
- 2. Résolution d'un exercice CCINP listé en fin de document (6 points 15 minutes maximum) : la deuxième partie de la khôlle est consacrée à la résolution d'un des trois exercices issus de la banque CCINP listés ci-après. Vous aurez préalablement préparé ces exercices et vous mettrez en avant votre compréhension des notions en jeu, lors de l'exposé.
- 3. Résolution d'exercices proposés par l'examinatrice/teur (8 points) : la khôlle se poursuit avec des exercices que vous ne connaissez pas à l'avance et que vous résoudrez au tableau, sans temps de préparation sur feuille.

Programme

Début du du Chapitre 4 « Espaces vectoriels normés » [PDF]

- Norme sur un espace vectoriel normé
- Suites d'éléments dans un espace vectoriel normé

À venir

Fin du Chapitre 4 « Espaces vectoriels normés » [PDF]

- Topologie d'un espace vectoriel normé
- Étude locale d'une application
- Applications linéaires continues
- Compacité
- Espaces vectoriels de dimension finie
- Séries dans un espace vectoriel normé
- Connexité par arcs

Questions de cours

Q1. — Définition d'une norme sur un espace vectoriel (C4.2); $||\cdot||_1$, $||\cdot||_2$ et $||\cdot||_{\infty}$ sont des normes sur \mathbb{R}^n (C4.7, démonstrations).

Q2. — Inégalité de Cauchy-Schwarz dans un espace préhilbertien réel (énoncé et démonstration); Norme associé à un produit scalaire (C4.5, énoncé et démonstration).

Q3. — Si $(p,n) \in \mathbf{N}^* \times \mathbf{N}^*$ alors l'application

$$\langle \cdot, \cdot \rangle \quad \middle| \begin{array}{c} \mathcal{M}_{n,p}(\mathbf{R}) \times \mathcal{M}_{n,p}(\mathbf{R}) & \longrightarrow & \mathbf{R} \\ (A,B) & \longmapsto & \operatorname{Tr} \left(A^{\top} \times B \right) \end{array}$$

définit un produit scalaire sur $\mathcal{M}_{n,p}(\mathbf{R})$ (démonstration) ; Si a et b sont deux nombres réels tels que a < b, alors l'application

$$||\cdot||_{\infty} \quad \left| \begin{array}{ccc} \mathcal{C}^0([a,b],\mathbf{R}) & \longrightarrow & \mathbf{R} \\ f & \longmapsto & \sup_{x \in [a,b]} |f(x)| \end{array} \right|$$

définit une norme sur $C^0([a,b],\mathbf{R})$ (démonstration); Représentation graphique d'une boule fermée dans l'espace vectoriel normé $(C^0([a,b],\mathbf{R}),||\cdot||_{\infty})$.

- Q4. Définition de deux normes équivalentes sur un espace vectoriel normé (C4.18); Critère pour que deux normes sur un espace vectoriel soient équivalentes via des boules fermées (C4.21, énoncé et démonstration).
- Q5. L'espace vectoriel normé des fonctions bornées (C4.27, énoncé et démonstration).
- Q6. Définition d'une suite de vecteurs convergente, dans un espace vectoriel normé (C4.39); Dans un espace vectoriel normé, toute suite convergente est bornée (C4.42, énoncé et démonstration proposée en classe).
- Q7. Critère séquentiel de comparaison des normes (C4.46, énoncé et démonstration); Convergence et équivalence de normes (C4.47, énoncé).
- Q8. Convergence d'une suite dans un espace produit (C4.51, énoncé et démonstration).
- Q9. Définition d'une suite extraite d'une suite de vecteurs d'un espace vectoriel (C4.52); Définition d'une valeur d'adhérence d'une suite de vecteurs d'un espace vectoriel normé (C4.54); Une suite de vecteurs convergente possède une unique valeur d'adhérence (C4.56, énoncé et démonstration).

Exercices issus de la banque CCINP

Des corrections des exercices suivants, proposées par la banque CCINP, sont disponibles [PDF].

Exercice CCINP n°60. — Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.

- 1. Déterminer une base de Ker f.
- 2. f est-il surjectif?
- 3. Déterminer une base de Im f.
- 4. A-t-on $\mathcal{M}_2(\mathbb{R}) = \operatorname{Ker} f \oplus \operatorname{Im} f$?

Exercice CCINP n°64. — Soit f un endomorphisme d'un espace vectoriel E de dimension finie n.

- 1. Démontrer que : $E = \operatorname{Im} f \oplus \operatorname{Ker} f \Longrightarrow \operatorname{Im} f = \operatorname{Im} f^2$.
- 2. (a) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Ker} f = \operatorname{Ker} f^2$.
 - (b) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \Longrightarrow E = \operatorname{Im} f \oplus \operatorname{Ker} f$.

Exercice CCINP n°87. — Soient a_0, a_1, \dots, a_n , n+1 réels deux à deux distincts.

1. Montrer que si b_0, b_1, \dots, b_n sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant

$$\deg P \leqslant n \text{ et } \forall i \in [0, n], P(a_i) = b_i.$$

2. Soit $k \in [0, n]$. Expliciter ce polynôme P, que l'on notera L_k , lorsque :

$$\forall i \in [0, n], b_i = \begin{cases} 0 & \text{si} & i \neq k \\ 1 & \text{si} & i = k \end{cases}$$

3. Prouver que $\forall p \in \llbracket 0, n
rbracket$, $\sum_{k=0}^n a_k^p L_k = X^p$.

Après la khôlle

Vous repartirez avec les énoncés des exercices que vous a proposés l'examinatrice/teur. Vous collerez cet énoncé sur une feuille **simple** et vous en rédigerez une solution soignée que vous me remettrez sans faute à la fin du TD du lundi suivant votre khôlle.