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1 Norme sur un espace vectoriel

C4. 1. Notation. K désigne le corps R ou C.

C4. 2. Définition. Norme sur un espace vectoriel Une norme sur un K-espace vectoriel E est une appli-
cation || . || : E −→ R+ véri�ant les propriétés suivantes.

1. Propriété de séparation
∀x ∈ E, ||x || = 0⇐⇒ x = 0

2. Propriété d’homogénéité

∀x ∈ E, ∀λ ∈ K, ||λ.x || = |λ| ||x ||

3. Inégalité triangulaire
∀(x, y) ∈ E2, ||x+ y || 6 ||x ||+ || y ||

On dit alors que (E, || . ||) est un espace vectoriel normé (e.v.n. en abrégé).

C4. 3. Remarque (Deuxième inégalité triangulaire). L’inégalité triangulaire implique l’inégalité suivante,
appelée deuxième inégalité triangulaire :

∀(x, y) ∈ E2, | ||x || − || y || | 6 ||x− y ||

C4. 4. Remarque (Une autre notation usuelle pour la norme). Une norme est parfois aussi notée N . Le
réel N(x) désigne alors la norme du vecteur x.

C4. 5. Proposition (Norme associée à un produit scalaire). Soit E un espace vectoriel muni
d’un produit scalaire 〈 · , · 〉. L’application || . || dé�nie par :

∀x ∈ E, ||x || =
»
〈x , x 〉

est une norme sur E.

C4. 6. Exemple (Normes usuelles sur R et C). La valeur absolue est une norme sur R. Le module est
une norme sur C.
C4. 7. Exemple (Normes usuelles sur Rn). Soit n ∈ N∗. Sur Rn, les applications

|| . ||1 : Rn −→ R+ || . ||2 : Rn −→ R+ || . ||∞ : Rn −→ R+

définies par :

∀x = (x1, ..., xn) ∈ Rn, ||x ||1 =
n∑
i=1

|xi| ||x ||2 =

Ã
n∑
i=1

x 2
i ||x ||∞ = max

16i6n
|xi|

sont des normes. La norme || . ||2 est associée au produit scalaire canonique sur Rn, défini par :

∀(x, y) ∈ Rn ×Rn, 〈x , y 〉 =
n∑
i=1

xiyi.
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C4. 8. Exemple (Normes usuelles sur R[X]). Sur R[X], les applications

|| . ||1 : R[X] −→ R+ || . ||2 : R[X] −→ R+ || . ||∞ : R[X] −→ R+

définies par :

∀P =
+∞∑
i=0

aiX
i ∈ R[X], ||P ||1 =

+∞∑
i=0

|ai| ||P ||2 =

Ã
+∞∑
i=0

a 2
i ||P ||∞ = max

16i6n
|ai|

sont des normes. La norme || . ||2 est la norme associée au produit scalaire 〈 · , · 〉 défini sur R[X] par :

∀(P,Q) ∈ R[X]2 tels que P =
+∞∑
i=0

aiX
i et Q =

+∞∑
i=0

biX
i, 〈P , Q 〉 =

+∞∑
i=0

aibi.

C4. 9. Exemple (Normes usuelles sur C0([a, b],R))). Sur C0([a, b],R) (a < b), les applications

|| . ||1 : C0([a, b],R) −→ R+ || . ||2 : C0([a, b],R) −→ R+ || . ||∞ : C0([a, b],R) −→ R+

définies par :

∀f ∈ C0([a, b],R), || f ||1 =

∫ b

a

|f(t)| dt || f ||2 =

 ∫ b

a

f(t)2 dt, || f ||∞ = sup
t∈[a,b]

|f(t)| .

La norme || . ||2 est la norme associée au produit scalaire 〈 · , · 〉 défini sur C0([a, b],R) sur par :

∀(f, g) ∈ C0([a, b],R)2, 〈 f , g 〉 =

∫ b

a

f(t)g(t) dt.

C4. 10. Remarque (Longueur associée à une norme). Une norme définit une notion de longueur pour
les vecteurs (considérés comme des points) d’un espace vectoriel.

C4. 11. Définition (Distance associée à une norme). Soit (E, || . ||) un espace vectoriel normé.
La distance associée à la norme || . || est l’application

d

∣∣∣∣ E × E −→ R+

(x, y) 7−→ d(x, y) := ||x− y || .

C4. 12. Remarque (Propriétés caractéristiques d’une distance). Soit (E, || . ||) un espace vectoriel normé.
La distance d vérifie les propriétés suivantes :

1. Symétrie
∀(x, y) ∈ E × E, d(x, y) = d(y, x)

2. Séparation
∀(x, y) ∈ E × E, d(x, y) = 0⇔ x = y
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3. Inégalité triangulaire
∀(x, y, z) ∈ E3, d(x, z) 6 d(x, y) + d(y, z)

En e�et, si (x, y, z) ∈ E3

d(x, z) = ||x− z || = || (x− y) + (y − z) || 6 ||x− y ||+ || y − z || 6 d(x, y) + d(y, z)

Réciproquement, toute application deE×E versR+ vérifiant ces trois propriétés est appelée « distance ».

C4. 13. Définition (Boules ouvertes, boules fermées). Soit (E, || . ||) un espace vectoriel normé.
Notons d la distance associée à la norme || . ||. Soient a ∈ E et r > 0.

1. L’ensemble des éléments de E dont la distance à a est strictement inférieure à r, soit :

B(a, r) := {x ∈ E : ||x− a || < r} = {x ∈ E : d(x, a) < r}

est appelé boule ouverte de centre a et de rayon r.

2. L’ensemble des éléments de E dont la distance à a est inférieure ou égale à r, soit :

Bf (a, r) := {x ∈ E : ||x− a || 6 r} = {x ∈ E : d(x, a) 6 r}

est appelé boule fermée de centre a et de rayon r.

C4. 14. Remarque (Boule unité). Lorsque a = 0E et r = 1, on parle de boule unité (ouverte ou
fermée).
C4. 15. Exemple (Boules dans R muni de la valeur absolue). Dans l’espace vectoriel R muni de la
valeur absolue |.|, pour a ∈ R et r > 0,on a :

B(a, r) =]a− r, a+ r[ et Bf (a, r) = [a− r, a+ r]

C4. 16. Exercice (Boules unité fermées dans R2 pour les trois normes usuelles). Dans l’espace vectoriel
R2, l’allure des boules dépend de la norme. Déterminer, puis représenter, la boule unité fermée pour
les normes || . ||1, || . ||2 et || . ||∞ introduites plus haut.

C4. 17. Définition (Vecteur unitaire, vecteur unitaire associé à un vecteur non nul).
Soit (E, || . ||) un espace vectoriel normé.

1. Un vecteur unitaire est un vecteur de norme 1. Autrement dit, un vecteur x ∈ E est unitaire si ||x || = 1.

2. Soit x ∈ E \ {0}. Le vecteur x

||x ||
est unitaire. On l’appelle le vecteur unitaire associé à x.
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C4. 18. Définition (Normes équivalentes). SoientN1 etN2 deux normes sur unK-espace vectoriel
E. On dit que N1 est équivalente à N2 s’il existe deux réels α > 0, β > 0 tels que :

∀x ∈ E, αN1(x) 6 N2(x) 6 βN1(x)

C4. 19. Proposition (L’équivalence entre normes est une relation d’équivalence). Soit
E un K-espace vectoriel E. La relation R dé�nie sur l’ensemble des normes sur E par :

N1 R N2 ⇐⇒ N1 est équivalente à N2

est une relation d’équivalence.

Démonstration. Montrons que la relation R est réflexive, symétrique et transitive.

1. Ré�exivité
Soit N un norme sur E, comme N 6 N 6 N , N R N , donc R est réflexive.

2. Symétrie
SoientN1, N2 deux normes sur E telles queN1 R N2 : il existe α, β > 0 tels que αN1 6 N2 6 βN1,
donc

1

β
N2 6 N1 6

1

α
N2.

Ainsi N2 R N1. La relation R est symétrique.

3. Transitivité
Soient N1, N2, N3 trois normes sur E telles que N1 R N2 et N2 R N3. Il existe α, β, γ, δ > 0 tels
que

αN1 6 N2 6 βN1 et γN2 6 N3 6 δN2

donc αγN1 6 N3 6 βδN1, donc N2 R N3. La relation R est transitive.

Q.E.D.

C4. 20. Exercice ((Équivalence des trois normes usuelles surRn)). On considère les normes || . ||1, || . ||2
et || . ||∞ définies précédemment sur Rn.

1. Démontrer : || . ||2 6 || . ||1 6 n || . ||2. Les normes || . ||1 et || . ||2 sont donc équivalentes.
2. Démontrer : || . ||∞ 6 || . ||1 6 n || . ||∞. Les normes || . ||1 et || . ||∞ sont donc équivalentes.

3. Démontrer : || . ||∞ 6 || . ||2 6
√
n || . ||∞. Les normes || . ||2 et || . ||∞ sont donc équivalentes.

Démontrer que toutes les inégalités précédentes sont optimales.
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C4. 21. Proposition (Critère d’équivalence entre normes via les boules). Deux normes
N1 et N2 sur un K-espace vectoriel E sont équivalentes si et seulement si toute boule ouverte (respectivement
fermée) pour la norme N1 est contenue dans une boule ouverte (respectivement fermée) pour la norme N2, et
réciproquement.

Démonstration. On raisonne double implication.
⇒ Soient N1 et N2 deux normes équivalentes. Il existe α, β > 0 tels que αN1 6 N2 6 βN1. Soit
a ∈ E, soit r > 0. Montrons que la boule ouverte de centre a et de rayon r pour la norme N1,
notée B1(a, r), est contenue dans la boule ouverte de centre a et de rayon βr pour la norme N2,
notée B2(a, βr).
Soit x ∈ B1(a, r). Alors N2(x− a) 6 βN1(x− a) < βr donc x ∈ B2(a, βr).
De même, on montre que B2(a, r) ⊂ B1(a, r/α).
Enfin, ces inclusions restent vraies en remplaçant les boules ouvertes oar des boules fermées.

⇐ Supposons que toute boule ouverte pour la norme N1 est contenue dans une boule ouverte pour
la norme N2, et réciproquement.
Considérons la boule unité ouverte pour la norme N1 : B1(0, 1) = {x ∈ E : N1(x) < 1}. Par
hypothèse, elle est incluse dans une boule pour la norme N2 : B1(0, 1) ⊂ B2(a, r) = {x ∈ E :
N2(x− a) < r}, où a ∈ E et r > 0.
La boule B2(a, r) est incluse dans boule B2(0, r +N2(a)). En e�et, si x ∈ B2(a, r) :

N2(x) = N2(x− a+ a) 6 N2(x− a) +N2(a) < r +N2(a).

Ainsi, en posant β := r +N2(a) : B1(0, 1) ⊂ B2(0, β).
Soit x ∈ E \ {0E}. Alors x

2N1(x)
a une norme N1 égale à 1

2
. Il appartient donc à B1(0, 1) et par

suite à B2(0, β). Donc
1

2N1(x)
N2(x) = N2

Å
x

2N1(x)

ã
< β, d’où N2(x) 6 2βN1(x). Cette dernière

inégalité étant claire pour x = 0E, il vient :

∀x ∈ E, N2(x) 6 2βN1(x).

Par symétrie des rôles joués par les normes N1 et N2 dans l’hypothèse, il existe α > 0 tel que pour
tout x ∈ E, N1(x) 6 2αN2(x). Donc

∀x ∈ E, 1

2α
N1(x) 6 N2(x).

Les normes N1 et N2 sont donc équivalentes.
Un raisonnement analogue livre le résultat pour les boules fermées. Q.E.D.
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C4. 22. Définition (Ensemble borné, diamètre d’un ensemble). Soit (E, || . ||) un espace vec-
toriel normé et soit A une partie de E.

1. On dit que A est bornée s’il existe une boule fermée contenant A.

2. Dans ce cas, on note δ(A) le diamètre de A dé�ni par :

δ(A) := sup
(x,y)∈A2

||x− y || = sup
(x,y)∈A2

d(x, y) .

C4. 23. Remarque (D’une boule centrée en un point quelconque à une boule centrée en l’origine). Soit (E, || . ||)
un espace vectoriel normé. Une partie A de E est bornée si et seulement s’il existe un réel r > 0 tel que
A ⊂ Bf (0, r).

C4. 24. Exercice. Montrer que deux normes N1 et N2 sur un K-espace vectoriel sont équivalentes
si et seulement si pour toute partie A de E, A est bornée pour N1 si et seulement si A est bornée pour
N2.

C4. 25. Exercice. Soit (E, || . ||) un espace vectoriel normé. Soit a ∈ E et soit r > 0. Calculer le
diamètre de la boule ouverte B(a, r).

C4. 26. Définition (Fonction bornée). Soit X un ensemble non vide et soit (E, || . ||) unK-espace
vectoriel normé. Une application f : X −→ E est dite bornée si l’ensemble f(X) est borné dans (E, || . ||), i.e. si

∃M > 0, ∀x ∈ X, || f(x) || 6M.

C4. 27. Théorème (Espace vectoriel normé des fonctions bornées). Soit X un ensemble
non vide et soit (E, || . ||) un K-espace vectoriel normé.

1. L’ensemble B(X,E) des applications bornées dé�nies sur X à valeurs dans E est un sous-espace vectoriel
de F(X,E).

2. Pour toute application f ∈ B(X,E), posons :

|| f ||∞ := sup
x∈X
|| f(x) || .

Alors (B(X,E), || . ||∞) est un K-espace vectoriel normé.

Démonstration. 1. Montrons d’abord que B(X,E) est un sous-espace vectoriel de F(X,E).
• La fonction nulle sur X, i.e. l’application X −→ E ; x 7−→ 0E, est bornée, donc 0 ∈ B(X,E).
• Soit (f, g) ∈ B(X,E)2, soit (λ, µ) ∈ K2. Il existe Mf ,Mg > 0 tels que pour tout x ∈ X,
|| f(x) || 6 Mf et || g(x) || 6 Mg. Soit alors x ∈ X . D’après l’inégalité triangulaire et l’homo-
généité :

||λf(x) + µg(x) || 6 |λ| || f(x) ||+ |µ| || g(x) || 6 |λ|Mf + |µ|Mg.

On en déduit que λf + µg est bornée, donc que λf + µg ∈ B(X,E).
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2. Montrons ensuite que || . ||∞ est une norme.
• Positivité et séparation
Soit f ∈ B(X,E). D’une part, || f ||∞ > 0 puisque pour tout x ∈ X, || f(x) || > 0. D’autre
part, si || f ||∞ = 0, alors pour tout x ∈ X, || f(x) || = 0, donc f(x) = 0E, d’où f = 0.

• Homogénéité
Soit f ∈ B(X,E), soit λ ∈ K. Si λ = 0, alors ||λf ||∞ = 0 = |λ| || f ||∞. Supposons désormais
λ 6= 0.
Pour tout x ∈ X :

||λf(x) || = |λ| || f(x) || 6 |λ| || f ||∞︸ ︷︷ ︸
indépendant de x ∈ X

Par passage à la borne supérieure :

(?) ||λf ||∞ 6 |λ| || f ||∞

L’inégalité (?) vaut pour tout λ 6= 0 et pour tout f ∈ B(X,E). En e�ectuant les substitutions :

λ← 1

λ
et f ← λf

il vient

|| f ||∞ 6

∣∣∣∣1λ
∣∣∣∣ ||λf ||∞

d’où :
(??) |λ| || f ||∞ 6 ||λf ||∞

De (?) et (??), on déduit : ||λf ||∞ = |λ| || f ||∞.
• Inégalité triangulaire
Soit (f, g) ∈ B(X,E)2. Pour tout x ∈ X, l’inégalité triangulaire pour la norme || . || implique :

|| f(x) + g(x) || 6 || f(x) ||+ || g(x) || 6 || f ||∞ + || g ||∞︸ ︷︷ ︸
indépendant de x ∈ X

Par passage à la borne supérieure, il vient || f + g ||∞ 6 || f ||∞ + || g ||∞.
Q.E.D.

C4. 28. Définition (Applications lipschitziennes). Soient (E, || . ||E) et (F, || . ||F ) deux K-
espaces vectoriels normés. Soit A une partie non vide de E. Soit k > 0. Une application f : A −→ F est dite
k-lipschitzienne si :

∀(x, y) ∈ A2, || f(x)− f(y) ||F 6 k ||x− y ||E .

C4. 29. Exercice.

1. Soit (E, || . ||) un espace vectoriel normé. Montrer que l’application

|| . ||
∣∣∣∣ E −→ R
x 7−→ ||x ||

est 1-lipschitzienne.
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2. Soit A = Bf (0, 1) la boule unité fermée dans (R2, || . ||2). Montrer que l’application

f

∣∣∣∣ A −→ R2

(x1, x2) 7−→ (x 2
1 , x

2
2 )

est 2-lipschitzienne.

C4. 30. Proposition (L’application distance à un ensemble est 1-lipschitzienne). Soient
(E, || . ||) un K-espace vectoriel normé et A ⊂ E une partie non vide. Pour tout x ∈ E, notons :

d(x,A) := inf
y∈A
||x− y ||

la distance de x à l’ensemble A. L’application « distance à A » :

d(·, A)

∣∣∣∣ E −→ R
x 7−→ d(x,A)

est 1-lipschitzienne.

Démonstration. Soit (x, y) ∈ E2. Pour tout z ∈ A, on a :

||x− z || = || (x− y) + (y − z) || > ||x− y ||+ || y − z ||

d’après l’inégalité triangulaire. Donc comme d(x,A) 6 ||x− z ||, d(x,A) 6 ||x− y ||+ || y − z || d’où :

d(x,A)− ||x− y ||︸ ︷︷ ︸
indépendant de z ∈ A

6 || y − z ||

Par passage à la borne inférieure, d(x,A)− ||x− y || 6 d(y, A), d’où :

(?) d(x,A)− d(y, A) 6 ||x− y ||

L’inégalité (?) vaut pour tout (x, y) ∈ E2. En e�ectuant les substitutions :

x← y et y ← x

il vient
(??) d(y, A)− d(yx,A) 6 || y − x || = ||x− y ||

De (?) et (??), on déduit |d(x,A)− d(y, A)| 6 ||x− y ||. Q.E.D.
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C4. 31. Proposition (Critère d’équivalence de normes via l’application identité). Deux
normes N1 et N2 sur un K-espace vectoriel E sont équivalentes si et seulement si les applications :

iN1,N2

∣∣∣∣ (E,N1) −→ (E,N2)
x 7−→ x

et

iN2,N1

∣∣∣∣ (E,N2) −→ (E,N1)
x 7−→ x

sont lipschtziennes.

Démonstration. Soient N1 et N2 deux normes sur E. Remarquons que :

iN2,N1 est lipschitzienne ⇐⇒ il existe β > 0 tel que pour tout (x, y) ∈ E2, N2(x− y) 6 βN1(x− y)
⇐⇒
(?)

il existe β > 0 tel que pour tout x ∈ E, N2(x) 6 βN1(x) .

La démonstration de l’équivalence (?) est laissée en exercice. De même, iN1,N2 est lipschitzienne si et

seulement s’il existe α > 0 tel que pour tout x ∈ E, 1

α
N1(x) 6 N2(x).

Ainsi, iN1,N2 et iN2,N1 sont toutes deux lipschitziennes si et seulement si N1 et N2 sont équivalentes.
Q.E.D.

C4. 32. Définition (Norme induite, distance induite). Soit (E, || . ||) un K-espace vectoriel
normé. Soit F un sous-espace vectoriel de E.

1. La restriction de || . || à F est une norme sur F , appelée normé induite.

2. Notons d la distance associée à || . || sur E×E. La restriction de d à F ×F est appelée distance induite.

C4. 33. Proposition (Produit d’un nombre fini d’espaces vectoriels normés). Soient n ∈
N∗ et (Ei, Ni)16i6n une famille de n espaces vectoriels normés. Posons E = E1 × . . . × En et pour tout
x = (x1, . . . , xn) ∈ E :

N(x) = max
16i6n

Ni(xi)

L’application N est une norme sur l’espace vectoriel E, appelée norme produit sur E = E1 × . . .× En.

Démonstration. Montrons que N vérifie les trois conditions nécessaires pourêtre une norme :
• Positivité et séparation
Soit x = (x1, . . . , xn) ∈ E. Comme pour tout i ∈ J1, nK, Ni(xi) > 0, alors N(x) > 0.
Par ailleurs, si N(x) = 0, alors pour tout i ∈ J1, nK, Ni(xi) = 0, donc xi = 0. D’où x = 0.

• Homogénéité
Soit x = (x1, . . . , xn) ∈ E, soit λ ∈ K. Si λ = 0 alorsN(λx) = 0 = |λ|N(x). Supposons désormais
λ 6= 0. Soit i ∈ J1, nK.

Ni(λxi) = |λ|Ni(xi) 6 |λ|N(x)︸ ︷︷ ︸
indépendant de i ∈ J1, nK
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Par passage au max :
(?) N(λx) 6 |λ|N(x)

L’inégalité (?) vaut pour tout λ 6= 0 et pour tout x ∈ E. En e�ectuant les substitutions :

λ← 1

λ
et x← λx

il vient

N(x) 6

∣∣∣∣1λ
∣∣∣∣N(λx)

d’où :
(??) |λ|N(x) 6 N(λx)

De (?) et (??), on déduit : N(λx) = |λ|N(x).
• Inégalité triangulaire
Soient x = (x1, . . . , xn) ∈ E et y = (y1, . . . , yn) ∈ E. Soit i ∈ J1, nK. L’inégalité triangulaire pour
la norme Ni donne :

Ni(xi + yi) 6 Ni(xi) +Ni(yi) 6 N(x) +N(y)︸ ︷︷ ︸
indépendant de i ∈ J1, nK

d’où, en passant au maximum, N(x+ y) 6 N(x) +N(y).
Q.E.D.

C4. 34. Exercice. Soit E un R-espace vectoriel muni d’un produit scalaire 〈 · , · 〉, de norme
associée || . ||. Montrer que pour tout x ∈ E :

||x || = sup
|| y ||=1

〈x , y 〉

C4. 35. Exercice. Soit (E, || . ||) un K-espace vectoriel normé.

1. L’application

f

∣∣∣∣∣∣
E \ {0} −→ E

x 7−→ x

||x ||
est-elle lipschitzienne ?

2. Montrer que :

∀(x, y) ∈ (E \ {0})2, 1

2
max (||x || , || y ||)

∣∣∣∣∣∣∣∣ x

||x ||
− y

|| y ||

∣∣∣∣∣∣∣∣ 6 ||x− y || .
3. En déduire que pour tout r > 0, la restriction de f à E \B(0, r) est lipschitzienne.
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C4. 36. Exercice.

1. Soit (E, || . ||) un K-espace vectoriel normé. Soit fun automorphisme de E. Montrer que l’ap-
plication

N

∣∣∣∣ E −→ R+

x 7−→ || f(x) ||
est une norme sur E. Est-ce le cas si f n’est pas inversible ?

2. Supposons que (E, || . ||) = (Rn, || . ||1). Notons A = (ai,j)16i,j6n la matrice représentant f dans
la base canonique et A−1 = (bi,j)16i,j6n son inverse. Posons :

a = sup
16i,j6n

|ai,j| et b = sup
16i,j6n

|bi,j|

(a) Montrer que,

∀x ∈ E, 1

nb
||x || 6 N(x) 6 na ||x ||

(b) Montrer que f : (Rn, || . ||1)→ (Rn, || . ||∞) est lipschitzienne.

C4. 37. Exercice. Notons E = C1([0, 1],R) et posons, pour f ∈ E, || f ||1,∞ = || f ||∞ + || f ′ ||∞.
1. Montrer que || . ||1,∞ est une norme sur E.

2. Cette norme est-elle équivalente à || . ||∞ ?

C4. 38. Exercice.

1. Montrer que l’application

d

∣∣∣∣ R×R −→ R
(x, y) 7−→ |arctan(x)− arctan(y)|

est une distance sur R. Est-elle associée à une norme sur R ?

2. Soit (E, || . ||) un K-espace vectoriel normé. Posons, pour (x, y) ∈ E × E

d(x, y) = min (1, ||x− y ||) .

L’application d est-elle une distance sur E ? Est-elle associée à une norme sur E ?

3. Ici, E = R2. Posons pour tout (x, y) ∈ E × E :

d(x, y) =
||x− y ||1

1 + ||x− y ||1
.

Montrer que d est une distance sur E. On pourra commencer par montrer que pour tous réels

u, v > 0,
u+ v

1 + u+ v
6

u

1 + u
+

v

1 + v
. Est-elle associée à une norme ?
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2 Suite d’éléments d’un espace vectoriel normé

C4. 39. Définition (Convergence d’une suite). Soit (E, || . ||) un K-espace vectoriel normé. Soit
(un)n∈N une suite d’éléments de vecteurs de E.

1. Soit a ∈ E un vecteur. On dit que la suite (un)n∈N converge vers a dans (E, || . ||) si :

∀ε > 0, ∃Nε ∈ N, ∀n > Nε, ||un − a || 6 ε.

Si c’est le cas, on écrit un −−−−−→
n−→+∞

a.

2. Si la suite (un) ne converge vers aucun point, on dit qu’elle diverge.

C4. 40. Remarque.

1. La notion de convergence n’a de sens que dans un espace vectoriel normé. Ainsi, si E est muni
d’une seconde norme || . ||′, il est possible a priori qu’une suite qui converge pour la norme || . ||,
ne converge pas pour la norme || . ||′. Cf. Théorème C4.46 et Corollaire C4.47.

2. Une suite (un)n∈N converge vers a dans (E, || . ||) si et seulement si la suite réelle de terme général
||un − a || converge dans R vers 0.

C4. 41. Proposition (Unicité de la limite). Soit (E, || . ||) un K-espace vectoriel normé. Soit
(un)n∈N une suite d’éléments de vecteurs de E. Si la suite (un)n∈N converge, alors sa limite est unique. On la
note lim

n−→+∞
un.

Démonstration. Soit (un)n∈N une suite convergente, soient a1, a2 ∈ E tels que un −−−−−→
n−→+∞

a1 et un −−−−−→
n−→+∞

a2. Raisonnons par l’absurde et supposons a1 6= a2, i.e. ε := ||a1 − a2|| > 0.
Il existe N1 ∈ N tel que pour tout n > N1, ||un − a1|| 6 ε

3
et il existe N2 ∈ N tel que pour tout n > N2,

||un − a2|| 6 ε
3
.

En particulier pour n = max(N1, N2), ||un − a1|| 6 ε
3
et ||un − a2|| 6 ε

3
. Par suite :

ε = ||a1 − a2|| = ||a1 − un + un − a2|| 6 ||a1 − un||+ ||un − a2|| = ||un − a1||+ ||un − a2|| 6
2ε

3
.

Comme ε > 0, nous en déduisons 1 6
2

3
, ce qui est faux. Q.E.D.

C4. 42. Proposition (Une suite convergente est bornée). Soit (E, || . ||) unK-espace vectoriel
normé. Soit (un)n∈N une suite d’éléments de vecteurs de E. Si la suite (un)n∈N converge, alors elle est bornée,
i.e. : il existe un réel M > 0 tel que :

∀n ∈ N, ||un || 6M .

C4. 43. Remarque. Une suite (un)n∈N est bornée si et seulement si l’ensemble {un : n ∈ N} est
borné.
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C4. 44. Théorème (Espace des suites convergentes). Soit (E, || . ||) unK-espace vectoriel normé.
1. L’ensemble C (E, || . ||) des suites convergentes dans (E, || . ||) est un sous-espace vectoriel de l’ensemble
EN des suites d’éléments de E.

2. De plus, l’application : ∣∣∣∣∣ C (E, || . ||) → E
(un)n∈N 7→ lim

n→+∞
un

est linéaire.

Démonstration. • Remarquons d’abord que la suite nulle converge vers 0.
• Soient maintnenant (un)n∈N et (vn)n∈N deux suites convergentes, de limites respectives a et b. Soit

(λ, µ) ∈ K2. Nous allons montrer que la suite (λun +µvn)n∈N converge vers λa+µb, ce qui d’une
part achèvera de montrer que l’ensemble des suites convergentes est un sous-espace vectoriel de
EN et, d’autre part que l’application qui à une suite convergente associe sa limite est linéaire.
Supposons que |λ|+ |µ| 6= 0 (dans le cas contraire, λ = µ = 0 et le résultat voulu est immédiat).

Soit ε > 0. Posons ε′ =
ε

|λ|+ |µ|
.

Il existe N1 ∈ N tel que pour tout n > N1, ||un − a || 6 ε′, et il existe N2 ∈ N tel que pour tout
n > N2, ||un − b || 6 ε′. Posons alors N3 = max(N1, N2). Soit n > N3.

|| (λun + µvn)− (λa+ µb) || = ||λ(un − a) + µ(vn − b) || 6 |λ| ||un − a ||+|µ| || vn − b || 6 (|λ|+|µ|)ε′ = ε.

Ainsi, λun + µvn −−−−−→
n−→+∞

λa+ µb.

Q.E.D.

C4. 45. Exemples.
1. Si E = R2 et || . || = || . ||∞, || . ||1 ou || . ||2, alors une suite (un)n∈N de terme général un =

(xn, yn) converge vers un vecteur a = (x, y) si et seulement si (xn)n∈N et (yn)n∈N convergent
respectivement vers x et y dans R.

2. Si x ∈ E est un vecteur quelconque, la suite de terme général un =
x

n
converge vers 0. Si x 6= 0,

la suite de terme général nx diverge.
3. Si E = R[X] est muni de la norme || . ||∞, alors la suite de terme général Pn = Xn diverge.

C4. 46. Théorème (Critère séquentiel de comparaison des normes). Soit E un K-espace
vectoriel et soient N1 et N2 deux normes sur E.
Les propositions suivantes sont équivalentes :

1. Toute suite d’éléments de E qui converge vers 0 au sens de N1, converge vers 0 au sens de N2.

2. ∃α > 0 tel que N2 6 αN1.

Démonstration. Procédons par double implication.
(2)⇒ (1) Soit α > 0 tel que N2 6 αN1.

Soit (un)n∈N une suite convergeant vers 0 au sens de N1, i.e. telle que N1(un) −−−−−→
n−→+∞

0. Comme

pour tout n ∈ N :
0 6 N2(un) 6 αN1(un)

le théorème d’encadrement pour les suites réelles implique (N2(un))n∈N tend vers 0, i.e. que
(un)n∈N converge vers 0 au sens de N2.
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(1)⇒ (2) Raisonnons par contraposée.
Supposons donc que pour tout α > 0, il existe x ∈ E tel que N2(x) > αN1(x). Ainsi, pour tout
n ∈ N∗, il existe xn ∈ E tel que N2(xn) > nN1(xn).

Alors pour tout n ∈ N∗, xn 6= 0E, et on peut considérer yn :=
xn

N2(xn)
.

On observe :
• pour tout n ∈ N∗, N2(yn) = 1, et donc (yn)n∈N∗ ne tend pas vers 0 pour la norme N2 ;

• pour tout n ∈ N, 0 6 N1(yn) <
1

n
N2(yn) =

1

n
, donc par théorème d’encadrement pour les

suites réelles, N1(yn) −−−−−→
n−→+∞

0. (yn)n∈N∗ converge donc vers 0 pour la norme N1.

On a exhibé une suite de vecteurs de E qui converge vers 0 au sens de N1, mais pas au sens de
N2.

Q.E.D.

C4. 47. Corollaire (Convergence et équivalence des normes). Soit E unK-espace vectoriel
et soient N1 et N2 deux normes sur E. Les normes N1 et N2 sont équvalentes si et seulement si pour toute suite
(un)n∈N de E :

(un)n∈N converge vers 0 au sens de N1 ⇐⇒ (un)n∈N converge vers 0 au sens de N2.

Démonstration. Il s’agit d’une concéquence immédiate du théorème précédent. Q.E.D.

C4. 48. Remarque. Ce corollaire peut être utilisé pour démontré que deux normes sur un même
espace vectoriel ne sont pas équivalentes.

C4. 49. Exercice.

1. Démontrer que sur K[X] :

(a) les normes || . ||1 et || . ||2 ne sont pas équivalentes ;
(b) les normes || . ||1et || . ||∞ ne sont pas équivalentes ;

(c) les normes || . ||2et || . ||∞ ne sont pas équivalentes.

2. Démontrer que sur C0([a, b],R),

(a) les normes || . ||1et || . ||2 ne sont pas équivalentes ;
(b) les normes || . ||1et || . ||∞ ne sont pas équivalentes ;

(c) les normes || . ||2et || . ||∞ ne sont pas équivalentes

C4. 50. Théorème (Espace des suites bornées). Soit (E, || . ||) un K-espace vectoriel normé.

1. L’ensemble des suites bornées d’éléments de E, noté `∞(E), est un sous-espace vectoriel de EN.

2. C (E, || . ||) est un sous-espace vectoriel de `∞(E).

3. Posons pour tout (un)n∈N ∈ `∞(E) :

|| (un)n∈N ||∞ := sup
n∈N
||un || .
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Alors (`∞(E), || . ||∞) est un K-espace vectoriel normé.

C4. 51. Théorème (Convergence et espaces produits). Soit (Ei, Ni)16i6p une famille de p
espaces vectoriels normés. Notons (E,N) l’espace produit. Soit alors (un)n∈N une suite d’éléments de E de terme
général

un =
(
u1n, . . . , u

p
n

)
où pour tout i ∈ J1, pK, (uin)n∈N est une suite d’éléments de Ei.
Alors la suite (un)n∈N converge vers un vecteur a = (a1, . . . , ap) ∈ E si et seulement si pour tout i ∈ J1, pK, la
suite (uin)n∈N converge vers ai.

Démonstration. Procédons par double implication.
=⇒ Soit (un)n∈N une suite d’éléments de E convergeant vers a ∈ E. Pour tout n ∈ N et pour tout
i ∈ J1, pK :

0 6 Ni

(
uin − ai

)
6 N(un − a) −−−−−→

n−→+∞
0.

Donc pour tout i ∈ J1, pK, uin
Ni−−−−−→

n−→+∞
ai, par le théorème d’encadrement pour les suites réelles.

⇐= Soit (un)n∈N une suite d’éléments de E telle que pour tout i ∈ J1, pK, il existe ai ∈ Ei :

uin
Ni−−−−−→

n−→+∞
ai.

Ainsi, pour tout i ∈ J1, pK, Ni (u
i
n − ai) −−−−−→

n−→+∞
0, donc :

N1

(
u1n − a1

)
+ . . .+Np (upn − ap) −−−−−→

n−→+∞
0.

Posons a := (a1, . . . , ap). Observons, pour tout n ∈ N

0 6 N(un − a) 6 N1

(
u1n − a1

)
+ . . .+Np (upn − ap)

donc par le théorème d’encadrement pour les suites réelles, N(un − a) −−−−−→
n−→+∞

0. On en déduit

que un
N−−−−−→

n−→+∞
a.

Q.E.D.

C4. 52. Définition (Suites extraites). Soient (un)n∈N et (vn)n∈N deux suites d’éléments d’un K-
espace vectoriel E. On dit que (vn)n∈N est une suite extraite de (un)n∈N s’il existe une applications ϕ : N −→ N
strictement croissante telle que :

∀n ∈ N, vn = uϕ(n).

C4. 53. Remarque (Suite extraite d’une suite extraite). Si (vn)n∈N est une suite extraite de (un)n∈N et
si (wn)n∈N est une suite extraite de (vn)n∈N, alors (wn)n∈N est une suite extraite de (un)n∈N. En e�et, il
existe deux applications ϕ : N −→ N et ψ : N −→ N strictement croissantes telles que pour tout n ∈ N,
wn = vψ(n) = uϕ◦ψ(n).
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C4. 54. Définition (Valeur d’adhérence). Soit (E, || . ||) unK-espace vectoriel normé. Un vecteur
a ∈ E est valeur d’adhérence d’une suite (un)n∈N d’éléments de E, s’il existe une suite extraite de (un)n∈N
convergeant vers a.

C4. 55. Remarque. Une suite (un)n∈N telle que (||un ||)n∈N tend vers +∞ n’a pas de valeur d’adhé-
rence.

C4. 56. Proposition (Une suite convergente possède une unique valeur d’adhérence).
Soit (E, || . ||) un K-espace vectoriel normé. Soit (un)n∈N une suite d’éléments de E.

1. Si (un)n∈N converge vers a ∈ E, alors toute sous-suite de (un)n∈N converge vers a, donc a est l’unique
valeur d’adhérence de (un)n∈N.

2. En particulier, si (un)n∈N possède deux valeurs d’adhérence, alors elle diverge.

Démonstration. Supposons que (un)n∈N converge vers a ∈ E. Soit ϕ : N −→ N une application stricte-
ment croissante. Nous avons établi, plus tôt dans l’année, en raisonnant par récurrence que :

∀n ∈ N, ϕ(n) > n.

Soit ε > 0. Il existe N ∈ N tel que

∀n > N, ||un − a || 6 ε.

Soit alors n > N . Comme ϕ(n) > n > N , alors
∣∣∣∣uϕ(n) − a ∣∣∣∣ 6 ε. Ainsi, uϕ(n) −−−−−→

n−→+∞
a. Q.E.D.

C4. 57. Exemple. La suite réelle de terme général (−1)n admet deux valeurs d’adhérence distinctes,
1 et −1. Elle est donc divergente.

C4. 58. Définition (Notations de Landau). Soit (E, || . ||) un espace vectoriel normé. Soient
(un)n∈N une suite d’éléments de E et (αn)n∈N une suite réelle.

1. On note un =
n→+∞

o(αn) si ||un || =
n→+∞

o(αn).

2. On note un =
n→+∞

O(αn) si ||un || =
n→+∞

O(αn).

3. Si (vn)n∈N est une autre suite d’éléments de E, on note un ∼
n→+∞

vn si un− vn =
n→+∞

o(|| vn ||). On dit
que les suites (un)n∈N et (vn)n∈N sont équivalentes.

C4. 59. Exercice. Trouver un exemple de suite bornée d’un espace vectoriel normé n’ayant pas
de valeur d’adhérence.

C4. 60. Exercice. Soit (un)n∈N une suite réelle bornée. Montrer qu’elle converge si et seulement
si elle n’a qu’une seule valeur d’adhérence. Est-ce vrai si on ne suppose plus (un)n∈N bornée ?
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C4. 61. Exercice. Posons, pour tout n ∈ N :

fn

∣∣∣∣ [0, 1] −→ R
x 7−→ xn .

La suite (fn) converge-t-elle dans (C([0, 1]), || . ||∞) ? Et dans (C([0, 1]), || . ||1) ?

C4. 62. Exercice. Posons, pour tout n ∈ N :

fn

∣∣∣∣ [0, 2π] −→ R
x 7−→ cos(nx) .

1. Montrer que (fn) converge vers 0 dans (C([0, 2π],R), || . ||1).
2. Supposons que (fn) admette une valeur d’adhérence f dans (C([0, 1],R), || . ||∞) : on dispose

alors d’une fonction ϕ : N → N strictement croissante telle que
∣∣∣∣ fϕ(n) − f ∣∣∣∣∞ −−−−−→n−→+∞

0.

Montrer que :

∀n ∈ N,

∣∣∣∣fϕ(n)(0)− fϕ(n)
Å

π

2ϕ(n)

ã∣∣∣∣ 6 2
∣∣∣∣ fϕ(n) − f ∣∣∣∣∞ +

∣∣∣∣f(0)− f
Å

π

2ϕ(n)

ã∣∣∣∣ .
Que peut-on en déduire ?

C4. 63. Exercice. Pour tout n ∈ N, notons fn la fonction définie sur [0, 1] par :

∀x ∈ [0, 1],

 0 si 0 6 x 6 1− 1/n
2n(x− 1 + 1/n) si 1− 1/n 6 x 6 1− 1/2n
−2n(x− 1 + 1/n) si 1− 1/2n 6 x 6 1

Faire un dessin, et montrer que pour tout x ∈ [0, 1], fn(x) −−−−−→
n−→+∞

0. Est-ce que (fn) converge vers 0

dans (C([0, 1]), || . ||∞) ?
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3 Topologie d’un espace vectoriel normé

C4. 64. Notation. Dans toute cette partie, on fixe un espace vectoriel normé (E, || . ||).

C4. 65. Définition (Voisinage d’un point). Soit a ∈ E. Un ensemble Va ⊂ E est appelé voisinage
de a, s’il contient une boule ouverte de centre a.

C4. 66. Exemple.

1. Soit a ∈ E. Une boule ouverte de centre a est un voisinage de a.

2. Les intervalles ]0, 1[, [0, 1], ]0, 1] sont des voisinages de 1
2
dans R.

3. {0} n’est pas un voisinage de 0, puisque pour tour r > 0, B(0, r) =]− r, r[ 6⊂ {0}.
C4. 67. Remarque. Soit a ∈ E. Un ensemble contenant un voisinage de a est un voisinage de a.

C4. 68. Proposition (Union quelconque et intersection finie de voisinages d’un point).
Soit a ∈ E.

1. Une réunion de voisinages de a est un voisinage de a.

2. Une intersection �nie de voisinages de a est un voisinage de a.

Démonstration. 1. Soit (Vi)i∈I une famille de voisinages de a. Soit i0 ∈ I . Il existe r > 0 tel que
B(a, r) ⊂ Vi0 . Alors B(a, r) ⊂

⋃
i∈I

Vi. Donc
⋃
i∈I

Vi est un voisinage de a.

2. Soient V1, . . . , Vr des voisinages de a. Alors :

∀i ∈ J1, rK, ∃ ri > 0, B(a, ri) ⊂ Vi.

Posons alors r = min
16i6r

ri > 0. Pour tout i ∈ J1, rK, B(a, r) ⊂ B(a, ri) ⊂ Vi donc B(a, r) ⊂
r⋂
i=1

Vi.

Donc
r⋂
i=1

Vi est un voisinage de a.

Q.E.D.

C4. 69. Remarque (La �nitude est essentielle dans 2 de la précédente proposition). Une intersection infinie
de voisinages peut ne pas être un voisinage. Par exemple, posons E = R, a = 0, et pour tout n ∈ N∗,
Vn = [−1/n, 1/n]. Pour tout n ∈ N∗,

B(0, 1/n) =]− 1/n, 1/n[⊂ Vn

donc Vn est un voisinage de 0. Or,
⋂
n∈N∗

Vn = {0} qui n’est pas un voisinage de 0.
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C4. 70. Définition (Partie ouverte, partie fermée).

1. Une partie U ⊂ E est un ouvert de (E, || . ||) si U est un voisinage de tous ses points, ie. si :

∀x ∈ U, ∃rx > 0, B(x, rx) ⊂ U.

2. Une partie F ⊂ E est un fermé de (E, || . ||) si son complémentaire E \ F est un ouvert.

C4. 71. Exemple.

1. E et ∅ sont des ouverts de (E, || . ||).
2. Si a ∈ E, {a} est un fermé de (E, || . ||).
3. Si E = R, l’ensemble ]0, 1[ est un ouvert, l’ensemble [0, 1] est un fermé, l’ensemble [0, 1[ n’est ni

ouvert, ni fermé.

C4. 72. Remarque. Une partie de E peut très bien n’être ni ouverte, ni fermée. C’est le cas pour
[−1, 2[ dans (R, |·|).

C4. 73. Proposition (Propriété topologique des boules). Une boule ouverte est un ouvert, une
boule fermée est un fermé.

Démonstration. Soit a ∈ E, soit r > 0.
• B(a, r) est un ouvert
Soit x ∈ B(a, r). Montrons qu’il existe une boule ouverte centrée en x contenue dans B(a, r).
Posons rx = r − || a− x || > 0 (faire une figure pour comprendre ce choix). Montrons que
B(x, rx) ⊂ B(a, r). Soit y ∈ B(x, rx). Par l’inégalité triangulaire :

|| y − a || = || y − x+ x− a || 6 || y − x ||+ ||x− a || < rx + || a− x || = r

donc y ∈ B(a, r) et B(x, rx) ⊂ B(a, r). La boule B(a, r) est bien un voisinage de x, et ceci étant
vrai pour tout x ∈ B(a, r), la boule B(a, r) est un ouvert.
• B(a, r) est un fermé
Montrons que E \ B(a, r)est un ouvert. Soit x ∈ E \ B(a, r). Montrons qu’il existe une boule
ouverte de centre x contenue dans E \ B(a, r). Posons rx = ||x− a || − r > 0 (faire une figure
pour comprendre ce choix). Montrons que B(x, rx) ⊂ E \ B(a, r). Soit y ∈ B(x, rx). Par la
deuxième inégalité triangulaire :

|| y − a || = || y − x+ x− a || > ||x− a || − || y − x || > ||x− a || − rx = r

donc y ∈ E \B(a, r). Ainsi, B(x, rx) ⊂ E \B(a, r) et E \B(a, r) est bien un voisinage de x. D’où
le résultat.

Q.E.D.

C4. 74. Proposition (Union quelconque et intersection finie d’ouverts).

1. Une réunion quelconque d’ouverts est un ouvert.

2. Une intersection �nie d’ouverts est un ouvert.
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Démonstration.

1. Soit (Ui)i∈I une famille d’ouverts. Soit x ∈ U =
⋃
i∈I

Ui. Il existe i0 ∈ I tel que x ∈ Ui0 . Comme Ui0

est un ouvert, c’est un voisinage de x. Donc, comme Ui0 ⊂ U , U est un voisinage de x.
Ceci étant vrai pour tout x ∈ U , U est un ouvert.

2. Soient U1, . . . , Ur des ouverts de E. Soit x ∈ U =
r⋂
i=1

Ui. Pour tout i ∈ J1, rK, Ui est un voisinage de

x. Donc, d’après la proposition C4.68, U est un voisinage de x. Ceci étant vrai pour tout x ∈ U ,
U est bien un ouvert.

Q.E.D.

C4. 75. Corollaire (Union finie et intersection quelconque de fermés).

1. Une réunion �nie de fermés est un fermé.

2. Une intersection de fermés est un fermé.

Démonstration. 1. Soient F1, . . . , Fr des fermés, alors pour tout i ∈ J1, rK, Ui = E \ Fi est un ouvert.
Donc d’après la proposition précédente :

r⋂
i=1

Ui = E \
r⋃
i=1

F

est un ouvert, donc
r⋃
i=1

Fi est un fermé.

2. Soit (Fi)i∈I une famille de fermés, alors pour tout i ∈ I, Ui = E \ Fi est un ouvert, donc d’après
la proposition précédente : ⋃

i∈I

Ui =
⋃
i∈I

E \ Fi = E \
⋂
i∈I

Fi

est un ouvert, donc
⋂
i∈I

Fi est un fermé.

Q.E.D.

C4. 76. Remarque (Importance de l’hypothèse de �nitude).

1. Une intersection infinie d’ouverts n’est pas nécessairement un ouvert. Par exemple,
⋂
n>1

ò
− 1

n
,

1

n

ï
= {0}.

2. Une réunion infinie de fermés n’est pas nécessairement un fermé. Par exemple⋃
n>1

ï
−1 +

1

n
, 1− 1

n

ò
=]− 1, 1[ .
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C4. 77. Définition (Point adhérent, adhérence d’une partie). Soit A une partie non vide de
E.

1. Soit a ∈ E. On dit que a est adhérent à A, si tout voisinage de a rencontre A, ie. si :

∀ε > 0, B(a, ε) ∩ A 6= ∅.

2. L’ensemble des points adhérents à A est appelé adhérence de A, et noté A.
Par convention, ∅ = ∅.

C4. 78. Remarque (Une partie est toujours contenue dans son adhérence). Une partie A de E est contenue
dans son adhérence, i.e. A ⊂ A.
C4. 79. Exemple.

1. L’adhérence d’une boule ouverte est la boule fermée de même centre et de même rayon. Donc
pour tout a ∈ E, r > 0 :

B(a, r) = Bf (a, r)

2. L’adhérence de ]0, 1] est [0, 1] dans (R, |·|).

C4. 80. Définition (Partie dense). Une partie A de E est dite dense dans E si A = E, ie. si :

∀x ∈ E, ∀ε > 0, ∃a ∈ A tel que a ∈ B(x, ε).

C4. 81. Exemple.

1. Q est dense dans (R, |·|).

2. L’ensemble
{ p

2q
: (p, q) ∈ Z×N

}
est dense dans (R, |·|).

3. Qn est dense dans (Rn, || . ||∞).

C4. 82. Théorème (Caractérisation des fermés via l’adhérence). Soit A une partie non vide
de E.

1. A est le plus petit fermé contenant A.

2. A =
⋂

A⊂F , F fermé

F

3. L’ensemble A est fermé si et seulement si A = A.

Démonstration.
• Commençons par montrer que A est un fermé.
Montrons que E \ A est un ouvert.
Soit x ∈ E\A. Comme x 6∈ A, il existe r > 0 tel queB(x, r)∩A = ∅. Montrons queB(x, r) ⊂ E\A.
Soit y ∈ B(x, r), posons r′ = r − || y − x || > 0 (faire une figure pour comprendre ce choix). On
observe que B(y, r′) ⊂ B(x, r) (preuve laissée en exercice). Donc B(y, r′) ⊂ E \ A, donc y 6∈ A.
Ceci étant vrai pour tout y ∈ B(x, r), alors B(x, r) ∩ A = ∅, soit encore B(x, r) ⊂ E \ A. Donc
E \ A est un ouvert, donc A est un fermé.

23



• Nous montrerons ensuite que A le plus petit fermé contenant A.
Montrons maintenant que A est le plus petit fermé contenant A, c’est-à-dire que tout fermé conte-
nant A contient aussi A.
Soit F un fermé contenant A. Montrons que E \ F ⊂ E \ A. Soit x ∈ E \ F , comme F est un
fermé, E \ F est un ouvert, donc il existe r > 0 tel que B(x, r) ⊂ E \ F . Comme A ⊂ F , alors
E \ F ⊂ E \A, donc B(x, r) ⊂ E \A, donc B(x, r)∩A = ∅, donc x ∈ E \A. Ainsi, nous venons
de montrer que E \ F ⊂ E \ A, d’où A ⊂ F .

• Montrons que A est l’intersection de tous les fermés contenant A
Comme A est un fermé contenant A,

⋂
A⊂F, F fermé

F ⊂ A.

Or
⋂

A⊂F, F fermé

F est un fermé (comme intersection quelconque de fermés) contenant A. Comme

tout fermé contenant A contient aussi A, il vient A ⊂
⋂

A⊂F, F fermé

F .

D’où l’égalité.

• Terminons en montrant que A est fermé si et seulement si A = A.
Si A est fermé, A est un fermé contenant A, donc A ⊂ A. Comme A ⊂ A dans tous les cas,
A = A.
Réciproquement, si A = A, comme A est un fermé, alors A est un fermé.

Q.E.D.

C4. 83. Théorème (Caractérisation séquentielle de l’adhérence). Soit A une partie non
vide de E.

1. Un élément a ∈ E est adhérent à A si et seulement si a est limite d’une suite d’éléments de A, i.e. si et
seulement si :

il existe une suite (an)n∈N d’éléments de A telle que an −−−−−→
n−→+∞

a.

2. L’ensemble A est fermé si et seulement si toute suite d’éléments de A qui converge dans E a sa limite dans
A.

Démonstration.

1. Posons A′ l’ensemble des points x ∈ E tels qu’il existe une suite (an)n∈N d’éléments de A conver-
geant vers x. Montrons que A = A′.

⊂ Soit x ∈ A. Pour tout n ∈ N, B
Å
x,

1

n+ 1

ã
∩ A 6= ∅, donc il existe an ∈ A tel que

0 6 ||x− an || 6
1

n+ 1
.

Alors, par le théorème d’encadrement pour les suites réelles, ||x− an || −−−−−→
n−→+∞

0. La suite

(an)n∈N converge donc vers x. Ainsi x ∈ A′.
⊃ Soit x ∈ A′. Il existe une suite (an)n∈N d’éléments de A qui converge vers x. Soit alors r > 0.

Il existe un N ∈ N tel que pour tout n > N , ||x− an || < r, i.e. an ∈ B(x, r) ∩A. Ainsi, pour
tout r > 0, B(x, r) ∩ A 6= ∅, donc x ∈ A.
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2. Cette assertion découle du fait que A est fermé si et seulement si A = A.
Q.E.D.

C4. 84. Corollaire (Caractérisation séquentielle de la densité). Une partie A ⊂ E est
dense dans E si et seulement si tout élément de E est limite d’une suite d’éléments de A, i.e. si et seulement si :

∀x ∈ E, ∃(an)n∈N ∈ AN telle que an −−−−−→
n−→+∞

x.

Démonstration. Cette assertion découle de la définition de la densité et de la caractérisation séquentielle
de l’adhérence. Q.E.D.

C4. 85. Exercice. Munissons E = R[X] de la norme N définie par, pour tout P =
∞∑
k=0

akX
k,

N (P ) =
∞∑
k=0

|ak|
k + 1

. Montrer que l’ensemble :

A =

{
∞∑
k=0

akX
k ∈ R[X] :

∞∑
k=0

ak = 0

}

est dense dans E.

C4. 86. Définition (Point intérieur à un ensemble, intérieur d’un ensemble). Soit A une
partie non vide de E, soit a ∈ E.

1. Le point a est intérieur à A si A est un voisinage de a.
De manière équivalente, a est intérieur à A s’il existe r > 0 tel que B(a, r) ⊂ A.

2. L’ensemble des points intérieurs à A est appelé intérieur de A, et noté
o

A.

Par convention,
o

∅ = ∅.

C4. 87. Théorème (Caractérisation des ouverts). Soit A une partie non vide de E.

1.
o

A est le plus grand ouvert contenu dans A.

2.
o

A =
⋃

U⊂A , U ouvert

U.

3. A est ouvert si et seulement si
o

A = A.

Démonstration. • Commençons par montrer que
o

A est un ouvert.

Soit a ∈
o

A. Comme A est un voisinage de a, il existe r > 0 tel que B(a, r) ⊂ A.

Pour tout x ∈ B(a, r), B(a, r) est un voisinage de x, donc A est un voisinage de x, donc x ∈
o

A.

Ainsi, B(a, r) ⊂
o

A. Donc
o

A est un voisinage de tous ses points, c’est donc un ouvert.
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• Nous montrons ensuite que c’est le plus grand ouvert contenu dans A.
Soit U un ouvert contenu dans A. Soit a ∈ U . Comme U est un ouvert, il existe r > 0 tel que

B(a, r) ⊂ U , donc B(a, r) ⊂ A, donc a ∈
o

A.

Ainsi, U ⊂
o

A.

• Montrons que
o

A est la réunion de tous les ouverts contenus dans A
o

A est un ouvert contenu dans A, donc
o

A ⊂
⋃

U⊂A, U ouvert

U .

Or,
⋃

U⊂A, U ouvert

U est un ouvert (comme réunion quelconque d’ouverts) qui est contenu dans A.

Comme tout ouvert contenu dans A est contenu dans
o

A,
⋃

U⊂A, U ouvert

U ⊂
o

A.

D’où l’égalité.

• Terminons en montrant que A est ouvert si et seulement si
o

A = A.

Si A est un ouvert, A est un ouvert contenu dans A, donc A ⊂
o

A. Comme par ailleurs
o

A ⊂ A, on
a égalité.

Réciproquement, si A =
o

A, comme
o

A est un ouvert, alors A est un ouvert.
Q.E.D.

C4. 88. Théorème (Adhérence, intérieur et complémentaire). Soit A une partie non vide de
E.

1. Le complémentaire de l’intérieur de A est égal à l’adhérence du complémentaire de A :

E \
o

A = E \ A.

2. Le complémentaire de l’adhérence de A est égal à l’intérieur du complémentaire de A :

E \ A =
˚

Ĕ \ A.

Démonstration. 1. Remarquons d’abord que E \
o

A est un fermé contenant E \A, donc E \ A ⊂ E \
o

A.

Ensuite, soit x ∈ E \
o

A. Comme x 6∈
o

A, pour tout r > 0, B(x, r) 6⊂ A, donc B(x, r)∩ (E \A) 6= ∅.
Ainsi, x ∈ E \ A. D’où E \

o

A ⊂ E \ A.
D’où l’égalité.

2. Remarquons d’abord que E \ A est un ouvert contenu dans E \ A, donc E \ A ⊂
˚

Ĕ \ A.

Réciproquement, soit x ∈
˚

Ĕ \ A. Il existe r > 0 tel que B(x, r) ⊂ E \ A. Donc B(x, r) ∩ A = ∅,
et x 6∈ A, i.e. x ∈ E \ A.
D’où l’inclusion réciproque, puis l’égalité.

Q.E.D.
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C4. 89. Définition (Point frontière, frontière d’un ensemble). Soit A une partie non vide
de E.

1. Soit a ∈ E. On dit que a est un point frontière à A si a appartient à l’adhérence de A et de son
complémentaire E \ A.

2. L’ensemble des points frontières de A est appelé frontière de A, et noté Fr(A) ou ∂A.

C4. 90. Remarque. Soit A une partie non vide de E. Alors ∂A = A \
o

A.
C4. 91. Exemple.

1. La frontière d’un intervalle [a, b] vaut {a, b}. Idem pour la frontière de ]a, b[, de ]a, b] ou de [a, b[.

2. La frontière de la boule euclidienne B(a, r) de (Rn, || . ||2) est l’ensemble

{x ∈ Rn : ||x− a ||2 = r} .

On parle de sphère euclidienne de centre a et de rayon r.

3. Plus généralement, la frontière d’une boule B(a, r) est égale à {x ∈ E | ||x− a || = r}.

C4. 92. Définition (Topologie induite). Soit A une partie non vide de E.

1. Soit a ∈ A. Si Va est un voisinage de a dans E, Va ∩ A est un voisinage relatif de a dans a.

2. Si U est un ouvert de E, U ∩ A est un ouvert relatif de A.

3. Si F est un fermé de E, F ∩ A est un fermé relatif de A.

C4. 93. Exemple.

1. Sur R, si A =]a, b[ et c ∈ A, alors [c, b[ est un fermé relatif de A, ]c, b[ est un ouvert relatif de A,
]a, b[ est un fermé relatif et un ouvert relatif de A.

2. Sur R, si A = [a, b] et c ∈]a, b[, alors ]c, b] est un ouvert relatif de A, [c, b] est un fermé relatif de
A, [a, b] est un fermé relatif et un ouvert relatif de A.

C4. 94. Définition (Propriété portant sur une fonction, vraie au voisinage d’un point).
Soit f ∈ F(A,F ) une fonction dé�nie sur une partie A de E.

1. On dit qu’une propriété P(f) portant sur la fonction f est vraie au voisinage de a ∈ A s’il existe un
voisinage Va,A relatif de a dans A tel que P(f) soit vraie sur Va,A.

2. On dit qu’une propriété P(f) portant sur la fonction f est vraie au voisinage de l’in�ni s’il existe une
boule B(0, r) telle que P(f) soit vraie sur E \B(0, r).
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C4. 95. Exemple.

1. On dit qu’une fonction f est positive au voisinage de +∞ s’il existe I =]c,+∞[ tel que f soit
positive sur I .

2. La fonction f : x 7→ 1

x
n’est pas bornée au voisinage de 0.

C4. 96. Exercice. Soit E = R[X], || . || = || . ||1.

1. Montrer que A =

{
∞∑
k=0

akX
k :

∞∑
k=0

ak > 0

}
est un ouvert de (E, || . ||). Déterminer A.

2. Montrer que B =

{
∞∑
k=0

akX
k :

∞∑
k=0

ak = 0

}
est un fermé de (E, || . ||). Déterminer

o

B.

C4. 97. Exercice. Soit E = C([0, 1],R), || . || = || . ||∞.
1. Montrer que A = {f ∈ E : f > 0} est un ouvert de (E, || . ||). Déterminer A.

2. Montrer que B = {f ∈ E : f(0) = 0} est un fermé de (E, || . ||). Déterminer
o

B.

C4. 98. Exercice. Soit E = C([0, 1],R), || . || = || . ||1.
Montrer que A = {f ∈ E : f(0) = 0} est dense dans (E, || . ||).
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4 Étude locale d’une application, continuité

C4. 99. Notation. (E, || . ||E) et (F, || . ||F ) désignent deux espaces vectoriels normés et A une partie
non vide de E.

C4. 100. Définition (Limite d’une fonction). Soient a un point adhérent à A et b ∈ F . Soit une
application f ∈ F(A,F ).
On dit que f a pour limite b en a si :

∀ε > 0, ∃η > 0 tel que ∀x ∈ A ∩B(a, η), f(x) ∈ B(b, ε).

On écrit alors f(x) −−−→
x−→a

b.

C4. 101. Remarque. Avec les notations de la précédente définition, la fonction f a pour limite b en
a si et seulement si :

∀ε > 0, ∃η > 0 tel que ∀x ∈ A, ||x− a ||E < η =⇒ || f(x)− b ||F < ε.

ou encore si et seulement si :

∀ε > 0, ∃η > 0 tel que f(A ∩B(a, η)) ⊂ B(b, ε).

C4. 102. Proposition (Uncité de la limite). Soient a un point adhérent à A et b1, b2 ∈ F . Soit
une application f ∈ F(A,F ). Si f(x) −−−→

x−→a
b1 et f(x) −−−→

x−→a
b2, alors b1 = b2.

Démonstration. Raisonnons par l’absurde et supposons b1 6= b2, i.e. ε := ||b1 − b2||F > 0.
Il existe η1 > 0 tel que f(A∩B(a, η1)) ⊂ B(b1, ε/3). De même, il existe η2 > 0 tel que f(A∩B(a, η2)) ⊂
B(b2, ε/3).
Posons alors η := min(η1, η2). Comme B(a, η) = B(a, η1) ∩B(a, η2), alors :

f(A ∩B(a, η)) ⊂ B(b1, ε/3) ∩B(b2, ε/3).

Soit alors x ∈ B(a, η) ∩ A, qui est ensemble non vide car a est adhérent à A. On a par l’inégalité
triangulaire :

ε = || b1 − b2 ||F = || b1 − f(x) + f(x)− b2 ||F 6 || b1 − f(x) ||F + || f(x)− b2 ||F <
2ε

3
.

Comme ε > 0, il vient 1 <
2

3
, ce qui est faux. Q.E.D.

C4. 103. Remarque. Si f a pour limite b en a, on dit que b est la limite de f en a, et on note
lim
x−→a

f(x) = b.
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C4. 104. Définition (Continuité). Soient a ∈ A et f : A −→ F .

1. On dit que f est continue en a si :
f(x) −−−→

x−→a
f(a).

2. On dit que f est continue sur A si f est continue en tout point de A.

C4. 105. Proposition (Composition de limites). Soit (G, || . ||G) un espace vectoriel normé, soit
B ⊂ F et soient f ∈ F(A,F ), g ∈ F(B,G).
Supposons que f(A) ⊂ B.
L’application g ◦ f est bien dé�nie et pour tout a ∈ A, b ∈ B et c ∈ G :

f(x) −−−→
x−→a

b

g(y) −−−→
y−→b

c

 =⇒ g ◦ f(x) −−−→
x−→a

c.

Démonstration. Soit ε > 0.
Comme g(x) −−−→

x−→b
c, il existe η > 0 tel que g(B ∩B(b, η)) ⊂ B(c, ε).

Comme f(x) −−−→
x−→a

b, il existe α > 0 tel que f(A∩B(a, α)) ⊂ B(b, η)∩B (ici nous utilisons l’hypothèse

f(A) ⊂ B).
Donc g ◦ f(A ∩B(a, α)) ⊂ B(c, ε).
Ainsi g ◦ f(x) −−−→

x−→a
c. Q.E.D.

C4. 106. Théorème (Caractérisation séquentielle de la limite). Soient a ∈ A, b ∈ F et
f ∈ F(A,F ).
Alors f(x) −−−→

x−→a
b si et seulement si pour toute suite (xn) d’éléments de A :

xn −−−−−→
n−→+∞

a =⇒ f(xn) −−−−−→
n−→+∞

b.

Démonstration. Procédons par double implication.
=⇒ Soit (xn) une suite d’éléments de A convegeant vers a. Soit ε > 0.

Comme f(x) −−−→
x−→a

b, il existe η > 0 tel que f(A ∩B(a, η)) ⊂ B(b, ε).

Comme xn −−−−−→
n−→+∞

a, il existe N ∈ N tel que :

∀n > N, ||xn − a ||E < η

soit xn ∈ A ∩B(a, η). Alors pour tout n > N , f(xn) ∈ B(b, ε), soit || f(xn)− b ||F < ε.
Donc f(xn) −−−−−→

n−→+∞
b.

⇐= Raisonnons par contraposée et supposons que f(x) ne converge pas vers b quand x tend vers
a.
Alors il existe ε > 0 tel que pour tout η > 0, f(A ∩B(a, η)) 6⊂ B(b, ε).
Donc pour tout n ∈ N∗, il existe xn ∈ A∩B(a, 1/n) tel que f(xn) 6∈ B(b, ε), ie || f(xn)− b ||F > ε.
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— La suite (xn) converge vers a, puisque pour tout n ∈ N∗, ||xn − a||E <
1

n
(théorème d’enca-

drement pour les suites réelles).
— La suite (f(xn)) ne converge pas vers b, car pour tout n ∈ N∗, || f(xn)− b ||F > ε (faire un

bref raisonnement par l’absurde pour s’en convaincre).
Q.E.D.

C4. 107. Remarque. Si f a pour limite b en a, alors pour toute suite (xn) convergeant vers a :

(f(xn)) converge et f
Å

lim
n→+∞

f(xn)

ã
= lim

n−→+∞
f(xn).

C4. 108. Définition (Notations de Landau). Soient f ∈ F(A,F ) et ϕ ∈ F(A,R). Soit a ∈ A.
Alors :

1. f =
a

o(ϕ) si :

∀ε > 0, ∃η > 0, ∀x ∈ A ∩B(a, η), || f(x) ||F 6 ε |ϕ(x)| .

Lorsque ϕ ne s’annule pas, ceci équivaut à
f(x)

ϕ(x)
−−−→
x−→a

0.

2. f =
a

O(ϕ) si :

∃M > 0, ∃η > 0, ∀x ∈ A ∩B(a, η), || f(x) ||F 6M |ϕ(x)| .

Lorsque ϕ ne s’annule pas, ceci équivaut à
f

ϕ
est bornée au voisinage de a.

C4. 109. Définition (Fonctions équivalentes). Soient f, g ∈ F(A,F ) et a ∈ A.
On dit que f et g sont équivalentes au voisinage de a, et on écrit f ∼

a
g, si

f − g =
a

o (|| g ||F )

C4. 110. Proposition (∼
a
est une relation d’équivalence). Soit a ∈ A. La relation ∼

a
est une

relation d’équivalence sur F(A,F ).

Démonstration. Il s’agit de montrer que la relation ∼
a
est réflexive, symétrique et transitive.

• La réflexivité est évidente.
• Pour la symétrie, soient (f, g) ∈ F(A,F )2 telles que f ∼

a
g, ie f − g =

a
o (|| g ||F ) au voisinage de

a.

Ainsi, il existe η > 0 tel que pour tout x ∈ A ∩ B(a, η), || f(x)− g(x) || 6 || g(x) ||F
2

. Donc, pour

tout x ∈ B(a, η) ∩ A :

|| f(x) || = || f(x)− g(x) + g(x) ||F > || g(x) ||F − || f(x)− g(x) ||F >
|| g(x) ||F

2
.
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Donc pour tout x ∈ B(a, η)∩A, || g(x) ||F 6 2 || f(x) ||F . On en déduit donc que g− f =
a
o(|| f ||)

au voisinage de a. En e�et, pour tout ε > 0, il existe α > 0 tel que pour tout x ∈ B(a, α) ∩ A :

|| g(x)− f(x) ||F 6 ε
|| g(x) ||F

2
.

Posons β = min(η, α), pour tout x ∈ A ∩B(a, β), || g(x)− f(x) ||F 6 ε || f(x) ||F . Donc g ∼a f .
• Montrons que ∼

a
est transitive. Soient f, g, h ∈ F(A,F ) telles que f ∼

a
g et g ∼

a
h. Alors

f − h =
a

(f − g) + (g − h) = o (|| g ||F ) + o (||h ||F )) .

On montre comme dans la preuve de la symétrie que dans un voisinage de a, || g ||F 6 2 ||h ||F ,
puis que f − h =

a
o (||h ||F ), d’où f ∼

a
h.

Q.E.D.

C4. 111. Proposition (Espace vectoriel des fonctions continues). L’ensemble C0(A,F ) des
fonctions continues sur A est un sous-espace vectoriel de F(A,F ).

Démonstration. • Remarquons d’abord que la fonction nulle est continue sur A.
• Soit alors (f, g) ∈ C0(A,F )2, soit (λ, µ) ∈ K2, soit a ∈ A. Montrons que λf + µg est continue en
a, en utilsant la caractérisation séquentielle de la limite.
Soit (an) une suite d’éléments de A convergeant vers a. Par continuité de f et g en a, il vient :

f(an) −−−−−→
n−→+∞

f(a) et g(an) −−−−−→
n−→+∞

g(a).

Par opération sur les limites de suites, nous en déduisons :

(λf + µg)(an) = λf(an) + µg(an) −−−−−→
n−→+∞

λf(a) + µg(a) = (λf + µg)(a).

Ceci étant vrai pour toute suite (an) d’éléments de A convergeant vers a :

(λf + µg)(x) −−−→
x−→a

(λf + µg)(a).

Q.E.D.

C4. 112. Proposition (D’autres modes de construction d’applications continues).

1. Composition
Soit (G, || . ||G) un espace vectoriel normé, soit B ⊂ F , et soient f ∈ C0(A,F ), g ∈ C0(B,G) telles que
f(A) ⊂ B.
Alors g ◦ f ∈ C0(A,G).

2. Restriction
Soit f ∈ C0(A,F ) soit A′ ⊂ A. Alors f ∈ C0(A′, F ).

3. n-uplet
Soient (F1, || . ||1), . . . , (Fn, || . ||n) un nombre �ni d’espaces vectoriels normés. Notons (F, || . ||F ) l’espace
vectoriel normé produit. Soit f = (f1, . . . , fn) ∈ F(A,F ). Alors :

f ∈ C0(A,F ) ⇐⇒ ∀i ∈ J1, nK, fi ∈ C0(A,F ).
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Démonstration. 1. Conséquence immédiate de la Proposition C4.105.

2. Immédiat.

3. S’obtient simplement par caractérisation séquentielle de la limite et par caractérisation de la
convergence dans les espaces produits (Théorème C4.51).

Q.E.D.

C4. 113. Théorème (Continuité, densité et prolongement d’identité). Soient f ,g ∈
C0(A,F ). Soit B ⊂ A une partie dense dans A.
Si f et g coïncident sur B (i.e. si ∀x ∈ B, f(x) = g(x)) alors f = g.

Démonstration. Soit x ∈ A. Par densité de B dans A, il existe une suite (xn)n∈N d’éléments de B telle
que xn −−−−−→

n−→+∞
a.

Par hypothèse, pour tout n ∈ N, f(xn) = g(xn). Mais par ailleurs, par caractérisation séquentielle de la
continuité :

f(xn) −−−−−→
n−→+∞

f(x) et g(xn) −−−−−→
n−→+∞

g(x).

Donc par unicité de la limite, f(x) = g(x).
Ceci étant vrai pour tout x ∈ A, f = g. Q.E.D.

C4. 114. Théorème (Caractérisation des applications continues via les ouverts). Soit
f ∈ F(A,F ). Alors f est continue sur A si et seulement si pour tout ouvert U de F , f−1(U) est un ouvert relatif
de A.

Démonstration. Procédons par double implication.
=⇒ Soit U un ouvert de F . Montrons que f−1(U) est un ouvert relatif de A.

Soit x ∈ f−1(U). Comme f(x) ∈ U et U est un ouvert de F , il existe ε > 0 tel que :

B(f(x), ε) ⊂ U.

Comme f est continue en x, il existe η > 0 tel que :

f(A ∩B(x, η)) ⊂ B(f(x), ε) ⊂ U

donc A ∩B(x, η) ⊂ f−1(U). On en déduit que f−1(U) est un voisinage relatif de x.
Ceci étant vrai pour tout x ∈ f−1(U), on en déduit que f−1(U) est un ouvert relatif.

⇐= Soit x ∈ A, soit ε > 0. Posons U = B(f(x), ε).
Comme U est un ouvert, f−1(U) est un ouvert relatif deA, donc il existe η > 0 tel queB(x, η)∩A ⊂
f−1(U), d’où f(A ∩B(x, η)) ⊂ B(f(x), ε). Ainsi, f est continue en x.
Ceci étant vrai pour tout x ∈ A, f est continue sur A.

Q.E.D.
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C4. 115. Exercice.

1. Soit ∈ C0([0, 1],R). Montrer que {x ∈ [0, 1] : f(x) > 0} est un ouvert relatif de [0, 1].

2. Plus généralement, si f ∈ C0(A,F ), montrer que {x ∈ A : f(x) 6= 0} est un ouvert relatif de
A.
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5 Applications linéaires continues

C4. 116. Théorème (Caractérisation des applications linéaires continues. ) Soient (E, || . ||E)
et (F, || . ||F ) deux espaces vectoriels normés. Soit u ∈ L(E,F ) une application linéaire. Les cinq propositions
suivantes sont équivalentes.

1. u est continue sur E.

2. u est continue en 0.

3. La restriction de u à la boule unité fermée est bornée.

4. Il existe un réel C > 0 tel que ∀x ∈ E, ||u(x) ||F 6 C ||x ||E .
5. u est lipschitzienne.

C4. 117. Exemple.

1. Tout endomorphisme de Rn est continu pour la norme || . ||∞.
2. Soit (·|·) un produit scalaire sur un R-espace vectoriel E, de norme associée || . ||.

Alors pour tout x ∈ E, l’application :

(x|·) : E −→ R ; y 7→ (x|y)

est continue.

3. L’application évaluation en 0 :

ev0 : C0([0, 1],R) −→ R ; f 7→ f(0)

est continue pour la norme || . ||∞. En revanche, elle n’est pas continue pour la norme || . ||1.
4. L’application évaluation en 2 :

ev2 : R[X] −→ R ; P 7→ P (2)

n’est pas continue pour la norme || . ||1. En e�et, ||Xn ||1 = 1 alors que ϕ(Xn) −−−−−→
n−→+∞

+∞.

C4. 118. Exercice. Soient (E, || . ||) un espace vectoriel normé et ϕ ∈ E∗ une forme linéaire.

1. Montrer que Ker(ϕ) est fermé si et seulement si ϕ est continue.

2. Montrer que Ker(ϕ) est dense dans E si et seulement si ϕ n’est pas continue.
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C4. 119. Théorème (Caractérisation de l’équivalence des normes). Soit E un K-espace
vectoriel, soient N1 et N2 deux normes sur E. Les trois propositions suivantes sont équivalentes.

1. N1 et N2 sont équivalentes.

2. (E,N1) et (E,N2) ont les mêmes parties ouvertes.

3. L’application identité de E est continue en tant qu’application de (E,N1) vers (E,N2), et en tant
qu’application de (E,N1) vers (E,N2).

C4. 120. Théorème (Espace vectoriel des application linéaires continues). Soient (E, || . ||E)
et (F, || . ||F ) deux espaces vectoriels normés. Notons Lc(E,F ) l’ensemble des applications linéaires continues de
(E, || . ||E) vers (F, || . ||F ).
Alors Lc(E,F ) est un sous-espace vectoriel de Lc(E,F ).

C4. 121. Théorème (Composition des applications linéaires continues). Soient (E, || . ||E),
(F, || . ||F ), (G, || . ||G) trois espaces vectoriels normés. Soient u ∈ Lc(E,F ) et v ∈ Lc(F,G). Alors :

v ◦ u ∈ Lc(E,G)

C4. 122. Définition (Algèbre normée unitaire). Soient A uneK-algèbre normée unitaire et || . ||
une norme sur A. On dit que (A, || . ||) est une algèbre normée unitaire si :

∀(x, y) ∈ A2, ||x.y || 6 ||x || . || y || .

C4. 123. Exercice. Soit (A, || . ||) une algèbre unitaire normée. Montrer que l’application :

π

∣∣∣∣ A×A −→ A
(x, y) 7−→ x× y

est continue.

C4. 124. Proposition (Un exemple d’algèbre normée unitaire). Soient (E, || . ||E) un espace
vectoriel normé et A ⊂ E. Alors (B(A,K), || . ||∞) est une algèbre unitaire normée.

C4. 125. Exemple. Pour tout A = (ai,j) ∈Mn(K) on pose :

||A || := max
16j6n

n∑
i=1

|ai,j|

Démontrer que (Mn(K), || · ||) est une algèbre unitaire normée.
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C4. 126. Proposition (Applications bilinéaires continues). Soient (E, || . ||E), (F, || . ||F ),
(G, || . ||G) trois espaces vectoriels normés. Soit

B : E × F → G

une application bilinéaire. Alors B est continue si et seulement s’il existe un réel C > 0 tel que :

∀(x, y) ∈ E × F, ||B(x, y) ||G 6 C . ||x ||E . || y ||F .

Démonstration. Rappelons que la norme placée sur E × F est la norme produit || · ||, définie par :

∀ (x, y) ∈ E × F, || (x, y) || := max (||x ||E , || y ||F ) .

Procédons par double implication.
=⇒ Supposons l’application B continue. Alors B est continue en tout point de E × F , en parti-

culier continue au point (0E, 0F ). Remarquons que, B étant bilinéaire, B (0E, 0F ) = 0G. Dans la
définition de la continuité de B en (0E, 0F ), nous spécifions ε à 1 > 0 pour obtenir qu’il existe
α > 0 tel que pour tout (x, y) ∈ E × F :

|| (x, y) || 6 α︸ ︷︷ ︸
|| (x,y)−(0E ,0F ) ||6α

=⇒ ||B(x, y) ||G 6 1︸ ︷︷ ︸
||B(x,y)−B(0E ,0F ) ||G61

.

• Soient x un vecteur deE non nul et y un vecteur de F non nul. Alors le vecteur
Å

α

||x ||E
x ,

α

|| y ||F
y

ã
de E × F a une norme || · || égale à α. Donc :∣∣∣∣∣∣∣∣B Å α

||x ||E
x ,

α

|| y ||F
y

ã ∣∣∣∣∣∣∣∣
G

6 1 .

En utilisant la bilinéarité de B, l’homogénéité de la norme || · ||G et le fait que α, ||x ||E et
|| y ||F sont strictement positifs, nous en déduisons :

(?) ||B(x, y) ||G 6
1

α2
||x ||E || y ||F .

• Si (x, y) ∈ E × F est tel que x = 0E ou y = 0F , alors la bilinéarité de B livre B(x, y) = 0G.
L’inégalité (?) s’étend donc à tous les vecteurs (x, y) de E × F .

⇐= Supposons qu’il existe un réel C > 0 tel que :

∀(x, y) ∈ E × F, ||B(x, y) ||G 6 C ||x ||E || y ||F .

Soient (x, y) ∈ E×F . Démontrons que B est continue en (x, y), en appliquant le critère séquentiel
de continuité. Soit ((xn, yn))n∈N une suite d’éléments de E × F telle que :

(xn, yn)
|| · ||−−−−−→

n−→+∞
(x, y) .

D’après le Théorème C4.51, nous en déduisons :

xn
|| · ||E−−−−−→

n−→+∞
x et yn

|| · ||F−−−−−→
n−→+∞

y .
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Soient n ∈ N.

||B (xn, yn)−B(x, y) ||G 6 ||B (xn, yn)−B (xn, y) ||G + ||B (xn, y)−B (x, y) ||G [Inégalité triangulaire]

= ||B (xn, yn − y) ||G + ||B (xn − x, y) ||G [B est bilinéaire]

6 C ||xn ||E || yn − y ||F + C ||xn − x ||E || y ||F [cf. hypothèse]

La suite (xn)n∈N est convergente donc bornée, pour la norme || · ||E . Donc il existeM > 0 tel que
pour tout n ∈ N, ||xn ||E 6M . On en déduit que pour tout n ∈ N :

0 6 ||B (xn, yn)−B(x, y) ||G 6 C M || yn − y ||F + C ||xn − x ||E || y ||F .

D’après le théorème d’encadrement, ||B (xn, yn)−B(x, y) ||G −−−−−→n−→+∞
0, i.e. B (xn, yn)

|| · ||G−−−−−→
n−→+∞

B(x, y).
Q.E.D.

C4. 127. Exemple. Si E est muni d’un produit scalaire 〈 · , · 〉 de norme associée || . ||, alors l’appli-
cation

〈 · , · 〉
∣∣∣∣ E × E −→ R

(x, y) 7−→ 〈x , y 〉

est continue pour la norme || . ||.
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6 Compacité

C4. 128. Notation. Soient (E, || . ||E) un espace vectoriel normé et A une partie non vide de E.

C4. 129. Définition (Propriété de Bolzano-Weierstrass). On dit que A véri�e la propriété de
Bolzano-Weierstrass si de toute suite d’éléments de A on peut extraire une sous-suite convergente dans A, i.e. si :

∀(un)n∈N ∈ AN, ∃ϕ : N→ N↗↗, ∃a ∈ A, uϕ(n) −−−−−→
n−→+∞

a.

C4. 130. Définition (Partie compacte). On dit que A est une partie compacte (ou que A est un
compact) si A véri�e la propriété de Bolzano-Weierstrass.

C4. 131. Exemple. Un segment de R est un compact (cf. théorème de Bolzano-Weierstrass de
MPSI).

C4. 132. Proposition (Un compact est fermé borné). Si A est un compact, alors A est fermé et
borné.

C4. 133. Remarque (La réciproque de la proposition précédente n’est pas nécessairement vraie.).

1. La boule unité de (R[X], || . ||∞) n’est pas compacte. En e�et, la suite (Xn) n’a pas de valeur
d’adhérence.

2. La boule unité de (B([0, 1],R), || . ||∞) n’est pas compacte. En e�et, la suite (fn) définie par pour
tout n ∈ N :

fn : [0, 1] −→ R ; x 7→ sin(2nπx)

n’a pas de valeur d’adhérence.

C4. 134. Proposition (Un fermé d’un compact est compact). Supposons A compacte. Soit
B ⊂ A. Alors B est un compact si et seulement si B est fermé.

C4. 135. Théorème (Un produit d’un nombre fini de compacts est compact). Soient
(E1, || . ||1), . . . , (En, || . ||n) des espaces vectoriels normés. Soient A1 ⊂ E1,⊂, An ⊂ En des compacts.
Alors A1 × . . .× An est un compact de l’espace vectoriel normé produit (E1 × . . .× En, || . ||).

C4. 136. Corollaire (Compacts de (Kn, || . ||∞)). Une partie de (Kn, || . ||∞) est compacte si et
seulement si elle est fermée et bornée.
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C4. 137. Théorème (L’image continue d’un compact est un compact). Soit (F, || . ||F ) un
espace vectoriel normé. Soit f ∈ C0(A,F ).
Si A est compact, alors f(A) est compact.

C4. 138. Remarque (Conséquence fondamentale du théorème précédent). Si A est compact et f ∈ C(A,R),
alors f est bornée et atteint ses bornes.

C4. 139. Définition. Continuité uniforme) Soit (F, || . ||F ) un espace vectoriel normé. Une application
f : A −→ F est dite uniformément continue si :

∀ε > 0, ∃η > 0, ∀(x, y) ∈ A2, ||x− y || 6 η =⇒ || f(x)− f(y) || 6 ε.

C4. 140. Remarque. Soit (F, || . ||F ) un espace vectoriel normé. Soit f : A −→ F . Alors :

f lipschtizienne =⇒ f uniformément continue =⇒ f continue.

C4. 141. Théorème (Une fonction continue sur un compact est uniformément continue).
Soit (F, || . ||F ) un espace vectoriel normé. Soit f ∈ C0(A,F ). Si A est compact, alors f est uniformément

continue.

Démonstration. La démonstration est analogue à celle du théorème de Heine, vue en MPSI. Q.E.D.

C4. 142. Exercice. Soit (E, || . ||E) un espace vectoriel normé. Supposons que la sphère unité
S = {x ∈ E : ||x || = 1} est compacte. Montrer que B(0, 1) est compacte.

C4. 143. Exercice. La boule unité de (`∞(R), || . ||∞) est-elle compacte ?

C4. 144. Exercice. SoitK un compact d’un espace vectoriel normé. Montrer qu’il existe une boule
fermée de rayon minimal contenant K.
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7 Espaces vectoriels normés de dimension �nie

C4. 145. Notation. Dans toute cette partie, E désigne un K-espace vectoriel de dimension finie.

C4. 146. Théorème (Équivalence des normes en dimension finie). Toutes les normes sur E
sont équivalentes.

Étapes d’une démonstration.

1. Soit n ∈ N∗. On considère une norme quelconque || · || sur Rn.

(a) Démontrer que l’application

f

∣∣∣∣ (Rn, || · ||∞) −→ (Rn, || · ||)
x 7−→ x

est continue.

(b) Soit S := {x ∈ Rn : ||x ||∞ = 1}. Justifier que S est une partie compacte de (Rn, || · ||∞).

(c) Démontrer qu’il existe α > 0 et β > 0 tels que, pour tout x ∈ S :

α 6 ||x || 6 β .

(d) En déduire que les normes || · || et || · ||∞ sont équivalentes.

2. Soit E un K-espace vectoriel de dimension finie n > 1. Soit N1 et N2 deux normes sur E.

(a) Soit (e1, . . . , en) une base de E. Justifier que l’application

ϕ

∣∣∣∣∣∣∣
Rn −→ E

(x1, . . . , xn) 7−→
n∑
k=1

xk.ek

est un isomorphisme.

(b) Justifier que l’application

N∞

∣∣∣∣ E −→ R+

x 7−→ ||ϕ−1(x) ||∞
définit une norme sur E.

(c) Justifier que l’application

|| · ||
∣∣∣∣ Rn −→ R+

(x1, . . . , xn) 7−→ N1 (ϕ ((x1, . . . , xn)))

définit une norme sur Rn.

(d) Déduire de Q1.(d) que les normes N1 et N∞ sont équivalentes.

(e) Justifier que N1 et N2 sont équivalentes.
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C4. 147. Corollaire (Suites et topologie en dimension finie). Soient deux normes N1 et N2

sur E.

1. Une partie de E est ouverte pour la norme N1 si et seulement si elle est ouverte pour la norme N2.

2. Une suite d’éléments de E converge vers x ∈ E pour la norme N1 si et seulement si elle converge vers x
pour la norme N2.

3. Une partie de E est compacte pour N1 si et seulement si elle est compacte pour N2.

Démonstration. 1. Conséquence du Théorème C4.119 et du Théorème C4.146.
2. D’après le Théorème C4.146, il existe α, β > 0 tels que αN1 6 N2 6 βN1.

Soit (xn)n∈N ∈ EN qui converge vers x ∈ E pour la norme N1, i.e. telle que

N1(xn − x) −−−−−→
n−→+∞

0.

Pour tout n ∈ N :
0 6 N2(xn − x) 6 βN1(xn − x).

Par théorème d’encadrement pour les suites réelles, N2(xn − x) −−−−−→
n−→+∞

0, i.e. la suite (xn)n∈N

converge vers x ∈ E pour la norme N2.
Par symétrie des rôles joués par N1, N2, toute suite convergente d’éléments de E qui converge
vers x ∈ E pour la norme N2, converge vers x pour la norme N1.

3. D’après le Théorème C4.146, il existe α, β > 0 tels que αN1 6 N2 6 βN1. Soit A une partie
compacte de E pour la norme N1. Soit (an)n∈N ∈ AN. Comme A est compacte pour la norme
N1, il existe une application strictement croissante ϕ : N −→ N et a ∈ A tels que :

aϕ(n)
N1−−−−−→

n−→+∞
a.

D’où N1

(
aϕ(n) − a

)
−−−−−→
n−→+∞

0. Pour tout n ∈ N :

0 6 N2

(
aϕ(n) − a

)
6 βN1

(
aϕ(n) − a

)
.

Par théorème d’encadrement pour les suites réelles,N2

(
aϕ(n) − a

)
−−−−−→
n−→+∞

0, i.e. la suite
(
aϕ(n)

)
n∈N

converge vers a ∈ A pour la norme N2. La partie A est donc compacte pour la norme N2.
Par symétrie des rôles joués par N1, N2, toute suite partie compacte pour la norme N2 est com-
pacte pour la norme N1.

Q.E.D.

C4. 148. Théorème (Compacité en dimension finie). Soit || . ||E une norme sur E. Soit A une
partie de E. Alors :

A est compacte ⇐⇒ A est fermée et bornée.

Démonstration. =⇒ Cf. Proposition C4.132.
⇐= • Soit p ∈ N∗ la dimension de E, soit B = (e1, . . . , ep) une base de E. L’application :

|| · ||E,∞

∣∣∣∣∣∣∣
E −→ R

p∑
i=1

xiei 7−→ max
16i6p

|xi|

définit une norme sur E.
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• Nous vérifions qu’une suite (
an =

p∑
i=1

ai,nei

)
n∈N

d’éléments de E converge pour la norme || · ||E,∞ si et seulement si pour tout i ∈ J1, pK la suite
de nombres réels (ai,n)n∈N converge dans R (cf. preuve du Théorème C4.51).
Nous vérifions également que cette même suite est bornée pour la norme ||·||E,∞ si et seulement
si si pour tout i ∈ J1, pK la suite de nombres réels (ai,n)n∈N est bornée dans R.
• Par le Théorème C4.146, les normes || . ||E et || · ||E,∞ sont équivalentes.
• Soit A une partie fermée pour la norme || · ||E . Montrons que A est fermée pour la norme
|| · ||E,∞.
Par le Théorème C4.119, (E, || · ||E) et (E, || · ||E,∞) ont les mêmes ouverts. Ainsi, ils ont les
mêmes fermés et donc A est également fermée pour || · ||E,∞.
• Soit A une partie bornée pour la norme || · ||E . Montrons que A est bornée pour la norme
|| · ||E,∞.
Nous savons qu’il existe α, β > 0 tels que

α|| · ||E 6 || · ||E,∞ 6 β|| · ||E.

La partie A étant bornée pour la norme || · ||E,∞, il existe M > 0 tel que pour tout x ∈ A,
||x||E 6 M . Nous en déduisons que pour tout x ∈ A, ||x||E,∞ 6 βM . La partie A est donc
bornée pour la norme || · ||E,∞.
• Soit A une partie fermée et bornée pour la norme || · ||E . Montrons que A est une partie
compacte pour la norme ||·||E, ou ce qui revient au même pour la norme ||·||E,∞ (cf. Corollaire
C4.147).
D’après ce qui précède, nous en déduisons que A est fermée et bornée pour la norme || · ||E,∞.
Soit

(an = (a1,n, . . . , ap,n))n∈N

une suite d’éléments de A. La partie A étant bornée pour la norme || · ||E,∞, il existe M > 0
tel que :

∀n ∈ N, ||an||E,∞ 6M.

On en déduit que pour tout i ∈ J1, pK, la suite (ai,n)n∈N est une suite d’éléments du segment
[−M,M ].
— Par le théorème de Bolzano-Weierstraß, il existe ϕ1 : N −→ N strictement croissante telle

que (a1,ϕ1(n))n∈N converge vers un réel de [−M,M ] noté a1.
— Par le théorème de Bolzano-Weierstraß, il existe ϕ2 : N −→ N strictement croissante telle

que (a2,ϕ1◦ϕ2(n))n∈N converge vers un réel de [−M,M ] noté a2.
— Par le théorème de Bolzano-Weierstraß, il existe ϕ3 : N −→ N strictement croissante telle

que (a3,ϕ1◦ϕ2◦ϕ3(n))n∈N converge vers un réel de [−M,M ] noté a3.
— De proche en proche on construit p applications ϕ1, . . . , ϕp : N −→ N, toutes strictement

croissantes, telles que pour tout i ∈ J1, pK :

ai,ϕ1◦...◦ϕi(n) −−−−−→
n−→+∞

ai ∈ [−M,M ].

Comme une suite extraite d’une suite convergente est convergente de même limite, il vient
que pour tout i ∈ J1, pK :

ai,ϕ1◦...◦ϕp(n) −−−−−→
n−→+∞

ai ∈ [−M,M ].

43



Nous en déduisons que la suite(
aϕ1◦...◦ϕp(n) = (a1,ϕ1◦...◦ϕp(n), . . . , ap,ϕ1◦...◦ϕp(n))

)
n∈N

converge pour || · ||E,∞ et a pour limite a := (a1, . . . , ap). La suite (
(
aϕ1◦...◦ϕp(n)

)
n∈N est une

suite d’éléments de A, partie fermée pour la norme || · ||E,∞, qui converge vers a pour la norme
|| · ||E,∞. Sa limite a appartient donc à A.
Nous avons donc construit une suite extraite de (an = (a1,n, . . . , ap,n))n∈N, qui converge dans
A pour la norme || · ||E,∞.
Nous en déduisons que la partie A est compacte pour la norme || · ||E,∞.

Q.E.D.

C4. 149. Théorème (Sous-espace vectoriel de dimension finie d’un espace vectoriel normé
quelconque). Soit (F, || · ||F ) un espace vectoriel normé, non nécessairement de dimension �nie. Soit G
un sous-espace vectoriel de dimension �nie de F .
Alors G est une partie fermée de F .

C4. 150. Exercice. On munit E := C0([0, 1],R) de la norme || · ||∞. Soit F le sous-espace vectoriel
de E formé des fonctions polynomiales. F est-il fermé dans E ?

C4. 151. Théorème (Applications linéaires en dimension finie). Soit (E, || · ||E) un espace
vectoriel normé de dimension �nie. Soit (F, || . ||F ) un espace vectoriel normé. Toute application linéaire de
(E, || · ||E) vers (F, || . ||F ) est continue, i.e. :

LC0(E,F ) = L(E,F ).

Démonstration. Soit u : (E, || · ||E) −→ (F, || · ||F ). Montrons que u est continue.
• Soit n la dimension de E et soit B = (e1, . . . , en) une base de E. On vérifie que l’application :

|| · ||E,∞

∣∣∣∣∣∣∣
E −→ R

n∑
i=1

xiei 7−→ max16i6n |xi|

est une norme sur E.
• Soit m la dimension de F et soit C = (f1, . . . , fm) une base de F . On vérifie que l’application :

|| · ||F,∞

∣∣∣∣∣∣∣
F −→ R

m∑
j=1

yjfj 7→ max
16j6m

|yj| 7−→ e

st une norme sur F .
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• Montrons que u : (E, || · ||E,∞) −→ (F, || · ||F,∞) est continue. Soit A la matrice de u dans les bases

B et C. Soit x =
n∑
i=1

xiei.

u(x) = u

(
n∑
i=1

xiei

)
=

n∑
i=1

xiu(ei) =
n∑
i=1

xi

m∑
j=1

[A]jifj =
m∑
j=1

(
n∑
i=1

xi[A]ji

)
fj.

Ainsi :

||u(x)||F,∞ = max
16j6m

∣∣∣∣∣
n∑
i=1

xi[A]ji

∣∣∣∣∣ 6 n ||A|| ||x||E,∞

où ||A|| := max16i6n , 16j6m |[A]ij| . Par le Théorème C4.116, u : (E, || · ||E,∞) −→ (F, || · ||F,∞) est
continue.
• D’après les Théorèmes C4.146 et C4.119, les applications :

idE : (E, || · ||E) −→ (E, || · ||E,∞) et idF : (F, || · ||F,∞) −→ (F, || · ||F )

sont continues.
• Par la Proposition C4.121, la composition d’applications continues :

(E, || · ||E)
idE−−→ (E, || · ||E,∞)

u−→ (F, || · ||F,∞)
idF−−→ (F, || · ||F )

qui coïncide avec u : (E, || · ||E) −→ (F, || · ||F ) est continue.
Q.E.D.

C4. 152. Théorème (Applications bilinéaires en dimension finie). Soient (E1, || . ||1), (E2, || . ||2)
deux espaces vectoriels normés de dimension �nie et soit (F, || . ||) un espace vectoriel normé. SoitB : E1×E2 −→
F une application bilinéaire. Alors B est continue.

Démonstration. Soient (e1,1, . . . , e1,n1) une base de E1 et (e2,1, . . . , e2,n2) une base de E2. On définit une
nouvelle norme sur E1 et une nouvelle norme sur E2 en posant :

N1

∣∣∣∣∣∣∣∣∣
E1 −→ R+

x1 =

n1∑
i=1

λ1,ie1,i 7−→ N1(x1) := max
16i6n1

|λ1,i|

et

N2

∣∣∣∣∣∣∣∣∣
E2 −→ R+

x2 =

n2∑
j=1

λ2,je2,j 7−→ N2(x2) := max
16j6n2

|λ2,j| .

Comme E1 et E2 sont de dimension finie, les normes N1, || · ||1 sont équivalentes et les normes N2, || · ||2
sont équivalentes. Il existe donc deux constantes α1 et α2 telles que :

∀x1 ∈ E1, N1(x1) 6 α1 ||x1 ||1 et ∀x2 ∈ E2, N2(x2) 6 α2 ||x2 ||2 .
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Soit (x1, x2) ∈ E1 × E2. Alors il existe deux familles de scalaires (λ1,i)16i6n1
et (λ2,j)16j6n2

telles que :

x1 =

n1∑
i=1

λ1,ie1,i et x2 =

n2∑
j=1

λ2,je2,j .

Comme B est bilinéaire :

B(x1, x2) =
∑

(i,j)∈J1,n1K×J1,n2K

λ1,iλ2,jB(e1,i, e2,j) .

Puisque || · || est une norme sur F :

||B(x1, x2) || 6
∑

(i,j)∈J1,n1K×J1,n2K

|λ1,iλ2,j| ||B(e1,i, e2,j) || .

En posant µ := max
(i,j)∈J1,n1K×J1,n2K

||B(e1,i, e2,j) ||, il vient alors :

||B(x1, x2) || 6 µ×
∑

(i,j)∈J1,n1K×J1,n2K

|λ1,i| |λ2,j|

6 µ×
∑

(i,j)∈J1,n1K×J1,n2K

N1 (x1) N2 (x2)

= µ× n1 × n2 ×N1 (x1)×N2 (x2)

6 µ× n1 × n2 × α1 × α2︸ ︷︷ ︸
=:C

× ||x1 ||1 × ||x2 ||2 .

D’après la Propriété C4.126, l’application B est continue. Q.E.D.

C4. 153. Remarque (Continuité du déterminant). Le théorème précédent admet une généralisation
pour les applications multilinéaires : si (E1, || . ||1),. . . ,(En, || . ||n) sont des espaces vectoriels normés de
dimension finie et si (F, || . ||) est un espace vectoriel normé, alors toute application multilinéaire de
E1 × . . .× En vers F est continue.
En particulier, si B = (e1, . . . , en) est une base d’un espace vectoriel E de dimension finie, alors le
déterminant dans B est continu. De plus, l’application déterminant :

det

∣∣∣∣ Mn(K) −→ K
M 7−→ det(M)

est continue.

C4. 154. Exercice.

1. Montrer que GLn(K) est un ouvert deMn(K).

2. L’ensemble SLn(R) = {M ∈Mn(R) | det(M) = 1} est-il compact ?

3. Montrer que O(n) = {M ∈Mn(R) | M ×M> = In} est compact.
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C4. 155. Théorème (Suites et coordonnées en dimension finie). Fixons une base (e1, ..., ep)
de E. Étant donnée une suite (un)n∈N d’éléments de E, il existe des suites (u1,n)n∈N, . . . , (up,n)n∈N d’éléments
de K telles que :

∀n ∈ N, un =

p∑
i=1

ui,nei.

Alors (un)n∈N converge vers un vecteur a =

p∑
i=1

aiei si et seulement si pour tout i ∈ J1, pK, (ui,n)n∈N converge

vers ai.

C4. 156. Théorème (Applications coordonnées des applications continues). Soient (F, || . ||F )un
espace vectoriel normé et A une partie non vide de E. Fixons une base (e1, . . . , en) de F . Étant donnée une appli-
cation f : A −→ F , il existe des applications f1, . . . , fn : A −→ K (uniques), appelées applications coordonnées
de f , telles que :

∀x ∈ A, f(x) =
n∑
i=1

fi(x)ei.

Alors f est continue si et seulement si pour tout i ∈ J1, pK, les applications fi sont continues.
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8 Séries d’un espace vectoriel normé

C4. 157. Notation. Dans toute cette partie, E désigne un K-espace vectoriel normé.

C4. 158. Définition (Série asociée à une suite). Soit (un)n∈N une suite d’éléments de E.

1. La suite (Sn)n∈N de terme général

Sn =
n∑
k=0

uk

est appelée série associée à (un)n∈N. On la note
∑

un. On dit aussi que
∑

un est la série de terme
général un.

2. Pour tout n ∈ N, le vecteur Sn de E est appelé somme partielle d’ordre n.

C4. 159. Définition (Série convergente, somme d’une série).

1. Une série
∑

un d’éléments de E est dite convergente si la suite (Sn) de terme général

Sn =
n∑
k=0

uk

converge, i.e. la suite des sommes partielles est convergente.

2. Si c’est le cas, la limite de (Sn)n∈N est appelée somme de la série
∑

un, et est notée
+∞∑
n=0

un.

C4. 160. Remarque. La série associée à une suite (un) d’éléments de E définie pour n > n0 est la

suite de teme général Sn =
n∑

k=n0

uk définie pour n > n0. La série
∑

un est dite convergente si la suite

(Sn) est convergente. Sa limite, encore appelée somme de la série, est notée
+∞∑
n=n0

un.

C4. 161. Proposition (Espace vectoriel des séries convergentes).

1. L’ensemble Sc des suites (un)n∈N ∈ EN telles que
∑

un converge est un sous-espace vectoriel de EN.

2. De plus, l’application :

« somme d’une série convergente »

∣∣∣∣∣∣∣
Sc −→ K

(un)n∈N 7−→
+∞∑
n=0

un

est linéaire.
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C4. 162. Proposition (Le terme général d’un série convergente converge vers 0). Soit
(un)n∈N une suite d’éléments de E. Alors :∑

un converge =⇒ un −−−−→
n−→∞

0

C4. 163. Attention. La réciproque de la Proposition précédente est fausse. Cf. série harmonique
dans (R, |·|).

C4. 164. Définition (Reste d’une série convergente). Soit
∑

un une série d’éléments de E,
convergente. Pour tout n ∈ N, le reste Rn d’ordre n est dé�ni par :

Rn :=
+∞∑
k=0

uk −
n∑
k=0

uk =
+∞∑

k=n+1

uk.

C4. 165. Proposition (La suite des restes d’une série convergente converge vers 0).
Soit

∑
un une série d’éléments de E, convergente. La suite (Rn) des restes converge vers 0E .

C4. 166. Définition (Série absolument convergente). Soit (un) une suite d’éléments de E. La
série

∑
un est dite absolument convergente si la série de nombre réels positifs

∑
||un || est convergente.

C4. 167. Théorème (En dim. finie une série absolument convergente est convergente).
Supposons (E, || . ||E) de dimension �nie. Soit (un) une suite d’éléments de K. Alors :∑

un est absolument convergente =⇒
∑

un est convergente

C4. 168. Remarque (Pas d’extension du théorème précédent en dimension in�nie). Ce résultat n’est pas
nécessairement vraie en dimension infinie, cf. exercice suivant.

C4. 169. Exercice. Soit R[X] muni de la norme || . ||∞. Démontrer que la série
∑
n>0

Xn

n!
est abso-

lument convergente, mais qu’elle n’est pas convergente.
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C4. 170. Théorème (Exponentielle d’une matrice). Soit p ∈ N∗.

1. Pour tout A ∈Mp(K), la série
∑ An

n!
est convergente.

2. Pour tout A ∈Mp(K), on note exp(A) l’exponentielle de la matrice A dé�nie par :

exp(A) :=
+∞∑
n=0

An

n!
.

C4. 171. Exercice. Calculer exp(A), où A :=

Å
1 2
2 1

ã
.
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9 Connexité par arcs

C4. 172. Notation. Dans toute cette partie, E désigne un K-espace vectoriel normé.

C4. 173. Définition (Connexité par arcs). Soit A ⊂ E une partie non vide. On dit que A est
connexe par arcs si pour tout couple (a, b) ∈ A2, il existe deux réels α < β et une application continue

ϕ : [α, β] −→ A

telle que ϕ(α) = a et ϕ(β) = b.

C4. 174. Théorème (Convexité et connexité par arcs). Une partie convexe de E est connexe
par arcs.

C4. 175. Exemple.

1. Les intervalles de R sont connexes par arcs.

2. Une boule d’un espace vectoriel normé est connexe par arcs.

C4. 176. Théorème (Parties connexes par arcs de R). Soit A ⊂ R une partie non vide. Alors
A est connexe par arcs si et seulement si A est un intervalle.

C4. 177. Exercice.

1. L’intersection de deux parties connexes par arcs est-elle connexe par arcs ?

2. Une réunion de deux parties connexes par arcs est-elle connexe par arcs ?

C4. 178. Théorème (Image continue d’une partie connexe par arcs). Soit (F, || . ||F ) un espace
vectoriel normé. Soit f : E −→ F une application continue. Soit A ⊂ E une partie connexe par arcs.
Alors f(A) est connexe par arcs.

C4. 179. Corollaire (Généralisation du théorème des valeurs intermédiaires). Soit
f : E −→ R une application continue. Soit A ⊂ E une partie connexe par arcs.
S’il existe x1, x2 ∈ A tels que f(x1)f(x2) 6 0, alors l’équation :

f(x) = 0R

d’inconnue x ∈ A possède au moins une solution.
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Démonstration. Si f(x1) = 0 ou f(x2) = 0, alors l’assertion est établie. Supposons donc f(x1)f(x2) < 0.
L’image f(A) de A par f est une partie connexe par arcs de R (Théorème C4.178), donc un intervalle
deR (Théorème C4.176). Comme f(x1) et f(x2) sont dans f(A), et de signes opposés, 0 se trouve donc
aussi dans f(A) qui est un intervalle de R. Donc 0 ∈ R possède au moins un antécédent par f dans
A. Q.E.D.

C4. 180. Exercice. Un homéomorphisme de R vers R2 est une application bijective et continue,
dont la bijection réciproque est également continue. Montrer qu’il n’existe pas d’homéomorphisme de
R vers R2.

52



10 Une sélection d’exercices

C4. 181. Exercice (CCINP). Notons E = C0([0 ; 1],R). Pour tout f ∈ E, notons :

N∞(f) = sup
x∈[0 ; 1]

|f(x)| et N1(f) =

∫ 1

0

|f(x)| dx

1. (a) Démontrer succintement que N∞ et N1 sont des normes sur E.

(b) Démontrer qu’il existe un réel k > 0 tel que pour tout f ∈ E, N1(f) ≤ k N∞(f).

(c) Démontrer que tout ouvert pour la norme N1 est un ouvert pour la norme N∞.

2. Démontrer que les normes N∞ et N1 ne sont pas équivalentes.

C4. 182. Exercice (CCINP). Notons E = R[X]. Pour tout polynôme P (X) =
n∑
k=0

akX
k ∈ E,

posons :

N1(P ) =
n∑
k=0

|ak| et N∞(P ) = max
0≤k≤n

|ak|

1. (a) Démontrer succinctement que N1 et N∞ sont des normes sur E.

(b) Démontrer que tout ouvert pour la norme N∞ est un ouvert pour la norme N1.

(c) Démontrer que les normes N1 et N∞ ne sont pas équivalentes.

2. Soit n ∈ N. Notons respectivement N ′1 et N
′
∞ les restrictions de N1 et N∞ à Rn[X]. Les normes

N ′1 et N
′
∞ sont-elles équivalentes ?

C4. 183. Exercice (CCINP).

1. Soit (E, || . ||) un espace vectoriel normé, soit A ⊂ E une partie non vide, soit x ∈ E. Démontrer
que :

x ∈ A ⇐⇒ ∃(xn)n∈N ∈ AN telle que xn −−−−−→
n−→+∞

x

2. Démontrer que si A est un sous-espace vectoriel de E, alors A est un sous-espace vectoriel de
E.

C4. 184. Exercice (CCINP). E et F désignent deux espaces vectoriels normés.

1. Soit f : E −→ F , soit a ∈ E. Montrer que f est continue en a si et seulement si pour toute
suite (xn)n∈N d’éléments de E telle que xn −−−−−→

n−→+∞
a, f(xn) −−−−−→

n−→+∞
f(a).

2. Soit A ⊂ E une partie dense dans E, soient f, g deux applications continues de E dans F telles
que pour tout x ∈ A, f(x) = g(x). Montrer que f = g.
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C4. 185. Exercice. Soit (E, || . ||) un espace vectoriel normé. Montrer qu’une boule ouverte de E
est convexe.

C4. 186. Exercice (CCINP). Notons E = C0([0 ; 1],R). Pour toute fonction f ∈ E, posons :

N(f) =

∫ 1

0

ex |f(x)| dx

1. Montrer que N est une norme sur E. Comparer N et || . ||∞.
2. Trouver la meilleure constante β > 0 telle que pour tout f ∈ E, N(f) ≤ β || f ||∞.

C4. 187. Exercice. Soit E un R-espace vectoriel, soient N1 et N2 deux normes sur E. Montrer
que les boules ouvertes BN1(0, 1) et BN2(0, 1) sont égales si et seulement si N1 = N2.

C4. 188. Exercice. Munissons E = R[X] des normes || . ||∞ et || . ||′∞ définies pour tout polynôme

P =
n∑
k=0

akX
k par :

||P ||∞ = max
0≤k≤n

|ak| et ||P ||′∞ = sup
x∈[0 ; 1]

|P (x)|

1. Montrer que || . ||∞ et || . ||′∞ sont des normes.

2. Sont-elles équivalentes ?

3. Soit n ∈ N∗. Montrer que les normes induites sur Rn[X] par || . ||∞ et || . ||′∞ sont équivalentes.

C4. 189. Exercice. Munissons E = R[X] de la norme || . ||′∞ définie dans l’exercices précédent et
de la norme || . ||′1 définie par :

∀P ∈ R[X], ||P ||′1 =

∫ 1

0

|P (x)| dx

1. Vérifier que || . ||′1 est bien une norme sur R[X].

2. Les normes || . ||′∞ et || . ||′1 sont-elles équivalentes ?
3. Montrer que les normes induites sur Rn[X] par || . ||′∞ et || . ||′1 sont équivalentes.

C4. 190. Exercice ((ENSEA)). Notons E = R[X]. Pour tout P ∈ R[X] et tout n ∈ N, posons :

θn(P ) =

∫ 1

0

P (t)tn dt
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Posons N(P ) = sup
n∈N
|θn(P )|. Montrer que N(P ) est bien définie et qu’elle induit une norme sur R[X].

C4. 191. Exercice. Munissons R[X] des normes || . ||∞ et || . ||′∞ définies dans l’exercice 10.188.

Notons(Pn) la suite de polynômes de terme général Pn(X) =
n∑
k=0

Xk

k!
.

1. Montrer que (Pn) est bornée pour les normes || . ||∞ et || . ||′∞ .

2. Montrer que (Pn) est divergente pour la norme || . ||∞.
3. Munissons C([0 ; 1],R) de la norme || . ||′∞ définie par :

∀f ∈ C([0 ; 1],R), || f ||′∞ = sup
x∈[0 ; 1]

|f(x)|.

Montrer que la suite (Pn), vue comme suite d’éléments de C([0 ; 1],R), converge. Déterminer
sa limite.

4. La suite (Pn) converge-t-elle dans (R[X], || . ||′∞) ?

C4. 192. Exercice. Munissons `∞(R) de la norme || . ||∞ définie pour toute suite bornée (un) par :

|| (un) ||∞ = sup
n∈N
|un|

1. Notons (uk) la suite d’éléments de `∞(R) telle que pour tout k, uk soit la suite constante de

terme général
1

k + 1
. Montrer que uk

|| . ||∞−−−−−→
k−→+∞

0.

2. Notons (vk) la suite d’éléments de `∞(R) définie de terme général vk =

Å
k

n+ 1

ã
n∈N

. La suite

(vk)k∈N est-elle bornée dans (`∞, || . ||∞) ?

3. La suite (wk) d’éléments de `∞(R) de terme général wk = (sin(kn))n∈N est-elle bornée ? Admet-
elle une valeur d’adhérence ?

C4. 193. Exercice. Munissons `∞(R) de la norme || . ||∞ définie dans l’exercice précédent.

1. Soit (Uk) une suite d’éléments de `∞(R). Pour tout k ∈ N, Uk est une suite bornée notéeÄ
u
(k)
n

ä
n∈N

. Supposons que (Uk) converge vers une suite U ∈ `∞(R) de terme général un. Montrer

que pour tout n ∈ N, u(k)n −−−−−→
k−→+∞

un.

2. Réciproquement, si pour tout n ∈ N, la suite
Ä
u
(k)
n

ä
k∈N

converge vers un réel un, la suite (Uk)

converge-t-elle vers la suite (un) ?
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C4. 194. Exercice. Munissons C0([0 ; 1],R) de la norme || . ||∞ définie par :

∀f ∈ C0([0 ; 1],R), || f ||∞ = sup
x∈[0 ; 1]

|f(x)|

L’espace des fonctions polynomiales est-il fermé dans ( C0([0 ; 1],R), || . ||∞) ?

C4. 195. Exercice. Munissons R[X] de la norme || . ||1 définie par :∣∣∣∣∣
∣∣∣∣∣

n∑
k=0

akX
k

∣∣∣∣∣
∣∣∣∣∣
1

=
n∑
k=0

|ak|

Le sous-espace F = Vect ({X2n : n ∈ N}) est-il fermé dans (R[X], || . ||1) ?

C4. 196. Exercice. Soit f : C −→ C une fonction polynomiale. Montrer que pour tout ouvert U ,
f(U) est un ouvert et que pour tout fermé F , f(F ) est un fermé.

C4. 197. Exercice ((TPE)). Soit (E, || . ||) un espace vectoriel normé. Montrer que E est le seul
sous-espace vectoriel de E d’intérieur non vide.

C4. 198. Exercice ((TPE)). Soit (E, || . ||) un espace vectoriel normé, soitC ⊂ E une partie convexe.
Montrer que l’adhérence et l’intérieur de C sont convexes.

C4. 199. Exercice. Notons `2(R) l’ensemble des suites x = (xn)n∈N telles que la série
∑
|xn|

converge. Pour toute suite x = (xn)n∈N ∈ `2(R), notons :

||x ||2 =

Ã
+∞∑
n=0

|xn|2

1. Montrer que || . ||2 est une norme sur `2(R).

2. Posons F l’ensemble des suites nulles à partir d’un certain rang. Montrer que F est un sous-
espace vectoriel de `2(R). L’ensemble F est-il fermé ?
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C4. 200. Exercice. Notons `∞(R) l’espace vectoriel des suites réelles bornées. Pour toute suite
x = (xn)n∈N ∈ `∞(R), posons ||x ||∞ = sup

n∈N
|xn|.

1. Notons C0 le sous-espace vectoriel de `∞(R) constitué des suites convergeant vers 0. Déterminer
la distance de la suite constante égale à 1 à C0.

2. Notons C le sous-espace vectoriel de `∞(R) constitué des suites convergentes. Déterminer la
distance de la suite ((−1)n)n∈N à C.

C4. 201. Exercice. Soit (E, || . ||) un espace vectoriel normé. Soit (un) une suite d’éléments de E.
Montrer que l’ensemble des valeurs d’adhérences de (un) est un fermé de E.

C4. 202. Exercice. Soient (E, || . ||) et (F, || . ||) deux espaces vectoriels normés.

1. Soit A ⊂ E, soit f : E −→ F une fonction continue. Montrer que si A est un compact de E,
alors f(A) est un compact de F .

2. Soit g : E −→ C une fonction continue. Montrer que si A est un compact de E, alors :

(a) g(A) est une partie bornée de C.

(b) Il existe x0 ∈ A tel que |g(x0)| = sup
x∈A
|g(x)|.

C4. 203. Exercice (CCINP). Soient (E, || . ||), (F, || . ||) deux espaces vectoriels normés.

1. Démontrer que si f ∈ L(E,F ), les trois propriétés suivantes sont équivalentes :

(a) f est continue sur E.

(b) f est continue en 0.

(c) ∃k > 0 tel que ∀x ∈ E, || f(x) || ≤ k ||x ||.
2. Notons E l’espace des fonctions continues sur [0 ; 1] à valeurs dans R, munissons-le de la

norme || . ||∞. On considère l’application :

ϕ

∣∣∣∣∣∣∣∣
E −→ R

f 7−→
∫ 1

0

f(x) dx

Montrer que ϕ est continue.

C4. 204. Exercice (CCINP). Soit (A, || . ||) une algèbre unitaire normée de dimension finie, d’élé-
ment unité e.

1. Soit u ∈ A tel que ||u || < 1.

(a) Montrer que la série
∑

un converge.
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(b) Montrer que (e− u) est inversible, d’inverse
+∞∑
n=0

un.

2. Montrer que pour tout u ∈ A, la série
∑ un

n!
converge.

C4. 205. Exercice (CCINP tronqué). Munissons l’espace vectoriel E = C0([0 ; 1],R) de la norme
|| . ||∞ et l’espace vectoriel F = C1([0 ; 1],R) de la norme || . ||′∞ définie par :

∀f ∈ F, || f ||′∞ = || f ||∞ + || f ′ ||∞

1. Vérifier que || . ||′∞ est une norme sur F .

2. Notons ϕ : E −→ F l’application linéaire définie par :

∀f ∈ E,∀x ∈ [0 ; 1], ϕ(f)(x) =

∫ x

0

f(t) dt

Montrer que ϕ est continue.

C4. 206. Exercice (CCINP tronqué). Munissons l’espace vectoriel E = C0([0 ; 1],R) de la norme
|| . ||∞. Notons ϕ la forme linéaire sur E définie par :

∀f ∈ E, ϕ(f) = f(1)− f(0)

1. Montrer que ϕ est continue.

2. L’application ϕ est-elle continue si l’on remplace || . ||∞ par || . ||1 ?

C4. 207. Exercice ((CCINP tronqué). Munissons l’espace vectoriel E = C0([0 ; 1],R) de la norme
|| . ||1. Notons ϕ la forme linéaire sur E définie par :

∀f ∈ E, ϕ(f) =

∫ 1

0

tf(t) dt

Montrer que ϕ est continue.

C4. 208. Exercice (CCINP). Soit P ∈ R[X] un polynôme réel de degré n scindé à racines simples
sur R. Montrer qu’il existe α > 0 tel que pour tout ε ∈ [−α, α], le polynôme P (X)+εXn+1 soit scindé
à racines simples dans R.
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C4. 209. Exercice (CCINP). Soit A ∈Mn(Z) telle que 4A3 + 2A2 + A = 0.

1. Montrer que pour tout P ∈ GLn(R), M 7→ P−1MP est un endomorphisme continu dans
Mn(R).

2. Montrer que les valeurs propres de A sont toutes de module inférieur ou égal à 1/2. En déduire :

Ak −−−−−→
k−→+∞

0

3. Montrer qu’une suite d’entiers relatif qui converge est stationnaire. En déduire que A est nilpo-
tente. Que peut-on alors dire de A ?

C4. 210. Exercice (CCINP). MunissonsMp(C) de la norme || (ai,j)1≤i,j≤p || = max
1≤i,j≤p

|ai,j|.

1. Soit A ∈Mp(C) telle que la suite (||An ||)n∈N soit bornée. Montrer que les valeurs propres de
A sont toutes de module inférieur ou égal à 1.

2. Soit B ∈Mp(C). On suppose que la suite (Bn)n∈N converge vers une matrice C ∈Mp(C).

(a) Montrer que C2 = C et que SpecC(C) ⊂ {0, 1}.
(b) Monter que les valeurs propres de B sont toutes de module inférieur ou égal à 1, et qu’une

valeur propre de B de module 1 est égale à 1.

C4. 211. Exercice (TPE). Munissons E = C0([0 ; 1],R) de la norme || . ||1. Soit x0 ∈ [0 ; 1].

1. Montrer que l’application :

ϕ

∣∣∣∣ E −→ R
f 7−→ f(x0)

n’est pas continue.

2. Que dire de Ker (ϕ) ?

C4. 212. Exercice (TPE tronqué). Notons `∞(R) l’ensemble des suites bornées surR. Munissons-le
de la norme || . ||∞. Pour toute suite u = (un)ninN ∈ `∞(R), posons :

∆(u) = (un+1 − un)n∈N

Montrer que ∆ est un endomorphisme continu de (`∞, || . ||∞).
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C4. 213. Exercice.

1. Soit (E, || . ||) un espace vectoriel normé, soit F un sous-espace vectoriel de E de dimension
finie. Montrer que F est fermé.

2. Le résultat précédent demeure-t-il si F n’est pas supposé de dimension finie ? On pourra s’inté-
resser au sous-espace F de `1(R) de constitué des suites nulles à partir d’un certain rang.

C4. 214. Exercice (Mines). Soit K une partie fermée de [0 ; 1]2. On suppose que pour tout
x ∈ [0 ; 1], l’ensemble :

{y ∈ [0 ; 1] : (x, y) ∈ K}

est un intervalle non vide. Montrer que K intersecte la droite d’équation y = x.

C4. 215. Exercice. MunissonsMn(R) d’une norme matricielle, i.e. d’une norme d’algèbre.

1. Soit M ∈Mn(R) telle que ||M || < 1.

(a) Montrer que la série Mk converge.

(b) Que vaut (In −M)
+∞∑
k=0

Mk ?

2. En déduire queGLn(R) est un ouvert deMn(R). Donner une autre démonstration de ce résultat
à l’aide du déterminant.

3. Montrer que l’application :

inv
∣∣∣∣ GLn(R) −→ GLn(R)

A 7−→ A−1

est continue.

C4. 216. Exercice. Montrer que l’ensemble des matrices diagonalisables est dense dansMn(C).

C4. 217. Exercice (Navale). Montrer que toute suite réelle admet une suite extraite monotone.

C4. 218. Exercice (Mines). Soit (Pk) une suite de polynômes de Rn[X] convergeant simplement
vers un polynôme P ∈ Rn[X]. Montrer que la convergence est uniforme sur toute partie compacte et
Rn[X].
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C4. 219. Exercice. Soient (E, || . ||) et (F, || . ||) deux espaces vectoriels normés. Soit f : E −→ F
une application injective.

1. Montrer que f est continue si et seulement si pour tout compact K de E, f(K) est un compact
de f .

2. Le résultat subsiste-t-il si f n’est pas supposée injective ?

C4. 220. Exercice. Soient (E, || . ||) et (F, || . ||) deux espaces vectoriels normés. Soit f : E −→ F
une application continue telle que pour tout compact K de F , f−1(K) est un compact de E.

1. Montrer que pour tout femé A de E, f(A) est un fermé de F .

2. En général, l’image d’un fermé par une application continue est-elle nécessairement fermée ?

C4. 221. Exercice (Centrale). Soit K un compact d’un espace vectoriel normé (E, || . ||). Soit
f : K −→ K une application continue telle que :

∀(x, y) ∈ K2, || f(x)− f(y) || ≥ || x− y ||

Soit (x, y) ∈ K2. Notons (xn), (yn) les suites d’éléments de K définies par ∀n ∈ N, xn = fn(x) et
yn = fn(y). En d’autres termes, x0 = x et y0 = y, et ∀n ∈ N, xn+1 = f(xn) et yn+1 = f(yn).

1. Montrer qu’il existe une application ϕ : : N −→ N strictement croissante telle que les suites
(xϕ(n)) et (yϕ(n)) convergent. Notons x′ et y′ leurs limites respectives.

2. Montrer que
∣∣∣∣x− xϕ(n+1)−ϕ(n)

∣∣∣∣ −−−−−→
n−→+∞

0.

3. Montrer que xϕ(n+1)−ϕ(n) −−→
+∞

x et yϕ(n+1)−ϕ(n) −−→
+∞

y.

4. Montrer que :

||x− y || ≤ || f(x)− f(y) || ≤
∣∣∣∣∣∣ fϕ(n+1)−ϕ(n)(x)− fϕ(n+1)−ϕ(n)(y)

∣∣∣∣∣∣
5. En déduire que || f(x)− f(y) || = ||x− y ||.
6. Montrer que f est bijective.

C4. 222. Exercice (Centrale). Soit K un convexe compact non vide d’un espace vectoriel normé
(E, || . ||), soit f ∈ L (()E) un endomorphisme continu tel que f(K) ⊂ K. Montrer que f possède un
point fixe.

Indication : étant donné un a ∈ K , on pourra considérer la suite de terme général xn =
1

n+ 1

n∑
k=0

fk(a).
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C4. 223. Exercice (Centrale). Soit (E, || . ||) un espace vectoriel normé, soit K ⊂ E un compact
non vide, soit f : K −→ K telle que pour tout (x, y) ∈ K2,

x 6= y =⇒ || f(x)− f(y) || < ||x− y ||

Montrer que f possède un unique point fixe c ∈ K, et que pour tout x ∈ K, la suite définie par x0 = x
et pour tout n ∈ N, xn+1 = f(xn) converge vers c.

C4. 224. Exercice. Soit (E, || · ||) un R-espace vectoriel normé, soit C ⊂ E un ouvert convexe de
E, contenant 0, borné et symétrique par rapport à 0, i.e. tel que ∀x ∈ C, −x ∈ C. Pour tout x ∈ E,
posons :

||x ||C = inf
{
t > 0 :

x

t
∈ C

}
On dit que || . ||C est la jauge associée à C.

1. Montrer que || . ||C est bien définie sur E.

2. Montrer que || . ||C est une norme sur E.

3. Quelle est la boule unité ouverte pour la norme || . ||C ?

C4. 225. Exercice (Centrale). Notons `∞(R) l’espace des suites réelles bornées et `1(R) l’espace
des suites réelles x = (xn) telles que la série

∑
|xn| converge. Pour tout a = (an) ∈ `∞(R) et

x = (xn) ∈ `1(R), posons :

〈 a , x 〉 =
+∞∑
n=0

anxn

1. Justifier l’existence de 〈 a , x 〉.
2. Soit a ∈ `∞(R). Montrer que l’application :

ϕ

∣∣∣∣ `1(R) −→ R
x 7−→ 〈 a , x 〉

est une forme linéaire continue sur `1(R).

3. Soit x ∈ `1(R). Montrer que l’application :

ψ

∣∣∣∣ `∞(R) −→ R
a 7−→ 〈 a , x 〉

est une forme linéaire continue sur `∞(R).

4. Question subsidiaire : soit f une forme linéaire continue sur `1(R). Montrer qu’il existe a ∈
`∞(R) telle que :

∀x ∈ `1(R), f(x) = 〈 a , x 〉 .
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C4. 226. Exercice. Soit n ∈ N∗, soit p ≥ 1. Pour tout x = (x1, . . . , xn) ∈ Rn, posons :

||x ||p =

(
n∑
k=1

|xk|p
)1/p

Soit q ≥ 1 l’unique réel tel que
1

p
+

1

q
= 1.

1. Montrer que pour tout (x, y) ∈ (R+∗)2, x1/py1/q ≤ 1

p
x+

1

q
y.

2. Notons (.|.) le produit scalaire usuel sur Rn. Montrer que pour tout (x, y) ∈ (Rn)2, |(x|y)| ≤
||x ||p || y ||q.

3. Soient x = (x1, . . . , xn) ∈ Rn et y = (y1, . . . , yn) ∈ Rn. En remarquant que :

(|xk|+ |yk|)p = |xk| (|xk|+ |yk|)p−1 + |yk| (|xk|+ |yk|)p−1

montrer que || . ||p est une norme sur Rn.

4. Montrer que pour tout x ∈ Rn, ||x ||p −−−−−→p−→+∞
||x ||∞.

C4. 227. Exercice. Notons f = C0([0 ; 1],R), soit p ≥ 1. Pour toute fonction f ∈ E, notons :

|| f ||p =

Ç∫ 1

0

|f(x)|p dx

å1/p

1. En s’inspirant de l’exercice précédent, démontrer que || . ||p est une norme sur E.

2. Montrer que pour toute fonction f ∈ E, || f ||p −−−−−→p−→+∞
|| f ||∞.

C4. 228. Exercice (Centrale). Posons E = C1([0 ; 1],R). Pour toute fonction f ∈ E, notons :

N(f) =

 
f(0)2 +

∫ 1

0

f ′(x)2 dx

1. Montrer que N est une norme sur E.

2. Comparer N et || . ||∞.

C4. 229. Exercice (X). Déterminer tous les morphismes continus de (U,×) dans lui-même.
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C4. 230. Exercice (X). Que dire d’une partie convexe et dense d’un espace vectoriel normé ?

C4. 231. Exercice (Centrale). Montrer que GLn(C) est connexe par arcs. Qu’en est-il de GLn(R) ?

C4. 232. Exercice. Soit I un ouvert non vide de R. Montrer qu’il existe une famille au plus
dénombrable (In)n∈I d’intervalles ouverts deux- à-deux disjoints telle que :

I =
⋃
n∈I

In

Indication : on pourra considérer la relation d’équivalence sur I dé�nie par xRy ⇐⇒ (x − y) ∈ I et étudier
les classes d’équivalence pour cette relation.

C4. 233. Exercice. Soit A ∈Mn(C). On note :

ρ(A) = max{|λ| : λ ∈ Spec(A)}

le rayon spectral de A.

1. Soit || . || une norme d’algèbre unitaire surMn(C). Montrer que pour toute matriceA ∈Mn(C),
||A || ≤ ρ(A).

2. Soit A ∈ Mn(C), soit ε > 0. Montrer qu’il existe une norme d’algèbre || . ||A,ε telle que
||A ||A,ε ≤ ρ(A) + ε.

3. Soit A ∈Mn(C). Montrer que les conditions suivantes sont équivalentes :

(a) Ak −−−−−→
k−→+∞

0.

(b) ∀X ∈Mn,1(C), AkX −−−−−→
k−→+∞

0.

(c) La série
∑

Ak converge.

(d) ρ(A) < 1.

C4. 234. Exercice (X). Déterminer l’adhérence et l’intérieur de l’ensemble des matrices diagona-
lisables deMn(C).
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C4. 235. Exercice (X). Déterminer les matrices deMn(C) dont la classe similitude, i.e. l’ensemble{
P−1AP : P ∈ GLn(C)

}
est fermée.

C4. 236. Exercice (X). Soit A ∈ Mn(C). Montrer que A est nilpotente si et seulement si il existe
une suite (Ak) de matrices semblables à A convergeant vers 0.

C4. 237. Exercice (ENS). Déterminer les matrices A ∈ Mn(C) telles que la suite
(
Ak
)
k∈N soit

bornée.
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