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1 Norme sur un espace vectoriel

C4.1. Notation. — K désigne le corps R ou C.
C4.2. DEFINITION. — Norme sur un espace vectoriel Une norme sur un K-espace vectoriel E est une appli-
cation || . || - E — R vérifiant les propriétés suivantes.

1. Propriété de séparation
Vee E, ||z||=0<=2=0

2. Propriété d’homogénéité

Vee B, YAeK, [[Az] =]zl

3. Inégalité triangulaire
V(z,y) € B2, |lz+yll <z +]yll

On dit alors que (E., || .||) est un espace vectoriel normé (e.v.n. en abrégé).

C4. 3. Remarque (Deuxieme inégalité triangulaire). — Linégalité triangulaire implique 'inégalité suivante,
appelée deuxiéme inégalité triangulaire :

Y(,y) € B [zl =[lylll<llz—yll

C4. 4. Remarque (Une autre notation usuelle pour la norme). — Une norme est parfois aussi notée N. Le
réel N(z) désigne alors la norme du vecteur z.

C4. 5. PROPOSITION (NORME ASSOCIEE A UN PRODUIT SCALAIRE). —  Soit E/ un espace vectoriel muni
d’un produit scalaire (-, - ). L'application || .|| définie par :

VeeE, |lz]l=+/{z, )
est une norme sur E.
C4.6. Exemple (Normes usuelles sur R et C). — La valeur absolue est une norme sur R. Le module est
une norme sur C.
C4.7. Exemple (Normes usuelles sur R"). —  Soit n € N*. Sur R", les applications
IR — Ryl R* — Ry [ ][ s R" — Ry

définies par :

n

Ve = (21,.0) €RY el =) lnl o el = |7 loo = max ||
i=1 ssn
sont des normes. La norme || .||, est associée au produit scalaire canonique sur R", défini par :

V(l‘,y)ERnXRn, <$>?/>:Z$zyz
=1
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C4. 8. Exemple (Normes usuelles sur R|X|). — Sur R[X], les applications
Il RIXT— Ry [l RIX]— Ry [ ]l - RIX] — Ry

définies par :

+o0 +oo
YP=3aX R IPI =2kl Plh= Pl = o o
sont des normes. La norme || .||, est la norme associée au produit scalaire (-, -) défini sur R[.X] par:
00 ' 00 A 400
Y(P,Q) € R[X]? tels que P = z:a,-XZ et Q = sz-XZ, (P,Q)= Zaibi.
=0 =0 =0
C4.9. Exemple (Normes usuelles sur C(|a,b],R))). — Sur C°([a,b], R) (a < b), les applications
-1l C([a b, R) — Ry [l C%([a, 0, R) — R || ][ : C°([a, 8], R) — Ry

définies par :

b b
Vel (ot R), Il :/ F@rae Al = / fdt, | flle = Sup}lf(t)

tela,b

La norme || .||, est la norme associée au produit scalaire (-, -) défini sur C°([a,b], R) sur par :
b
W(f0) € ClaBRE,  (f.9) = [ F)ale) dt

C4.10. Remarque (Longueur associée a une norme). — Une norme définit une notion de longueur pour
les vecteurs (considérés comme des points) d’un espace vectoriel.

C4. 11. DEFINITION (DISTANCE ASSOCIEE A UNE NORME). — Soit (E, || .||) un espace vectoriel normé.
La distance associée @ la norme || . || est Uapplication
ExE — R,
d

C4.12. Remarque (Propriéiés caractéristiques d’une distance). — Soit (E,||.||) un espace vectoriel normé.
La distance d vérifie les propriétés suivantes :
1. Symétrie
V(z,y) € Ex E, d(v,y) =d(y,v)

2. Séparation
V(z,y) e EXE, d(z,y)=0&z=y



3. Inégalité triangulaire
V(z,y.2) € E?, d(z,2) < d(z,y) +d(y, )

En effet, si (z,y,2) € E?
d(z,z) =|lz—z|[=[(z —y)+ (=) [ <[z =yl + ||y — 2 || < d(z,y) + d(y, 2)

Réciproquement, toute application de I/ x E vers R vérifiant ces trois propriétés est appelée « distance ».

C4. 13. DEFINITION (BOULES OUVERTES, BOULES FERMEES). — Soit (E, || . ||) un espace vectoriel normé.
Notons d la distance associée a la norme || . ||. Soient a € E et r > 0.

1. L'ensemble des éléments de £ dont la distance a a est strictement inférieure a r, soit :
B(a,r)={z€E : ||[z—al|l<r}={z € FE : d(z,a) <r}

est appelé boule ouverte de centre a et de rayon r.

2. Lensemble des éléments de E dont la distance a a est inférieure ou égale a r, soit :

Bi(a,r) ={xz € E : ||[z—qal||<r}={z e F : dz,a) <1}

est appelé boule fermée de centre a et de rayon r.

C4.14. Remarque (Boule unité). — Lorsque a = O et r = 1, on parle de boule unité (ouverte ou
fermée).
C4.15. Exemple (Boules dans R muni de la valeur absolue). — Dans I’espace vectoriel R muni de la

valeur absolue |.|, pour € R et r > O,on a:

B(a,r) =la—r,a+7] et Be(a,r) =la—r,a+7r]

C4.16. Exercice (Boules unité fermées dans R* pour les trois normes usuelles). — Dans I’espace vectoriel
R?, Iallure des boules dépend de la norme. Déterminer, puis représenter, la boule unité fermée pour
les normes ||. ||, || .||, et || . ||, introduites plus haut.

C4.17. DEFINITION (VECTEUR UNITAIRE, VECTEUR UNITAIRE ASSOCIE A UN VECTEUR NON NUL). —
Soit (E,||.||) un espace vectoriel normé.

1. Un vecteur unitaire est un vecteur de norme 1. Autrement dit, un vecteur v € E est unitaire si || x || = 1.

2. Soit x € E\ {0}. Le vecteur

est unitaire. On lappelle le vecteur unitaire associé 4 x.

T
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C4.18. DEFINITION (NORMES EQUIVALENTES). — Soient Ny et Ny deux normes sur un K-espace vectoriel
E. On dit que N, est équivalente a Ny s’il existe deux réels o > 0, 3 > 0 tels que :

Vz € E, alNi(z) < Na(z) < BN:i(z)

C4.19. PrROPOSITION (EQUIVALENCE ENTRE NORMES EST UNE RELATION D’EQUIVALENCE). —  Soit
E un K-espace vectoriel E. La relation R définie sur Uensemble des normes sur E par :

N; R Ny <= N; est équivalente a N,

est une relation d’équivalence.

Démonstration. Montrons que la relation R est réflexive, symétrique et transitive.
1. Réflexivité
Soit N un norme sur F, comme N < N < N, N R N, donc R est réflexive.
2. Symétrie
Soient Ny, Ny deux normes sur E telles que N; R N, : il existe o, 8 > 0 tels que aN; < Ny < SNV,
donc
1 1
=Ny < Ny < —Ns.
6] !
Ainsi Ny R N;. La relation R est symétrique.
3. Transitivité
Soient Ny, Ny, N3 trois normes sur E telles que N; R Ny et Ny R Ns. 1l existe o, 3,7,0 > 0 tels
que
aNy < Ny <BN; et yNy < N3 < 0N,

donc ayN; < N3 < 0Ny, donc Ny R N3. La relation R est transitive.

Q.ED.
C4. 20. Exercice (Equivalence des trois normes usuelles sur R")).. — On considére les normes || . ||, || - ||,
et || .||, définies précédemment sur R".
1. Démontrer : || .||, <||.]|; < n||.]|5. Les normes || .||, et || .||, sont donc équivalentes.
2. Démontrer : || .|| <||.||; <n]|.||. Les normes || .||, et || .||, sont donc équivalentes.
3. Démontrer : || .|| < |||l < V|| .|| Les normes || .||, et || .||, sont donc équivalentes.
Démontrer que toutes les inégalités précédentes sont optimales.
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C4. 21. PrROPOSITION (CRITERE D’EQUIVALENCE ENTRE NORMES VIA LES BOULES). —  Deux normes
Ny et Ny sur un K-espace vectoriel E sont équivalentes si et seulement si toute boule ouverte (respectivement
fermée) pour la norme Ny est contenue dans une boule ouverte (respectivement fermée) pour la norme No, et
réciproquement.

Démonstration. On raisonne double implication.

Soient N; et Ny deux normes équivalentes. Il existe o, 3 > 0 tels que alN; < Ny < SN;. Soit
a € E, soit r > 0. Montrons que la boule ouverte de centre a et de rayon r pour la norme Ny,
notée B (a,r), est contenue dans la boule ouverte de centre a et de rayon /r pour la norme Ns,
notée Bs(a, Or).

Soit x € By(a,r). Alors No(z — a) < fNi(x — a) < fr donc x € Bsy(a, fr).
De méme, on montre que Bsy(a,r) C By(a,r/a).
Enfin, ces inclusions restent vraies en remplacant les boules ouvertes oar des boules fermées.

Supposons que toute boule ouverte pour la norme NV; est contenue dans une boule ouverte pour
la norme N, et réciproquement.

Considérons la boule unité ouverte pour la norme N, : B1(0,1) = {x € E : Ny(z) < 1}. Par
hypothése, elle est incluse dans une boule pour la norme N, : By(0,1) C By(a,r) = {z € E
Ny(z —a) <r},oua€ Eetr>D0.

La boule By(a,r) est incluse dans boule By (0,7 4+ Ny(a)). En effet, si x € By(a,r) :

No(z) = Na(x —a+a) < Na(x — a) + Na(a) < r+ Ny(a).

Ainsi, en posant 5 := 1 + Na(a) : B1(0,1) C By(0, 5).

Soit z € E'\ {0g}. Alors 757 a une norme N, égale a 1. 11 appartient donc a B;(0,1) et par
1
suite & By (0, 3). Donc m]\@(m) =N, (ﬁ(l‘)) < B, dou No(z) < 26N;(z). Cette derniére

inégalité étant claire pour z = O, il vient :

Par symétrie des roles joués par les normes NV; et N, dans ’hypothése, il existe o > 0 tel que pour
tout z € E, Ni(z) < 2aN(x). Donc

1
Vre E, —N < No(x).
Z 2% 1() 2(2)
Les normes N; et N, sont donc équivalentes.

Un raisonnement analogue livre le résultat pour les boules fermées. Q.E.D.



C4. 22. DEFINITION (ENSEMBLE BORNE, DIAMETRE D’UN ENSEMBLE). — Soit (E, ||.||) un espace vec-
toriel normé et soit A une partie de E.

1. On dit que A est bornée s’il existe une boule fermée contenant A.

2. Dans ce cas, on note §(A) le diamétre de A défini par :

0(A):= sup [[z—y|l= sup d(z,y).
(z,y)eA? (zy)eA?
C4. 23. Remarque (D’une boule centrée en un point quelconque a une boule centrée en l'origine). — Soit (E,||.||)

un espace vectoriel normé. Une partie A de E est bornée si et seulement s’il existe un réel r > 0 tel que
AC Bf(O, 7").

C4.24. Exercicee. — Montrer que deux normes /N; et /N, sur un K-espace vectoriel sont équivalentes

si et seulement si pour toute partie A de E, A est bornée pour V; si et seulement si A est bornée pour
No.

C4. 25. Exercice. — Soit (F,||.]|) un espace vectoriel normé. Soit a € E et soit r > 0. Calculer le
diamétre de la boule ouverte B(a,r).

C4. 26. DEFINITION (FONCTION BORNEE). —  Soit X un ensemble non vide et soit (E, || . ||) un K-espace
vectoriel normé. Une application f: X — E est dite bornée si Uensemble f(X) est borné dans (E, || .||), i.e. si

IM >0, VeeX, | f@)]| <M.

C4. 27. THEOREME (ESPACE VECTORIEL NORME DES FONCTIONS BORNEES). —  Soit X un ensemble
non vide et soit (E,||.||) un K-espace vectoriel normé.

1. Lensemble B(X, E) des applications bornées définies sur X a valeurs dans E est un sous-espace vectoriel
de F(X, E).

2. Pour toute application f € B(X, E), posons :

1 f llo == sup || f(x) ]
zeX

Alors (B(X, E), || .]..) est un K-espace vectoriel norme.

Démonstration. 1. Montrons d’abord que B(X, F) est un sous-espace vectoriel de F (X, F).
e La fonction nulle sur X, i.e. 'application X — E ;  — 0, est bornée, donc 0 € B(X, E).
e Soit (f,9) € B(X,E)? soit (A\,u) € K2 1l existe M;, M, > 0 tels que pour tout z € X,
| f(x)|| < My et| g(z)|] < M,. Soit alors z € X. D’apreés 'inégalité triangulaire et ’homo-
généité :
[IAS (@) + pg(a) [ < L@+ Ll [T g () 1] < A My ] My.
On en déduit que A\f + g est bornée, donc que \f + ug € B(X, E).
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2. Montrons ensuite que || .|| est une norme.

e Positivité et séparation
Soit f € B(X, E). D’une part, || f ||, = 0 puisque pour tout z € X, || f(z) ]|
part, si || f ||, =0, alors pour tout z € X, || f(z)|| =0, donc f(z) = 0g, dou f

* Homogénéité
Soit f € B(X, E), soit A\ € K. Si A =0, alors || Af ||, =0= ||| f||. Supposons désormais
A # 0.
Pour tout z € X :

> 0. D’autre
=0

IAf@) =A@ < AT o
N—_——
indépendant de z € X

Par passage a la borne supérieure :

) M e < AT Mo

L’inégalité (x) vaut pour tout A # 0 et pour tout f € B(X, E). En effectuant les substitutions :
1
A X et f< Af

il vient .
< =l A
151l < 5|17 I
d’ou :
() I Dl < 11A

De (#) et (x+), on déduit : | Af]].. = [A/1] /...
o Inégalité triangulaire
Soit (f,g) € B(X, E)?. Pour tout € X, I'inégalité triangulaire pour la norme || . || implique :

1 (@) +g@) | < T F@) [+ [Tg@) ] < [ fllo + 1191l

~
indépendant de z € X

Par passage a la borne supérieure, il vient || f + g < || fllo + 19|

Q.ED.

C4. 28. DEFINITION (APPLICATIONS LIPSCHITZIENNES). — Soient (E,||.||g) et (F,||.||p) deux K-
espaces vectoriels normés. Soit A une partie non vide de E. Soit k > 0. Une application f: A — F est dite
k-lipschitzienne si :

V(w,y) € A%, |If(@) = fW)llp <Ellz—yllp.
C4. 29. Exercice. —
1. Soit (E,||.||) un espace vectoriel normé. Montrer que ’application
[T B
z o— [zl

est 1-lipschitzienne.



2. Soit A = B(0, 1) la boule unité fermée dans (R?, || .||,). Montrer que 'application

A — R?

f 2 .2
(x1,22) +— (27, 25)
est 2-lipschitzienne.
7
C4. 30. PROPOSITION (IVAPPLICATION DISTANCE A UN ENSEMBLE EST 1-LIPSCHITZIENNE). —  Soient
(E,||.|]) un K-espace vectoriel normé et A C E une partie non vide. Pour tout x € E, notons :

d(z,4) = inf ||z — y|

la distance de v a Uensemble A. L'application « distance a A » :

EFE — R

d(-> 4) r +— d(z,A)

est 1-lipschitzienne.

Démonstration. Soit (z,y) € E%. Pour tout z € A, on a:
lz—zl[=lz-y)+ -2 =z -yll+ ]y =]
d’aprés 'inégalité triangulaire. Donc comme d(z, A) < ||z — z||, d(z, A) < ||z —y]|| + ||y — 2z || dou :

d(z, A) =z —yl| <|ly — =]

Vv
indépendant de z € A

Par passage a la borne inférieure, d(z, A) — ||z — y || < d(y, A), dou :
(x)  dz,A) —d(y, A) <[z -yl
L’inégalité (x) vaut pour tout (z,y) € E%. En effectuant les substitutions :
r<y e y<«o

il vient

(ex)  d(y, A) —d(yz, A) < [y — x| = [lz = y|
De (%) et (xx), on déduit |d(x, A) — d(y, A)| < ||z —y]|. Q.E.D.
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C4. 31. PROPOSITION (CRITERE D’EQUIVALENCE DE NORMES VIA L’APPLICATION IDENTITE). — Deux
normes Ny et Ny sur un K-espace vectoriel E sont équivalentes si et seulement si les applications :

. (E,N;) — (FE,Ns)
UN1,No T ; T

et
. (E,N;) — (E,N)
UNy, Ny T ; x

sont lipschtziennes.

Démonstration. Soient N; et Ny deux normes sur . Remarquons que :

in,.N, est lipschitzienne <= il existe 3 > 0 tel que pour tout (z,y) € E?, No(x —y) < BN1(z —y)
<= il existe 5 > 0 tel que pour tout = € E, Ny(z) < SNy(x) .

(*)

La démonstration de I’équivalence (x) est laissée en exercice. De méme, iy, n, est lipschitzienne si et

1
seulement s’il existe « > 0 tel que pour tout = € E, —N;(z) < No(x).
«

Ainsi, iy, N, et in, n, sont toutes deux lipschitziennes si et seulement si N; et N, sont équivalentes.
Q.E.D.

C4. 32. DEFINITION (NORME INDUITE, DISTANCE INDUITE). — Soit (E,||.||) un K-espace vectoriel
normé. Soit F' un sous-espace vectoriel de E.

1. La restriction de || . || @ F' est une norme sur F, appelée normé induite.

.|| sur E x E. La restriction de d a F X F est appelée distance induite.

2. Notons d la distance associée a

C4. 33. PROPOSITION (PRODUIT D’UN NOMBRE FINI D’ESPACES VECTORIELS NORMES). —  Soient n €
N* et (E;, N;)1<i<n une famille de n espaces vectoriels normés. Posons E = E; X ... x E, et pour tout
r=(r1,...,2,) EE:

N(z) = max N;(x;)

1<i<n

Lapplication N est une norme sur Uespace vectoriel E, appelée norme produit sur £ = Ey X ... X E,.

Démonstration. Montrons que N vérifie les trois conditions nécessaires pourétre une norme :

e Positivité et séparation
Soit © = (z1,...,2,) € E. Comme pour tout ¢ € [1,n], N;(z;) > 0, alors N(z) > 0.
Par ailleurs, si N(z) = 0, alors pour tout i € [1,n], N;(x;) = 0, donc z; = 0. D’ou z = 0.

» Homogénéité
Soit x = (21,...,x,) € E,soit A € K. Si A = 0 alors N(Az) = 0 = |\| N(z). Supposons désormais
A # 0. Soit ¢ € [1,n].

Ni(Azi) = |A[ Ni(z;) < (Al N(z)

indépendant de i € [1, n]
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Par passage au max :
(x)  NQAz) <[A[N(z)

L’inégalité (x) vaut pour tout A # 0 et pour tout = € E. En effectuant les substitutions :

A — 1 et =<+ \x
A
il vient .
N(z) < ‘X‘N(Ax)
d’ou :

() N(2) < N(Az)

De (%) et (%), on déduit : N(Az) = |A| N(x).
o Inégalité triangulaire

Soient © = (z1,...,x,) € Eety = (y1,...,yn) € E. Soit i € [1,n]. Linégalité triangulaire pour

la norme N, donne :

Ni(xi +y;) < Ni(z;) + Ni(y;)) < N(z)+ N(y)
—_——

indépendant de i € [1,n]

d’ou, en passant au maximum, N(z +y) < N(z) + N(y).

C4. 34. Exercic. —  Soit E un R-espace vectoriel muni d’un produit scalaire (-, -), de norme
associée || .||. Montrer que pour tout x € E :
lz|l = sup (z,y)
Iy (=1
C4. 35. Exercice. — Soit (E,||.]||) un K-espace vectoriel normé.

1. D’application
E\N{0} — E
x

/ T —
TEal
est-elle lipschitzienne ?
2. Montrer que :
Vo) € O, gmax(lallLlviD || 7 - || < e =il
2 =l [yl

3. En déduire que pour tout r > 0, la restriction de f a £\ B(0,) est lipschitzienne.

12



C4. 36. Exercice. —
1. Soit (£,]|.]||) un K-espace vectoriel normé. Soit fun automorphisme de £. Montrer que I’ap-

plication
E — R,
v o [ f(@)]|

est une norme sur E. Est-ce le cas si f n’est pas inversible ?

2. Supposons que (£, ||.||) = (R™,]|.]|;). Notons A = (a; j)1<i j<n la matrice représentant f dans
la base canonique et Al = (bij)1<i j<n son inverse. Posons :

a= sup |a;;l| et b= sup |b;,l
1<i,5<n 1<i,5<n
(a) Montrer que,
1
Ve e L, E||x||<N(m)<na||x||

(b) Montrer que f: (R, ||.]];) = (R™|].]|,,) est lipschitzienne.

C4. 37. Exercice. — Notons E = C'([0,1], R) et posons, pour f € E, || f [, oo = [ flloc + I f' || -
1. Montrer que [|. ||, ,, est une norme sur F.
2. Cette norme est-elle équivalente a || .|| ?

C4. 38. Exercice. —
1. Montrer que 'application

RxR — R

d (x,y) +— |arctan(z) — arctan(y)|

est une distance sur R. Est-elle associée & une norme sur R?

2. Soit (£,]|.]|) un K-espace vectoriel normé. Posons, pour (z,y) € E X E
D’application d est-elle une distance sur £ ? Est-elle associée a une norme sur £'?
3. Ici, E = R?. Posons pour tout (z,y) € £ x E :

||5U—yH1

d = 7 .
@9 = T e =T,

Montrer que d est une distance sur . On pourra commencer par montrer que pour tous réels

u—+ v u v
i < + . Est-elle associée a une norme?
l1+u+v " 1+u 1+0w

u,v =0,

13



2 Suite d’éléments d’un espace vectoriel normé

C4. 39. DEFINITION (CONVERGENCE D’UNE SUITE). — Soit (E, || . ||) un K-espace vectoriel normé. Soit
(Un)nen une suite d’éléments de vecteurs de E.

1. Soit a € E un vecteur. On dit que la suite (u,)nen converge vers a dans (E,||.||) si:
Ve >0, IN.eN, Vn>N, |lu,—all<e.

Si c’est le cas, on écrit u,, ——— a.
n—-+oo

2. Si la suite (u,,) ne converge vers aucun point, on dit qu’elle diverge.

C4. 40. Remarque. —

1. La notion de convergence n’a de sens que dans un espace vectoriel normé. Ainsi, si F est muni

d’une seconde norme || .||’, il est possible a priori qu’une suite qui converge pour la norme || . ||,
ne converge pas pour la norme || . ||'. Cf. Théoréme C4.46 et Corollaire C4.47.
2. Une suite (u,),en converge vers a dans (E, || .||) si et seulement si la suite réelle de terme général

|| u, — a|| converge dans R vers 0.

C4. 41. ProrosITION (UNICITE DE LA LIMITE). — Soit (E,||.||) un K-espace vectoriel normé. Soit
(Un)nen une suite d’éléments de vecteurs de E. Si la suite (u,)nen converge, alors sa limite est unique. On la

note lim wu,,.
n—- -+00

Démonstration. Soit (u,),cN une suite convergente, soient a;, as € E tels que u,, — a; et u, —
n—-+o0o n—-—+oo

as. Raisonnons par I’absurde et supposons a; # as, i.e. € := ||a; — as|| > 0.
€

Il existe V; € N tel que pour tout n > Ny, |Ju, — a1|| < § et il existe N, € N tel que pour tout n > No,
|[un — as|| < 5.

En particulier pour n = max(Ni, Na), ||u, — a1|| < § et |Ju, — as|| < 3. Par suite :
2e
e = [lar = azf| = [lar = wn +un = sl < llar — un]| + [lun = aof| = [Jun — ar][ +[Jun — azf] < 7.
. 2 .
Comme ¢ > 0, nous en déduisons 1 < 3’ ce qui est faux. Q.E.D.
C4. 42. PrROPOSITION (UNE SUITE CONVERGENTE EST BORNEE). — Soit (F, || . ||) un K-espace vectoriel

normé. Soit (U )nen une suite d’éléments de vecteurs de E. Si la suite (u,)nen converge, alors elle est bornée,
i.e. : il existe un réel M > 0 tel que :
VneN, |lu,|| <M.

C4. 43. Remarque. — Une suite (u,),en est bornée si et seulement si 'ensemble {u, : n € N} est
borné.
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C4. 44. THEOREME (ESPACE DES SUITES CONVERGENTES). — Soit (E,| || . ||) un K-espace vectoriel normé.

1. Lensemble C (E,||.||) des suites convergentes dans (E,||.||) est un sous-espace vectoriel de I'ensemble
EN des suites d’éléments de E.
2. De plus, Uapplication :
CEI) =  E

(un)nGN — n1—1>r—l|:loo Unp

est linéaire.

Démonstration. e Remarquons d’abord que la suite nulle converge vers 0.
e Soient maintnenant (u,),eN et (v,)nen deux suites convergentes, de limites respectives a et b. Soit
(\, 1) € K% Nous allons montrer que la suite (Au,, + /v, )nen converge vers Aa + ub, ce qui d’une
part achévera de montrer que ’ensemble des suites convergentes est un sous-espace vectoriel de
EN et, d’autre part que application qui & une suite convergente associe sa limite est linéaire.

Supposons que |A| + |u| # 0 (dans le cas contraire, A = = 0 et le résultat voulu est immédiat).
€

Soit £ > 0. Posons ¢/ = ———.

RS

Il existe N; € N tel que pour tout n > Ny, ||u, —al| < €, et il existe Ny € N tel que pour tout

n = Na, ||u, —b|| < &'. Posons alors N3 = max(Ny, Ny). Soit n > Nj.

|| At + pon) = (Aa+ pb) || = [[ Mun — @) + p(vn = 0) [| < (Al un — all+|ul [Jon = bl < (AlH|p)e" = <.

Ainsi, \u,, + pv, — Aa + pb.
n—>-+oo
Q.E.D.

C4. 45. Exemples. —
1. Si £ = R?*et ||.|| = || ]l I|-]l; ou||.]|5 alors une suite (u,),cn de terme général u, =
(@, yn) converge vers un vecteur a = (x,y) si et seulement si (z,)nen €t (Yn)nen convergent
respectivement vers z et y dans R.

x
2. Si z € E est un vecteur quelconque, la suite de terme général u,, = — converge vers 0. Si z # 0,
n

la suite de terme général nx diverge.
3. Si E = R[X] est muni de la norme ||. ||, alors la suite de terme général P, = X" diverge.

C4. 46. THEOREME (CRITERE SEQUENTIEL DE COMPARAISON DES NORMES). — Soit I/ un K-espace
vectoriel et soient N, et Ny deux normes sur E.
Les propositions suivantes sont équivalentes :

1. Toute suite d’éléments de &/ qui converge vers 0 au sens de Ny, converge vers 0 au sens de No.

2. da > 0 tel que Ny < alV5.

Démonstration. Procédons par double implication.
(2) = (1)| Soit o > 0 tel que Ny < alVy.

Soit (uy,)nen une suite convergeant vers 0 au sens de Ny, i.e. telle que Ny (u,,) —+> 0. Comme
n—-—+0oo

pour tout n € N :
0 < No(up) < alNy(uy)

le théoréme d’encadrement pour les suites réelles implique (Na(uy,))nen tend vers 0, ie. que
(un)nen converge vers 0 au sens de No.
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(1) = (2) | Raisonnons par contraposée.

Supposons donc que pour tout o > 0, il existe z € E tel que Ny(x) > aN;(x). Ainsi, pour tout
n € N*, il existe x,, € E tel que Ny(x,) > nNy(z,).
Tn

NQ(In) '

Alors pour tout n € N*, z,, # Og, et on peut considérer y,, :=

On observe :
e pour tout n € N*, Ny(y,) = 1, et donc (y,,)nen+ ne tend pas vers 0 pour la norme No;

1
e pour tout n € N, 0 < Ny(y,) < ENg(yn) = donc par théoréme d’encadrement pour les
suites réelles, Ni(y,) ﬁ 0. (Yn)nen+ converge donc vers 0 pour la norme ;.
n—-—+oo

On a exhibé une suite de vecteurs de £ qui converge vers 0 au sens de /V;, mais pas au sens de
Ns.

Q.ED.

C4. 47. COROLLAIRE (CONVERGENCE ET EQUIVALENCE DES NORMES). —  Soit E un K-espace vectoriel

et soient Ny et Ny deux normes sur E. Les normes Ny et Ny sont équvalentes si et seulement si pour toute suite
(un)neN de E:

(Un)nen converge vers 0 au sens de Ny <= (up,)nen converge vers 0 au sens de No.

Démonstration. 11 s’agit d’une concéquence immédiate du théoréme précédent. 0O.E.D.

C4.48. Remarque. — Ce corollaire peut étre utilisé pour démontré que deux normes sur un méme
espace vectoriel ne sont pas équivalentes.

C4. 49. Exercice. —
1. Démontrer que sur K[X] :

(a) les normes || .||, et || .||, ne sont pas équivalentes;
(b) les normes || .|| et || .||, ne sont pas équivalentes;
(c) les normes ||.||,et || .||, ne sont pas équivalentes.

2. Démontrer que sur C%([a, b], R),

(a) les normes ||.||,et || .||, ne sont pas équivalentes;
(b) les normes ||.||,et || .||, ne sont pas équivalentes;
(c) les normes || . ||,et || .||, ne sont pas équivalentes
7
C4. 50. THEOREME (ESPACE DES SUITES BORNEES). — Soit (E, || .||) un K-espace vectoriel normeé.

1. Lensemble des suites bornées d’éléments de E, noté (*(E), est un sous-espace vectoriel de E™.
2. C(E,||.||) est un sous-espace vectoriel de (*°(E).
3. Posons pour tout (u,)nen € (°(E) :

|| (un)nen |lo == sup || un || -
neN
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Alors ((°(E), || . ||) est un K-espace vectoriel normé.

C4. 51. THEOREME (CONVERGENCE ET ESPACES PRODUITS). —  Soit (E;, N;)1<i<p une famille de p
espaces vectoriels normés. Notons (E, N) Uespace produit. Soit alors (u,,)ncn une suite d’éléments de E de terme
général

Up = (Up, ..., ub)
ot pour tout i € [1,p], (ul,)nen est une suite d’éléments de F;.
Alors la suite (uy,)nen converge vers un vecteur a = (aq, ..., a,) € E si et seulement si pour tout i € [1,p], la
suite (ul,), . converge vers a;.

Démonstration. Procédons par double implication.
Soit (uy,)nen une suite d’éléments de F convergeant vers a € E. Pour tout n € N et pour tout

ie[1,p]:
0 < N; (ul, — a;) < N(u, —a) —— 0.

n—> 400

Donc pour tout i € [1, p], u, . G par le théoréme d’encadrement pour les suites réelles.
n o0

Soit (uy,)nen une suite d’éléments de E telle que pour tout i € [1,p], il existe a; € E; :

i Ni
Uy, — Q,;.
n—-+00

Ainsi, pour tout i € [1,p], N; (v}, — a;) ——" 0, donc :
n—--—+oo

1 p_
N1 (un Cll) ++Np (un Clp> mo

Posons a := (ay,...,a,). Observons, pour tout n € N
0< N(uy —a) <Ny (up, —ay) +...+ N, (ul — ap)

donc par le théoréme d’encadrement pour les suites réelles, N(u, —a) —— 0. On en déduit

n—-+oo
N
que u, — a.
n—-4oo
Q.ED.
C4. 52. DEFINITION (SUITES EXTRAITES). —  Soient (U )neN €t (Un)nen deux suites d’éléments d'un K-

espace vectoriel E. On dit que (vy,)nen est une suite extraite de (uy,)nen 8’il existe une applications p: N — N
strictement croissante telle que :
Vn € N, vy = Uyn).

C4. 53. Remarque (Suite extraite d’'une suite exiraite). —  Si (v, )nen est une suite extraite de (u,)nen et
si (W, )nen est une suite extraite de (v,,)nen, alors (wy,)n,en est une suite extraite de (uy,),en. En effet, il
existe deux applications ¢: N — N et ): N — N strictement croissantes telles que pour tout n € N,

Wn = Uy(n) = Uporp(n)-
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C4. 54. DEFINITION (VALEUR D’ADHERENCE). — Soit (E, || . ||) un K-espace vectoriel normé. Un vecteur
a € E est valeur d’adhérence d’une suite (u,),en d’éléments de E, s’il existe une suite extraite de (uy,)nen
convergeant vers a.

C4. 55. Remarque. — Une suite (uy,)nen telle que (|| uy, ||)nen tend vers +0o n’a pas de valeur d’adhé-
rence.

C4. 56. PrROPOSITION (UNE SUITE CONVERGENTE POSSEDE UNE UNIQUE VALEUR D’ADHERENCE). —
Soit (E,||.||) un K-espace vectoriel normé. Soit (u,)nen une suite d’éléments de E.

1. Si (uy)nen converge vers a € E, alors toute sous-suite de (u,),en converge vers a, donc a est unique
valeur d’adhérence de (uy,)nen-

2. En particulier, si (u,)nen posséde deux valeurs d’adhérence, alors elle diverge.

Démonstration. Supposons que (u,),en converge vers a € E. Soit ¢ : N — N une application stricte-
ment croissante. Nous avons établi, plus tot dans ’année, en raisonnant par récurrence que :

Vne N, ¢(n) = n.
Soit € > 0. Il existe N € N tel que

Vn>N, |lu,—all<e.

Soit alors n > N. Comme ¢(n) > n > N, alors H Up(n) — @ H < €. Ainsi, Ugp(n) —+> a. Q.E.D.
n——+00
C4. 57. Exemple. — La suite réelle de terme général (—1)" admet deux valeurs d’adhérence distinctes,

1 et —1. Elle est donc divergente.

C4. 58. DEFINITION (NOTATIONS DE LANDAU). —  Soit (E,||.||) un espace vectoriel normé. Soient
(Un)nen une suite d’éléments de E et (ov,)nen une suite réelle.

1. On notew, = o(ay,)sil||lu,|| = olay).
n—-+00 n—-+

2. Onnoteu, = O(ay,)sillu,|] = O(an).

n—-+00 —+00

3. Si (vn)nenN est une autre suite d’éléments de E, on notew,, ~ v, siu,—v, = o(||v,]||). On dit
n— 0o n—-+o0o

que les suites (Up,)neN €t (Uy)nen Sont équivalentes.

C4.59. Exercice. — Trouver un exemple de suite bornée d’un espace vectoriel normé n’ayant pas
de valeur d’adhérence.

C4.60. Exercice. — Soit (uy), o une suite réelle bornée. Montrer qu’elle converge si et seulement
si elle n’a qu’une seule valeur d’adhérence. Est-ce vrai si on ne suppose plus (u,), . bornée?
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C4.61. Exercice. — Posons, pour tout n € N :

0,11 — R
T — oz,

Jn

La suite (f,,) converge-t-elle dans (C([0,1]),]|.|.)? Et dans (C([0, 1)), ]| .]],)?

C4.62. Exercice. — Posons, pour tout n € N :

[0,27] — R
r > cos(nx) .

Jn

1. Montrer que (f,) converge vers 0 dans (C([0,27],R), ||.|],)-

2. Supposons que (f,) admette une valeur d’adhérence f dans (C([0,1],R),||.]||, ) : on dispose

alors d’une fonction ¢ : N — N strictement croissante telle que H Jom) — f H — 0.
*© n—too
Montrer que :

T T
W e N, | fn(0) = oo (52 )| <21 = 7l 10 - £ (55|
o (0) = Fo 35003 [ o = £l + | 1O = 5005
Que peut-on en déduire ?
C4. 63. Exercice. — Pour tout n € N, notons f,, la fonction définie sur [0, 1] par :
0 si0<z<1-1/n
Yz € [0,1], 2n(r—1+1/n) sil—1/n<ax<1-1/2n

—2n(x—1+4+1/n) sil—1/2n< 2z <1

Faire un dessin, et montrer que pour tout = € [0,1], f,(x) — 0. Est-ce que (f,,) converge vers 0
n—-—+0oo
dans (C([0,1]), ] -1l.)?
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3 Topologie d’un espace vectoriel normé

C4. 64. Notation. — Dans toute cette partie, on fixe un espace vectoriel normé (E, || .|).

C4. 65. DEFINITION (VOISINAGE D’UN POINT). — Soita € E. Un ensemble V, C E est appelé voisinage
de a, s’il contient une boule ouverte de centre a.

C4. 66. Exemple. —
1. Soit @ € E. Une boule ouverte de centre a est un voisinage de a.
2. Les intervalles |0, 1], [0,1], ]0, 1] sont des voisinages de 3 dans R.
3. {0} n’est pas un voisinage de 0, puisque pour tour r > 0, B(0,7) =] — r,r[Z {0}.

C4.67. Remarque. — Soit a € E. Un ensemble contenant un voisinage de a est un voisinage de a.

C4. 68. PrOPOSITION (UNION QUELCONQUE ET INTERSECTION FINIE DE VOISINAGES D’UN POINT). —
Soita € E.

1. Une réunion de voisinages de a est un voisinage de a.

2. Une intersection finie de voisinages de a est un voisinage de a.

Démonstration. 1. Soit (V;);er une famille de voisinages de a. Soit iy € I. Il existe r > 0 tel que
B(a,r) C V;,. Alors B(a,r) C UV Donc UV est un voisinage de a.
i€l el
2. Soient V;,...,V, des voisinages de a. Alors :

Vie[l,r], 3 r >0, B(a,r) CV,.

Posons alors r = 1121121 r; > 0. Pour tout i € [1,7], B(a,r) C B(a,r;) C V; donc B(a,r) C ﬂV

Donc ﬂ V; est un voisinage de a.
i=1

Q.ED.

C4.69. Remarque (La finitude est essentielle dans 2 de la précédente proposition). — Une intersection infinie
de voisinages peut ne pas étre un voisinage. Par exemple, posons £ = R, a = 0, et pour tout n € N*,
V, = [—1/n,1/n]. Pour tout n € N*,

B(0,1/n) =] —1/n,1/n[C V,

donc V,, est un voisinage de 0. Or, m V., = {0} qui n’est pas un voisinage de 0.

neN*
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C4.70. DEFINITION (PARTIE OUVERTE, PARTIE FERMEE). —

1. Une partieU C E est un ouvert de (E, || .||) si U est un voisinage de tous ses points, ie. si :
VeeU, 3Jr,>0, B(zx,r,)CU.

2. Une partie F C E est un fermé de (E. || . ||) si son complémentaire E \ F est un ouvert.

C4.71. Exemple. —
1. E et () sont des ouverts de (E,||.]]).
2. Sia € E, {a} est un fermé de (E,||.||).

3. Si £ = R, I’ensemble |0, 1] est un ouvert, ’ensemble [0, 1] est un fermé, I’ensemble [0, 1| n’est ni
ouvert, ni fermé.

C4.72. Remarque. — Une partie de £ peut trés bien n’étre ni ouverte, ni fermée. C’est le cas pour
[—1,2[ dans (R, |-]).
C4. 73. PROPOSITION (PROPRIETE TOPOLOGIQUE DES BOULES). —  Une boule ouverte est un ouvert, une

boule fermée est un fermé.

Démonstration. Soit a € E, soit r > 0.
e Bl(a,r) est un ouvert
Soit © € B(a,r). Montrons qu’il existe une boule ouverte centrée en x contenue dans B(a,r).
Posons r, = r — ||[a— || > 0 (faire une figure pour comprendre ce choix). Montrons que
B(z,r,) C B(a,r). Soit y € B(x,r,). Par I'inégalité triangulaire :

ly—all=lly—z+z—all<[ly—z|[+|lz—al| <re+|la—z]=r

donc y € B(a,r) et B(x,r,) C B(a,r). La boule B(a,r) est bien un voisinage de z, et ceci étant
vrai pour tout € B(a, ), la boule B(a,r) est un ouvert.

o B(a,r) est un fermé
Montrons que F \ B(a,r)est un ouvert. Soit z € E \ B(a,r). Montrons qu’il existe une boule

ouverte de centre = contenue dans F \ B(a,r). Posons r, = ||z —a|| —r > 0 (faire une figure
pour comprendre ce choix). Montrons que B(z,7,) C E \ B(a,r). Soit y € B(x,r,). Par la
deuxiéme inégalité triangulaire :

ly—all=lly—z+z—al| 2|z —al[-lly—z[| > [lz —all =r. =71

doncy € E'\ B(a,r). Ainsi, B(z,r,) C E\ B(a,r) et E\ B(a,r) est bien un voisinage de x. D’ou
le résultat.

Q.ED.

C4. 74. PrROPOSITION (UNION QUELCONQUE ET INTERSECTION FINIE D’OUVERTS). —
1. Une réunion quelconque d’ouverts est un ouvert.

2. Une intersection finie d’ouverts est un ouvert.
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Démonstration.
1. Soit (U;)ies une famille d’ouverts. Soit z € U = U U;. Il existe iy € [ tel que x € U;,. Comme Uj,
iel
est un ouvert, c’est un voisinage de x. Donc, comme U;, C U, U est un voisinage de x.
Ceci étant vrai pour tout € U, U est un ouvert.

T
2. Soient Uy, ..., U, des ouverts de E. Soit x € U = m U;. Pour tout ¢ € [1, 7], U; est un voisinage de
i=1
x. Donc, d’aprés la proposition C4.68, U est un voisinage de x. Ceci étant vrai pour tout z € U,
U est bien un ouvert.

Q.ED.

C4.75. COROLLAIRE (UNION FINIE ET INTERSECTION QUELCONQUE DE FERMES). —
1. Une réunion finie de fermés est un fermé.

2. Une intersection de fermés est un fermé.

Démonstration. 1. Soient Fi,..., F, des fermés, alors pour tout i € [1,r], U; = E \ F; est un ouvert.
Donc d’apreés la proposition précédente :

hUi:E\OF
=1 i=1

T
est un ouvert, donc U F; est un fermé.
i=1
2. Soit (F});cr une famille de fermés, alors pour tout ¢ € I, U; = E'\ F; est un ouvert, donc d’aprés

la proposition précédente :
Uti=UJE\F=E\F
i€l i€l i€l
est un ouvert, donc ﬂ F; est un fermé.
i€l
Q.E.D.
C4.76. Remarque (Importance de Uhypotheése de finitude). —
11
1. Une intersection infinie d’ouverts n’est pas nécessairement un ouvert. Par exemple, m } ——, = { = {0}.
nn
n=1

2. Une réunion infinie de fermés n’est pas nécessairement un fermé. Par exemple

U [—1+%,1—ﬂ = —1,1[.

n=1
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C4. 77. DEFINITION (POINT ADHERENT, ADHERENCE D’UNE PARTIE). — Soit A une partie non vide de
E.

1. Soit a € E. On dit que a est adhérent a A, si tout voisinage de a rencontre A, ie. si :
Ve >0, B(a,e)NA#0.

2. Lensemble des points adhérents @ A est appelé adhérence de A, et noté A.
Par convention, ) = ().

C4.78. Remarque (Une partie est toujours contenue dans son adhérence). — Une partie A de E est contenue
dans son adhérence, i.e. A C A.
C4.79. Exemple. —

1. D’adhérence d’une boule ouverte est la boule fermée de méme centre et de méme rayon. Donc
pour tout a € B, r > 0:

B(a,r) = By(a,r)
2. D’adhérence de |0, 1] est [0, 1] dans (R, ||).

C4. 80. DEFINITION (PARTIE DENSE). — Une partie A de E est dite dense dans E si A = E, ie. si :

Vee E, Ye>0, dacAtelqueac B(x,e).

C4.81. Exemple. —
1. Q est dense dans (R, |-|).

2. L'ensemble {% . (p,q) € Z % N} est dense dans (R, ||).
3. Q" est dense dans (R™,|[|.]|).

C4. 82. THEOREME (CARACTERISATION DES FERMES VIA L’ADHERENCE). —  Soit A une partie non vide
de I.

1. A est le plus petit fermé contenant A.

24= () F

ACF , F fermé

3. Lensemble A est fermé si et seulement si A = A.

Démonstration.

o Commengons par montrer que A est un ferme.
Montrons que £ \ A est un ouvert.
Soit v € F\ A. Comme = ¢ A, il existe r > 0 tel que B(z,7)NA = (. Montrons que B(z,r) C E\ A.
Soit y € B(z, ), posons 1’ =1 — ||y — 2 || > 0 (faire une figure pour comprendre ce choix). On
observe que B(y,r’) C B(x,r) (preuve laissée en exercice). Donc B(y,r’) C E\ 4, donc y ¢ A.
Ceci étant vrai pour tout y € B(x,r), alors B(x,r) N A = {J, soit encore B(x,r) C E\ A. Donc
E\ A est un ouvert, donc A est un fermé.
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e Nous montrerons ensuite que Ale plus petit fermé contenant A.
Montrons maintenant que A est le plus petit fermé contenant A, c’est-d-dire que tout fermé conte-
nant A contient aussi A.
Soit F' un fermé contenant A. Montrons que £\ F' C E\ A. Soit # € E '\ F, comme F est un
fermé, F' \ F est un ouvert, donc il existe » > 0 tel que B(z,r) C E'\ F. Comme A C F, alors
E\F C E\ A, donc B(z,7) C E\ A, donc B(x,7)N A =, donc z € E\ A. Ainsi, nous venons
de montrer que E\ FF C E\ A, dou A C F.

o Montrons que A est Uintersection de tous les fermés contenant A
Comme A est un fermé contenant A, ﬂ F C A.

ACF, F fermé
Or ﬂ F est un fermé (comme intersection quelconque de fermés) contenant A. Comme
ACF, F fermé
tout fermé contenant A contient aussi 4, il vient A C m F.

ACF, F fermé
D’ou I’égalité.

o Terminons en montrant que A est fermé si et seulement si A = A.
Si A est fermé, A est un fermé contenant A, donc A C A. Comme A C A dans tous les cas,
A=A
Réciproquement, si A = A, comme A est un fermé, alors A est un fermé.

Q.ED.

C4. 83. THEOREME (CARACTERISATION SEQUENTIELLE DE L’ADHERENCE). —  Soit A une partie non
vide de E.

1. Un élément a € I est adhérent a A si et seulement si a est limite d’une suite d’éléments de A, i.e. si et
seulement si :

il existe une suite (ay,)nen d’éléments de A telle que a,, ——— a.
n—-+oo

2. Lensemble A est fermé si et seulement si toute suite d’éléments de A qui converge dans E a sa limite dans

A.

Démonstration.
1. Posons A’ ’ensemble des points = € E tels qu’il existe une suite (a,),en d’éléments de A conver-
geant vers . Montrons que A = A'.

_ 1
C | Soit z € A. Pour tout eN,B(,
oit x our tout 7 In—i—l

) N A # (), donc il existe a,, € A tel que

0< ||z —anl < —
X T — ap X 1
n-+1

Alors, par le théoréme d’encadrement pour les suites réelles, ||z — a, || — 0. La suite
n—>r—+00

(@n)nen converge donc vers z. Ainsi x € A’

Soit z € A'. 1l existe une suite (a,),en d’éléments de A qui converge vers z. Soit alors r > 0.
Il existe un N € N tel que pour tout n > N, ||z — a, || <, i.e. a, € B(xz,r) N A. Ainsi, pour
tout 7 > 0, B(x,7) N A # (), donc x € A.
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2. Cette assertion découle du fait que A est fermé si et seulement si A = A.

Q.ED.

C4. 84. COROLLAIRE (CARACTERISATION SEQUENTIELLE DE LA DENSITE). —  Une partie A C E est
dense dans E si et seulement si tout élément de E est limite d’une suite d’éléments de A, i.e. si et seulement si :

Ve € E, J(an)neN € AN telle que a, —— .

n—>-+o0o

Démonstration. Cette assertion découle de la définition de la densité et de la caractérisation séquentielle
de ’'adhérence. Q.E.D.

C4.85. Exercice. — Munissons £ = R[X] de la norme N définie par, pour tout P = Zaka,
k=0

. Montrer que I’ensemble :

= ayl
N(P)=3 kE+1
k=0

oo o
A= E apX ER[X] E ap =0
k=0 k=0
est dense dans F.
7
C4. 86. DEFINITION (POINT INTERIEUR A UN ENSEMBLE, INTERIEUR D’UN ENSEMBLE). — Soit A une

partie non vide de E, soit a € E.

1. Le point a est intérieur & A si A est un voisinage de a.
De maniére équivalente, a est intérieur & A s’il existe r > 0 tel que B(a,r) C A.

o
2. L'ensemble des points intérieurs @ A est appelé intérieur de A, et noté A.
o

Par convention, ) = ().

C4. 87. THEOREME (CARACTERISATION DES OUVERTS). — Soit A une partie non vide de E.

1. A est le plus grand ouvert contenu dans A.

24- | U

UCA , U ouvert

(0]
3. A est ouvert si et seulement si A = A.

o
Démonstration. o Commengons par montrer que A est un ouvert.
o
Soit @ € A. Comme A est un voisinage de a, il existe r > 0 tel que B(a,r) C A.
o
Pour tout « € B(a,r), B(a,r) est un voisinage de z, donc A est un voisinage de x, donc = € A.
o o

Ainsi, B(a,r) C A. Donc A est un voisinage de tous ses points, c’est donc un ouvert.
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o Nous montrons ensuite que c’est le plus grand ouvert contenu dans A.
Soit U un ouvert contenu dans A. Soit a € U. Comme U est un ouvert, il existe » > 0 tel que

o
B(a,r) C U, donc B(a,r) C A, donc a € A.
o
Ainsi, U C A.
o]
o Montrons que A est la réunion de tous les ouverts contenus dans A

o o
A est un ouvert contenu dans A, donc A C U U.

UCA, U ouvert
Or, U U est un ouvert (comme réunion quelconque d’ouverts) qui est contenu dans A.
UCA, U ouvert
o o
Comme tout ouvert contenu dans A est contenu dans A, U UcCA.

UCA, U ouvert
D’ou I’égalité.
o
o Terminons en montrant que A est ouvert si et seulement si A = A.

o o
Si A est un ouvert, A est un ouvert contenu dans A, donc A C A. Comme par ailleurs A C A, on
a égalité.
o o
Réciproquement, si A = A, comme A est un ouvert, alors A est un ouvert.

Q.E.D.
C4. 88. THEOREME (ADHERENCE, INTERIEUR ET COMPLEMENTAIRE). —  Soit A une partie non vide de
E.
1. Le complémentaire de Uintérieur de A est égal a Uadhérence du complémentaire de A :
E\A=FE\ A
2. Le complémentaire de U'adhérence de A est égal a Uintérieur du complémentaire de A :
E\NA=E\A.
Démonstration. 1. Remarquons d’abord que E'\ A est un fermé contenant £\ A, donc £\ A C E'\ A.

Ensuite, soit z € E'\ A. Comme ¢ fi, pour tout r > 0, B(x,r) ¢ A, donc B(z,r)N(E\ A) # 0.

Ainsi, x € E'\ A. D’oﬁE\/TCE\A.
D’ou I’égalité.

2. Remarquons d’abord que E \ A est un ouvert contenu dans £\ A, donc E\ A C E\ A.

—

Réciproquement, soit v € £\ A. Il existe 7 > 0 tel que B(z,r) C E'\ A. Donc B(z,r)N A =),
etx g Ajie.x e E\ A
D’ou l'inclusion réciproque, puis I’égalité.

Q.ED.

26



C4. 89. DEFINITION (POINT FRONTIERE, FRONTIERE D’UN ENSEMBLE). —  Soit A une partie non vide
de .

1. Soit a € E. On dit que a est un point frontiére & A si a appartient a l'adhérence de A et de son
complémentaire £\ A.

2. L'ensemble des points frontiéres de A est appelé frontiére de A, et noté Fr(A) ou OA.

C4.90. Remargue. — Soit A une partie non vide de E. Alors 94 = A\ A
C4.91. Exemple. —

1. La frontiére d’un intervalle [a, b] vaut {a,b}. Idem pour la frontiére de |a, b], de ]a, b] ou de [a, b].

2. La frontiére de la boule euclidienne B(a,r) de (R",||.||,) est 'ensemble
{reR" : ||z —all,=7}.

On parle de spheére euclidienne de centre a et de rayon r.

3. Plus généralement, la frontiére d’une boule B(a,r) est égale a {r € E | ||z —al| =r}.

C4. 92. DEFINITION (TOPOLOGIE INDUITE). —  Soit A une partie non vide de E.
1. Soit a € A. SiV, est un voisinage de a dans E, V, N A est un voisinage relatif de a dans a.
2. Si U est un ouvert de E, U N A est un ouvert relatif de A.
3. Si F est un fermé de E, F' (N A est un fermé relatif de A.

C4.93. Exemple. —

1. Sur R, si A =|a,b] et c € A, alors [c, b] est un fermé relatif de A, |c, b[ est un ouvert relatif de A,
Ja, b[ est un fermé relatif et un ouvert relatif de A.

2. Sur R, si A = [a,b] et ¢ €]a,b], alors |c, b] est un ouvert relatif de A, [c, b] est un fermé relatif de
A, |a, b] est un fermé relatif et un ouvert relatif de A.

C4. 94. DEFINITION (PROPRIETE PORTANT SUR UNE FONCTION, VRAIE AU VOISINAGE D’UN POINT). —
Soit f € F(A, F) une fonction définie sur une partie A de E.

1. On dit qu'une propriété P(f) portant sur la fonction f est vraie au voisinage de a € A s’il existe un
voisinage V, 4 relatif de a dans A tel que P(f) soit vraie sur V, 4.

2. On dit qu’une propriété P(f) portant sur la fonction f est vraie au voisinage de Uinfini s’il existe une
boule B(0, 1) telle que P(f) soit vraie sur E\ B(0,r).
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C4. 95. Exemple. —

1. On dit qu’une fonction f est positive au voisinage de +oo s’il existe I =|c, +o00[ tel que f soit
positive sur /.

1
2. La fonction f: x — — n’est pas bornée au voisinage de 0.
x
C4.96. Exercice. — Soit E=R[X],||.]|=1].]];-

1. Montrer que A = {Z ap X" Z ag > O} est un ouvert de (E, || .||). Déterminer A.
k=0 k=0

oo [ee)
2. Montrer que B = {Z ap X" Zak = 0} est un fermé de (F,||.||). Déterminer B.
k=0 k=0

C4.97. Exercice. — Soit E=C([0,1],R), ||. || =1 -].-
1. Montrer que A= {f € E : f > 0} est un ouvert de (E,||.||). Déterminer A.

2. Montrer que B={f € E : f(0) =0} est un fermé de (E,||.||). Déterminer B.

C4.98. Exercice. — Soit E=C([0,1],R), ||.[|=1]-1];-
Montrer que A= {f € E : f(0) =0} est dense dans (£, ||.]|).
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4 Etude locale d’une application, continuité

C4.99. Notation. — (E,||.||z) et (F,||.||) désignent deux espaces vectoriels normés et A une partie
non vide de L.

C4.100. DEFINITION (LIMITE D’UNE FONCTION). — Soient a un point adhérent d A et b € F'. Soit une
application f € F(A, F).
On dit que f a pour limite b en a si :

Ve >0, In > 0 tel queVx € AN B(a,n), f(z) € B(b,e).

On écrit alors f(x) —— b.
Tr—ra

C4.101. Remarque. — Avec les notations de la précédente définition, la fonction f a pour limite b en
a si et seulement si :

Ve>0,dn>0telqueVr € A, ||z —allp<n=||f(z)—b]|p <e.
ou encore si et seulement si :

Ve >0, In > 0 tel que f(AN B(a,n)) C B(b,e).

C4.102. PrOrOSITION (UNCITE DE LA LIMITE). —  Soient a un point adhérent & A et by, by € F. Soit
une application f € F(A, F). Si f(x) — by et f(x) — by, alors by = bs.
r—ra

T—ra

Démonstration. Raisonnons par 'absurde et supposons by # by, i.e. € := ||by — ba||r > 0.

11 existe 17, > 0 tel que f(AN B(a,m)) C B(b1,&/3). De méme, il existe 1, > 0 tel que f(AN B(a,n:)) C
B(bs,e/3).

Posons alors 7 := min(n, 72). Comme B(a,n) = B(a,n) N B(a,n,), alors :

f(AN B(a,n)) C B(by,e/3) N B(by,e/3).

Soit alors * € B(a,n) N A, qui est ensemble non vide car a est adhérent a A. On a par I'inégalité
triangulaire :

2e
e =11 =ballp = 101 = f(2) + f(2) = bl < Wor = f(@) [[p + 1 f(2) = balp < -
g 2 .
Comme ¢ > 0, il vient 1 < 3 ce qui est faux. Q.E.D.
C4.103. Remarque. — Si f a pour limite b en a, on dit que b est la limite de f en a, et on note
lim f(z) =b.
r—ra
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C4.104. DEFINITION (CONTINUITE). — Soienta € Aet f: A— F.
1. On dit que | est continue en a si :

f(@) — f(a).

Tr—a

2. On dit que | est continue sur A si [ est continue en tout point de A.

C4.105. PROPOSITION (COMPOSITION DE LIMITES). — Soit (G, ||.||;) un espace vectoriel normé, soit
B C F et soient f € F(A, F), g € F(B,G).

Supposons que f(A) C B.

Lapplication g o f est bien définie et pour tout a € A, b € B etc € G :

flx) —=b
= gof(zx) —>c
y) c Tr—a
y—b

Démonstration. Soit € > 0.

Comme g(z) —6 il existe > 0 tel que g(B N B(b,n)) C B(c,¢).
T—>

Comme f(z) —— b, il existe a > 0 tel que f(AN B(a,«)) C B(b,n) N B (ici nous utilisons ’hypothése
r—ra

F(A) C B).

Donc go f(AN B(a,a)) C B(c,e).

Ainsi go f(z) —— c. Q.E.D.
rT—ra

C4.106. THEOREME (CARACTERISATION SEQUENTIELLE DE LA LIMITE). — Soienta € A, b € F et

feFAF).

Alors f(x) — b si et seulement si pour toute suite (x,,) d’éléments de A :
T—ra

T, > Q - f(l'n) — b.
n—--+o0o n—>-+o0o

Démonstration. Procédons par double implication.
Soit (x,,) une suite d’éléments de A convegeant vers a. Soit ¢ > 0.
Comme f(z) — b, il existe n > 0 tel que f(AN B(a,n)) C B(b,¢).
T—ra

Comme z,, — q, il existe N € N tel que :
n—>+00

Vn>= N, ||lz,—allzg<n

soit =, € AN B(a,n). Alors pour tout n > N, f(z,) € B(b,¢), soit || f(z,) —b||p < €.
Donc f(x,) —— b.

n—> 400
Raisonnons par contraposée et supposons que f(z) ne converge pas vers b quand z tend vers

a.
Alors il existe € > 0 tel que pour tout n > 0, f(AN B(a,n)) ¢ B(b,e).
Donc pour tout n € N¥, il existe z,, € ANB(a,1/n) tel que f(x,) & B(b,¢), ie || f(z,) — bl > .
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1
— La suite (z,) converge vers a, puisque pour tout n € N*, ||z, — al|p < - (théoréme d’enca-

drement pour les suites réelles).
— La suite (f(x,)) ne converge pas vers b, car pour tout n € N*, || f(z,) — b|| > ¢ (faire un
bref raisonnement par ’absurde pour s’en convaincre).

Q.ED.

C4.107. Remarque. — Si f a pour limite b en a, alors pour toute suite (z,,) convergeant vers a :

(f(xy)) converge et f( lim f(xn)> = lim f(x,).

n—-+o0o n—>-+4o00

C4.108. DEFINITION (NOTATIONS DE LANDAU). —  Soient f € F(A, F) et ¢ € F(A,R). Soit a € A.
Alors :

1 f = o(p) si:

Ve>0, >0, VeeAnBlan), |If@)ly<elo@).

/()
@) e

Lorsque ¢ ne s’annule pas, ceci équivaut a
2. f=0(p) si:
a

AM >0, 3n>0, VeeAnBla,n), [[f(@)|lp<Mle(z).

Lorsque © ne s‘annule pas, ceci équivaut & — est bornée au voisinage de a.

C4.109. DEFINITION (FONCTIONS EQUIVALENTES). Soient f, g € F(A,F) eta € A.
On dit que f et g sont équivalentes au voisinage de a, et on écrit [ ~ g, si
a

F—g=o(lgllr)

C4.110. PROPOSITION (~ EST UNE RELATION D’EQUIVALENCE). — Soit a € A. La relation ~ est une

a a

relation d’équivalence sur F(A, F).

Démonstration. 11 s’agit de montrer que la relation ~ est réflexive, symétrique et transitive.
a

o La réflexivité est évidente.
e Pour la symétrie, soient (f,g) € F(A, F')? telles que f ~ g, ie f —g = 0(||g||) au voisinage de
a.

_ g

Ainsi, il existe 7 > 0 tel que pour tout x € AN B(a,n), || f(z) — g(x) || 5 HF Donc, pour

tout v € B(a,n) N A:

1)1l =1 £@) — 9@) + 9@) 1> 190 1~ || £2) — @) ] > 12D
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Donc pour tout z € B(a,n) NA, || g(2) || < 2]|| f(z) || . On en déduit donc que g — f = o(]| f||)

au voisinage de a. En effet, pour tout ¢ > 0, il existe a > 0 tel que pour tout z € B(a,a) N A :

lg(x) = f(x) || < w

Posons = min(n, a), pour tout € AN B(a, f), || g(x) — f(z) || <e|| f(x) || Donc g ~ f.
* Montrons que ~ est transitive. Soient f, g, h € F(A, F) telles que f ~ g et g ~ h. Alors

f=h=(=g9)+g—h)=o(lgllp) +ollhllF))-

a

On montre comme dans la preuve de la symétrie que dans un voisinage de a, || g || < 2|| h ||z
puis que f —h =o(||h]|5), dou f ~ h.

Q.ED.

C4. 111. PrOPOSITION (ESPACE VECTORIEL DES FONCTIONS CONTINUES). — L'ensemble C°(A, F) des
fonctions continues sur A est un sous-espace vectoriel de F (A, F).

Démonstration. e Remarquons d’abord que la fonction nulle est continue sur A.
e Soit alors (f,g) € C°(A, F)?, soit (\, u) € K2, soit a € A. Montrons que \f + jg est continue en
a, en utilsant la caractérisation séquentielle de la limite.
Soit (a,,) une suite d’éléments de A convergeant vers a. Par continuité de f et g en q, il vient :

flan) —— fla@) et glan) —— gla).
Par opération sur les limites de suites, nous en déduisons :
(Af + ng)(an) = AMflan) + nglan) ——— Af(a) + ngla) = (Af + ng)(a).
Ceci étant vrai pour toute suite (a,) d’éléments de A convergeant vers a :
S+ ng)(@) —— (A\f + pg)(a).

Q.ED.

C4.112. PrROPOSITION (D’AUTRES MODES DE CONSTRUCTION D’APPLICATIONS CONTINUES). —

1. Composition
Soit (G, || .||5) un espace vectoriel normé, soit B C F, et soient f € C°(A, F'), g € C°(B, G) telles que
f(A) C B.
Alors go f € C°(A,G).

2. Restriction
Soit f € CO(A, F) soit A’ C A. Alors f € C°(A', F).

3. n-uplet
Soient (F1, || . [];), -, (Fn, |- |l,) un nombre fini d’espaces vectoriels normés. Notons (F, || . || ) Uespace
vectoriel normé produit. Soit f = (f1,..., fn) € F(A, F). Alors :

feCYAF) <= Vie[l,n], fi € C'A,F).
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Démonstration. 1. Conséquence immédiate de la Proposition C4.105.
2. Immédiat.

3. S’obtient simplement par caractérisation séquentielle de la limite et par caractérisation de la
convergence dans les espaces produits (Théoréme C4.51).

Q.ED.

C4.113. THEOREME (CONTINUITE, DENSITE ET PROLONGEMENT D’IDENTITE). —  Soient f,g €
CU(A, F). Soit B C A une partie dense dans A.
Si f et g coincident sur B (i.e. siVx € B, f(x) = g(x)) alors [ = g.

Démonstration. Soit © € A. Par densité de B dans A, il existe une suite (z,),en d’éléments de B telle
que x, — a.

n—>-+00
Par hypothése, pour tout n € N, f(z,) = g(z,). Mais par ailleurs, par caractérisation séquentielle de la

continuité :

fla) —— f@) et gle) — gla).

Donc par unicité de la limite, f(z) = g(z).
Ceci étant vrai pour tout z € A, f = g. Q.E.D.

C4. 114. THEOREME (CARACTERISATION DES APPLICATIONS CONTINUES VIA LES OUVERTS). — Soit
f € F(A,F). Alors f est continue sur A si et seulement si pour tout ouvert U de F, f~*(U) est un ouvert relatif
de A.

Démonstration. Procédons par double implication.
Soit U un ouvert de F. Montrons que f~(U) est un ouvert relatif de A.
Soit z € f~1(U). Comme f(z) € U et U est un ouvert de F), il existe £ > 0 tel que :

B(f(x),e) C U.
Comme f est continue en z, il existe 7 > 0 tel que :
F(ANB(z,n)) € B(f(x),e) CU

donc AN B(x,n) C f~%(U). On en déduit que f~'(U) est un voisinage relatif de z.
Ceci étant vrai pour tout x € f~*(U), on en déduit que f~!(U) est un ouvert relatif.
Soit x € A, soit € > 0. Posons U = B(f(z),¢).
Comme U est un ouvert, f~!(U) est un ouvert relatif de A, donc il existe n > 0 tel que B(z,n)NA C
fYU), dou f(AN B(x,n)) C B(f(z),e). Ainsi, f est continue en z.
Ceci étant vrai pour tout x € A, f est continue sur A.

Q.ED.
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C4.115. Exercice. —
1. Soit € C°([0, 1], R). Montrer que {z € [0,1] : f(x) > 0} est un ouvert relatif de [0, 1].

2. Plus généralement, si f € C°(A, F'), montrer que {z € A : f(z) # 0} est un ouvert relatif de
A.
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5 Applications linéaires continues

C4.116. THEOREME (CARACTERISATION DES APPLICATIONS LINEAIRES CONTINUES. — ) Soient (E, || . ||
et (F,||.||p) deux espaces vectoriels normés. Soit w € L(E, F') une application linéaire. Les cing propositions
suivantes sont équivalentes.

1. u est continue sur L.
w est continue en 0.
La restriction de u @ la boule unité fermée est bornée.

I existe un réel C' > 0 tel queVx € E, ||u(x) ||, < C||z||5.

S A &N

u est lipschitzienne.

C4.117. Exemple. —
1. Tout endomorphisme de R" est continu pour la norme || . ||_.

2. Soit (+|-) un produit scalaire sur un R-espace vectoriel £, de norme associée || . ||.
Alors pour tout x € E, I'application :

(z]): E—R; y— (z[y)

est continue.

3. L’application évaluation en O :
evg: C°([0,1],R) — R ; f+ f(0)
est continue pour la norme || .|| . En revanche, elle n’est pas continue pour la norme || . ||;.
4. Dapplication évaluation en 2 :
evy: RIX] — R ; P— P(2)

n’est pas continue pour la norme ||. ||,. En effet, || X" ||, = 1 alors que ¢(X™") — . oo
n—-—+0o0
C4.118. Exercic. — Soient (E,]|.]||) un espace vectoriel normé et ¢ € E* une forme linéaire.
1. Montrer que Ker(p) est fermé si et seulement si ¢ est continue.

2. Montrer que Ker(y) est dense dans E si et seulement si ¢ n’est pas continue.
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C4.119. THEOREME (CARACTERISATION DE L’EQUIVALENCE DES NORMES). — Soit E un K-espace
vectoriel, soient N, et No deux normes sur E. Les trois propositions suivantes sont équivalentes.

1. Ny et Ny sont équivalentes.
2. (E,Ny) et (E, Ny) ont les mémes parties ouvertes.

3. Lapplication identité de E est continue en tant qu'application de (E, N1) vers (E, Ny), et en tant
qu'application de (E, Ny) vers (E, N).

C4. 120. THEOREME (E SPACE VECTORIEL DES APPLICATION LINEAIRES CONTINUES). Soient (I, || .|| 5
et (F,||.||p) deux espaces vectoriels normés. Notons L .(E, F') Uensemble des applications linéaires continues de

(B, [ 1lg) vers (5] 1] p)-
Alors L.(E, F) est un sous-espace vectoriel de L.(E, F).

C4.121. THEOREME (COMPOSITION DES APPLICATIONS LINEAIRES CONTINUES). — Soient (E, || .|| 5),
(F |1 7), (GL]-lg) trois espaces vectoriels normés. Soient u € L.(E, F) etv € L.(F,G). Alors :

vou € L.(E,G)

C4.122. DEFINITION (ALGEBRE NORMEE UNITAIRE). —  Soient A une K -algébre normée unitaire et || . ||
une norme sur A. On dit que (A, || .||) est une algébre normée unitaire si :

V(z,y) € A% |lzyll <llz|l . Iyl

C4.123. Exercice. — Soit (A, || .||) une algébre unitaire normée. Montrer que I’application :

Ax A — A
(z,y) = T Xy

est continue.

C4.124. PROPOSITION (UN EXEMPLE D’ALGEBRE NORMEE UNITAIRE). — Soient (E, ||.||5) un espace
vectoriel normé et A C E. Alors (B(A,K), ||.||.,) est une algébre unitaire normée.

C4.125. Exemple. — Pour tout A = (a;;) € M,,(K) on pose :

n
| Al = max > al
=1

1<ysn

Démontrer que (M,,(K),||-||) est une algébre unitaire normée.
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C4.126. PROPOSITION (APPLICATIONS BILINEAIRES CONTINUES). — Soient (E,||.||z), (E,||-|)
(G,|].l|g) trois espaces vectoriels normés. Soit

B:ExXF—=G
une application bilinéaire. Alors B est continue si et seulement s’il existe un réel C > 0 tel que :

V(z,y) e ExXF, [[B(zy)lle<C.llzllg .yl

Démonstration. Rappelons que la norme placée sur F' x [ est la norme produit || - ||, définie par :

Vi(r,y) e ExF,||(z,y) || :=max ([, [lyllp)-

Procédons par double implication.

Supposons I'application B continue. Alors B est continue en tout point de £/ x [, en parti-
culier continue au point (Og, 0r). Remarquons que, B étant bilinéaire, B (0g,0p) = Og. Dans la
définition de la continuité de B en (0g,0F), nous spécifions € a 1 > 0 pour obtenir qu’il existe
a > 0 tel que pour tout (z,y) € E X F:

|z y)ll<a = |[|Blzyllg <1
N————— (. 7

1 @) ~(0.0r) || <a 1 B(e0)~B(05.05) | o<1
e Soient z un vecteur de F non nul et y un vecteur de F' non nul. Alors le vecteur <H I x, I aH Y
Tlle Yllp
de E x F a une norme || -|| égale a a. Donc :
H B ( a x, a y) 1.
Nellg Nyl ™/ g
En utilisant la bilinéarité de B, I’homogénéité de la norme || - ||, et le fait que «, ||z ||, et
| v || sont strictement positifs, nous en déduisons :
1
() 1Bz, y)lle < 5 el lyllr -

e Si (z,y) € E x F est tel que x = 0p ou y = Op, alors la bilinéarité de B livre B(z,y) = Og.
L’inégalité (x) s’étend donc a tous les vecteurs (z,y) de E x F.
Supposons qu’il existe un réel C' > 0 tel que :

V(z,y) e ExF, [[B(x,y)lle <C |lzllg llyllp-

Soient (x,y) € E x F. Démontrons que B est continue en (z, y), en appliquant le critére séquentiel
de continuité. Soit ((n, yn)),cn une suite d’éléments de £ x F telle que :

(T Yn) — s (2,y) .

n—>-4oo

D’aprés le Théoréme C4.51, nous en déduisons :

-1l Il
n——=x et Yy, ———y
n—> 400 n—> 400
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Soient n € N.

I B (zn,yn) — B(@,9) |le < || B (@0 yn) — B(@n,9)|lg + || B(@n,y) — B(x,y) ||,  [Inégalité triang
= || B@n,yn—¥) g+ Bz —2,9) |4 [B est bilinéaire|
< CHlznllg Hon—yllp+C |lzn —xllg llyllp cf. hypothése]

La suite (z,,), . est convergente donc bornée, pour la norme || - || ;. Donc il existe M > 0 tel que
pour tout n € N, ||z, ||z < M. On en déduit que pour tout n € N :

0<|IB(xn,yn) = Bz, y) Il SC M |lyn = yllp +C [[2n —2llp [lyllp -

D’aprés le théoréme d’encadrement, || B (z,,,y,) — B(z,y) || ——— 0, i.e. B (2, Yn) e,

n—-+00 n—s—+o0o
B(z,y).
Q.E.D.
C4.127. Exemple. — Si E est muni d’un produit scalaire (-, -) de norme associée || .||, alors appli-
cation

ExFE — R
(r,y) +— (z,y)

<'7'>

est continue pour la norme ||. ||
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6 Compacité

C4.128. Notation. — Soient (E,||.||;) un espace vectoriel normé et A une partie non vide de E.

C4.129. DEFINITION (PROPRIETE DE BOLZANO-WEIERSTRASS). —  On dit que A vérifie la propriété de
Bolzano-Weierstrass si de toute suite d’éléments de A on peut extraire une sous-suite convergente dans A, i.e. si :

Y(tn)nen € AN, Jo: N =N 2, Ja € A, Wigilg) ——— @

n—-+o0o

C4.130. DEFINITION (PARTIE COMPACTE). —  On dit que A est une partie compacte (ou que A est un
compact) si A vérifie la propriété de Bolzano-Weierstrass.

C4.131. Exemple. — Un segment de R est un compact (cf. théoréme de Bolzano-Weierstrass de
MPSI).

C4.132. PrROPOSITION (UN COMPACT EST FERME BORNE). —  Si A est un compact, alors A est fermé et J
borne.

C4. 133. Remarque (La réciproque de la proposition précédente n’est pas nécessairement vraie.). —

1. La boule unité de (R[X], || .||
d’adhérence.

) est pas compacte. En effet, la suite (X") n’a pas de valeur

2. La boule unité de (B([0,1],R), || .||, ) n’est pas compacte. En effet, la suite (f,,) définie par pour
tout n € N :
fni[0,1] — R ; @+ sin(2n7x)

n’a pas de valeur d’adhérence.

C4.134. PrOPOSITION (UN FERME D’UN COMPACT EST COMPACT). —  Supposons A compacte. Soit
B C A. Alors B est un compact si et seulement si B est fermé.

C4.135. THEOREME (UN PRODUIT D’UN NOMBRE FINI DE COMPACTS EST COMPACT). —  Soient
(B, | M1y)s - (Eny || -l,,) des espaces vectoriels normés. Soient Ay C Ey, C, A, C E,, des compacts.

Alors Ay x ... x A, est un compact de Uespace vectoriel normé produit (Ey x ... x E, || .|]).

C4.136. CoroLLAIRE (ComracTs DE (K", || .|| )). — Une partie de (K", || .||,) est compacte si et

seulement si elle est fermée et bornée.
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C4.137. THEOREME (L'IMAGE CONTINUE D’UN COMPACT EST UN COMPACT). — Soit (F,||.||) un
espace vectoriel normé. Soit f € C°(A, F).
Si A est compact, alors f(A) est compact.

C4. 138. Remarque (Conséquence fondamentale du théoréme précédent). — Si A est compact et f € C(A,R),
alors f est bornée et atteint ses bornes.

C4.139. DEFINITION. — Continuité uniforme) Soit (F\, || . ||) un espace vectoriel normé. Une application
f: A — F est dite uniformément continue si :

Ve>0, >0, VY(z,y)cA’ |lz—yll<n=If=)-fW]<e

C4.140. Remarque. — Soit (F,||.]|;) un espace vectoriel normé. Soit f: A — F. Alors :

f lipschtizienne = f uniformément continue = [ continue.

C4. 141. THEOREME (UNE FONCTION CONTINUE SUR UN COMPACT EST UNIFORMEMENT CONTINUE).
—  Soit (F,||.||) un espace vectoriel normé. Soit f € C°(A, F'). Si A est compact, alors [ est uniformément
continue.

Démonstration. La démonstration est analogue a celle du théoréme de Heine, vue en MPSIL. 0O.E.D.
C4.142. Exercice. —  Soit (E,||.||;) un espace vectoriel normé. Supposons que la sphére unité
S={xe€FE : ||x|| =1} est compacte. Montrer que B(0,1) est compacte.

C4.143. Exercice. — La boule unité de (/*(R), || .||, ) est-elle compacte ? J
C4. 144. Exercice. — Soit K un compact d’un espace vectoriel normé. Montrer qu’il existe une boule
fermée de rayon minimal contenant K.
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7 Espaces vectoriels normés de dimension finie

C4.145. Notation. — Dans toute cette partie, £/ désigne un K-espace vectoriel de dimension finie.

C4.146. THEOREME (EQUIVALENCE DES NORMES EN DIMENSION FINIE). —  JToutes les normes sur E
sont équivalentes.

Etapes d’une démonstration.

1. Soit n € N*. On considére une norme quelconque || - || sur R™.

(a) Démontrer que I'application
ro | %) — ®S-D
x — x
est continue.

(b) Soit S:={zx e R" : ||z|| = 1}. Justifier que S est une partie compacte de (R",||-||__).
(c) Démontrer qu’il existe > 0 et 8 > 0 tels que, pour tout x € S :

a< |zl <B.

(d) En déduire que les normes ||-|| et || - || sont équivalentes.
2. Soit E un K-espace vectoriel de dimension finie n > 1. Soit N; et N, deux normes sur E.

(a) Soit (eq,...,e,) une base de E. Justifier que I’application

R" — E
Y (X1, .., Tp) +—> ka.ek
k=1
est un isomorphisme.
(b) Justifier que 'application
E — R;
N4 =
z — o7 (2) ]l

définit une norme sur E.

(c) Justifier que 'application

| @y 2 e
(z1,...,2n) > Ni(e((z1,...,22)))

définit une norme sur R".
(d) Déduire de Q1.(d) que les normes N; et N, sont équivalentes.

(e) Justifier que N; et N, sont équivalentes.
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C4. 147. COROLLAIRE (SUITES ET TOPOLOGIE EN DIMENSION FINIE). — Soient deux normes Ny et Ny
sur E.

1. Une partie de E est ouverte pour la norme N, si et seulement si elle est ouverte pour la norme N-.

2. Une suite d’éléments de E converge vers x € E pour la norme Ny si et seulement si elle converge vers v
pour la norme Ns.

3. Une partie de E est compacte pour Ny si et seulement si elle est compacte pour N.

Démonstration. 1. Conséquence du Théoréme C4.119 et du Théoréme C4.146.
2. D’aprés le Théoréme C4.146, il existe a, 8 > 0 tels que N7 < Ny < SN,
Soit (2,,)nen € EN qui converge vers x € F pour la norme Ny, i.e. telle que

n—>+00

Pour tout n € N :
0 < No(z, — ) < BNy (2, — ).

Par théoréme d’encadrement pour les suites réelles, Ny(z,, — ) — 0, i.e. la suite (2,,)nen
n—-4oo

converge vers z € F/ pour la norme Nj.
Par symétrie des rdles joués par N, Vs, toute suite convergente d’éléments de E qui converge
vers € E pour la norme Ny, converge vers x pour la norme N;.

3. D’apreés le Théoréme C4.146, il existe a, 3 > 0 tels que aN; < Ny < SN;. Soit A une partie
compacte de E pour la norme N;. Soit (a,)nen € AN. Comme A est compacte pour la norme
Ni, il existe une application strictement croissante ¢o: N — N et a € A tels que :

N
Ap(n) —— a.
n—>-+00

D’ou N, (%(n) — a) — 0. Pour tout n € N :
n—>-+o00

0 < Nz (apm) —a) < BN (apm) —a) .-

y < ) . , . .
Par théoréme d’encadrement pour les suites réelles, Ny (a¢(n) — a) m 0, i.e. la suite (a¢(n))neN

converge vers a € A pour la norme N,. La partie A est donc compacte pour la norme Ns.
Par symétrie des roles joués par /V;, Ny, toute suite partie compacte pour la norme N, est com-
pacte pour la norme N;.

Q.ED.

C4. 148. THEOREME (COMPACITE EN DIMENSION FINIE). — Soit || . ||z une norme sur E. Soit A une
partie de E. Alors :
A est compacte <= A est fermée et bornée.

Démonstration. Cf. Proposition C4.132.
e Soit p € N* la dimension de E, soit B = (e, ..., e,) une base de £. L’application :

FE — R

p
|- 12,00 Zwiei —  max |z
— 1<i<p

définit une norme sur E.
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e Nous vérifions qu’une suite

p
ap = E Qi n€;
i=1 neN
d’éléments de E converge pour la norme || - || g o si et seulement si pour tout i € 1, p] la suite

de nombres réels (a; ,,)n,en converge dans R (cf. preuve du Théoréme C4.51).
Nous vérifions également que cette méme suite est bornée pour la norme ||-|| g si et seulement
si si pour tout ¢ € [[1,p] la suite de nombres réels (a;,)n,en est bornée dans R.

e Par le Théoréme C4.146, les normes || .|| et || - ||, sont équivalentes.

e Soit A une partie fermée pour la norme || - ||g. Montrons que A est fermée pour la norme
[B.
Par le Théoréme C4.119, (E,|| - ||g) et (E,|| - ||g.oo) ont les mémes ouverts. Ainsi, ils ont les
mémes fermés et donc A est également fermée pour || - || g 0c-

e Soit A une partie bornée pour la norme || - ||z. Montrons que A est bornée pour la norme
1 e

Nous savons qu’il existe a, 8 > 0 tels que

all [le <[ llee < B - |5
La partie A étant bornée pour la norme || - || g, il existe M > 0 tel que pour tout z € A,
|z||z < M. Nous en déduisons que pour tout € A, ||z||g < SM. La partie A est donc
bornée pour la norme || - ||g -
e Soit A une partie fermée et bornée pour la norme || - ||gz. Montrons que A est une partie

compacte pour la norme ||-|| g, ou ce qui revient au méme pour la norme ||-|| g (cf. Corollaire
C4.147).

D’apreés ce qui précéde, nous en déduisons que A est fermée et bornée pour la norme || - ||z -
Soit

(an = (1,5 Gpn)) pen
une suite d’éléments de A. La partie A étant bornée pour la norme || - || g o, il existe M > 0
tel que :

Vn €N, |lanlze < M.

On en déduit que pour tout i € [1,p], la suite (a;,),en est une suite d’éléments du segment

[—M, M].

— Par le théoréme de Bolzano-WeierstraB, il existe ¢y : N — N strictement croissante telle
que (G1,¢,(n))nen converge vers un réel de [—M, M] noté a;.

— Par le théoréme de Bolzano-WeierstraB, il existe ¢5: N — N strictement croissante telle
que (2,4, 0p(n) JneN converge vers un réel de [—M, M] noté as.

— Par le théoréme de Bolzano-WeierstraB}, il existe ¢3: N — N strictement croissante telle
que (3,0, 0p50p5(n) )neN converge vers un réel de [—M, M| noté as.

— De proche en proche on construit p applications ¢y, ..., p,: N — N, toutes strictement
croissantes, telles que pour tout i € [1,p] :

ai,(plo...ogoi(n) m a; € [—M, M]
Comme une suite extraite d’une suite convergente est convergente de méme limite, il vient
que pour tout i € [1,p] :

Qi pr0...00p(n) m a; € [—M, M]
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Nous en déduisons que la suite

(%10~~-O<Pp(n) = (A1,p10..00p(n): - - - vapmomwp(n)))neN
converge pour || - ||g et a pour limite a := (a4, ...,a,). La suite ((awo,,,ow(n))neN est une
suite d’éléments de A, partie fermée pour la norme || || g ~, qui converge vers a pour la norme
|| - || £,00- Sa limite @ appartient donc a A.
Nous avons donc construit une suite extraite de (a, = (a1, ..., pn)),cn> qui converge dans
A pour la norme || - || g 0c-
Nous en déduisons que la partie A est compacte pour la norme || - || g 0c-

Q.ED.

C4. 149. THEOREME (SOUS-ESPACE VECTORIEL DE DIMENSION FINIE D’UN ESPACE VECTORIEL NORME
OUELCONQUE). — Soit (F,|| - ||r) un espace vectoriel normé, non nécessairement de dimension finie. Soit G
un sous-espace vectoriel de dimension finie de F'.

Alors G est une partie fermée de F'.

C4.150. Exercice. — On munit £ := C°([0, 1], R) de la norme || - ||.. Soit F' le sous-espace vectoriel
de E formé des fonctions polynomiales. F' est-il fermé dans E'?

C4.151. THEOREME (APPLICATIONS LINEAIRES EN DIMENSION FINIE). — Soit (E, ||-||z) un espace
vectoriel normé de dimension finie. Soit (F\||.||z) un espace vectoriel normé. Toute application linéaire de
(E || -1l z) vers (F,||.||z) est continue, i.e. :

LCU(E,F)=L(E,F).

Démonstration. Soit u: (E,|| - ||g) — (F,]|| - ||r). Montrons que u est continue.
e Soit n la dimension de E et soit B = (e, ...,e,) une base de £. On vérifie que 'application :
E — R
n
111200 inei > Maxici<n |Til
i=1
est une norme sur £.
e Soit m la dimension de F et soit C = (fi,..., f,,) une base de F. On vérifie que 'application :

F — R

m
1l > yifi e max [y;[ — e
J=1 <js<m

st une norme sur F'.
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e Montrons que u: (E,||-||go) — (F,]|||Foo) est continue. Soit A la matrice de v dans les bases

n
B et C. Soit x = Zmiei.
i=1

i=1 i=1 i=1  j=1 j=1 \i=1
Ainsi :
ol = s 13 Al < 41 e
ou ||A|| == maxi<i<n  1<j<m |[A]i;] - Par le Théoréme C4.116, u: (E, || ||g.o0) — (F, || ||Foo) €st
continue.

e D’aprés les Théorémes C4.146 et C4.119, les applications :
ide: (B, |- llg) — (B[l -[lpee) et idp: (B[]~ [[poe) — (F3]|-[IF)

sont continues.
e Par la Proposition C4.121, la composition d’applications continues :

id id
(E. 1] 1l) =5 (Bl o) = (B | Mree) = (2] - IF)
qui coincide avec u: (E, || - ||g) — (F,|| - ||r) est continue.
Q.ED.
C4. 152. THEOREME (APPLICATIONS BILINEAIRES EN DIMENSION FINIE). — Soient (E, || . ||,), (E2, || - ||,
deux espaces vectoriels normés de dimension finie et soit (F, || . ||) un espace vectoriel normé. Soit B: Ey X Ey —»

F une application bilinéaire. Alors B est continue.

Démonstration. Soient (e, ...,e1,,) une base de E; et (e21,...,€2,,) une base de E;. On définit une
nouvelle norme sur £; et une nouvelle norme sur £ en posant :

El — R+
N1 ni
T = g A1 — Ni(x) := max |\
1<i<ny
i=1
et
Es — R+
N2 n2
Ty =) Ayjes; > Na(ra) := max |Ay| .
1<j<ne
i=1
Comme F; et E, sont de dimension finie, les normes Ny, || - ||, sont équivalentes et les normes Ny, || - ||,

sont équivalentes. Il existe donc deux constantes o et « telles que :

\V/.l’lEEl, N1($1)<Oé1||$1||1 et VZEQEEQ, NQ($2)<O{2||$2||2 .
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Soit (z1,22) € Ey x Ej. Alors il existe deux familles de scalaires (A ;) et (A25) 1 <y, telles que:

1<i<ny

ni n2
T, = E )\171‘6171' et To = E )\20‘627]' .
i=1 j=1

Comme B est bilinéaire :

B(wy,12) = Z >\1,i>\2,jB(617i762,j) .
(i,j)e[[l,m]]x[[l,ng]]
Puisque || - || est une norme sur F :
|| B(z1,22) || < > [Aida ] [| Bleeas) || -
(i,j)e[[l,nl]]x[[l,ng]]
En posant p := max B(ei;,es2:) ], il vient alors :
P H (i5)€[L,m]x [1,n2] 1B(erise2s)
| B(zy,z2) || < px > | Avil [A2,]

(ihj)e[l’nlﬂ X [[lanZII

< ux > Ni (z1) N2 (22)

(1:9)€l,m]x[1,n2]
= U XNy XNo XNl(Il) XNQ(IQ)

< yxnlxngxalxagxHlelexQHQ.

-~

=C
D’aprés la Propriété C4.126, I'application B est continue. Q.E.D.

C4.153. Remarque (Continuité du déterminant). — Le théoréme précédent admet une généralisation
pour les applications multilinéaires : si (E1, ||.||;),...,(Ey, || -|[,,) sont des espaces vectoriels normés de
dimension finie et si (F)||.||) est un espace vectoriel normé, alors toute application multilinéaire de
E; x ... x E, vers F' est continue.

En particulier, si B = (ey,...,e,) est une base d’un espace vectoriel F de dimension finie, alors le
déterminant dans B est continu. De plus, application déterminant :

M, (K) — K

det M — det(M)

est continue.

C4.154. Exercice. —
1. Montrer que GL,(K) est un ouvert de M,,(K).
2. L’ensemble SL,,(R) = {M € M, (R) | det(M) = 1} est-il compact?
3. Montrer que O(n) = {M € M,(R) | M x M" = I,,} est compact.
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C4.155. THEOREME (SUITES ET COORDONNEES EN DIMENSION FINIE). —  Fixons une base (e1, ..., €p)

de E. Etant donnée une suite (u,,),cn d’éléments de E, il existe des suites (U1 ) neN, - - -, (Upn )nen déléments
€ y €N, ) D, €

de K telles que :

P
Vn € N, u, = E TR
i=1

p
Alors (uy)nen converge vers un vecteur a = E a;e; si et seulement si pour tout © € [1,p], (Uin)nen converge

i=1
vers a;.

C4.156. THEOREME (APPLICATIONS COORDONNEES DES APPLICATIONS CONTINUES). — Soient (F || . ||
espace vectoriel normé et A une partie non vide de E. Fixons une base (cy, . .., e,) de F. Etant donnée une appli-
cation f: A — F, il existe des applications f1, ..., f,: A — K (uniques), appelées applications coordonnées
de f, telles que :

Ve € A, flz) = i fi(z)e;.

Alors | est continue si et seulement si pour tout i € [1,p], les applications f; sont continues.
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8 Séries d’un espace vectoriel normé

C4.157. Notation. — Dans toute cette partie, £/ désigne un K-espace vectoriel normé.

C4.158. DEFINITION (SERIE ASOCIEE A UNE SUITE). —  Soit (uy,)neN une suite d’éléments de E.

1. La suite (Sy,)neN de terme général
Sn == Z U
k=0

est appelée série associée @ (up)nen- On la note E Uy. On dit aussi que E Uy, est la série de terme
général u,,.

2. Pour tout n € N, le vecteur S,, de I est appelé somme partielle d'ordre n.

C4. 159. DEFINITION (SERIE CONVERGENTE, SOMME D’UNE SERIE). —

1. Une série Z uy, d’éléments de E est dite convergente si la suite (S,,) de terme général

n
Sn: E U
k=0

converge, i.e. la suite des sommes partielles est convergente.

+oo
2. Si cest le cas, la limite de (S),)nen est appelée somme de la série Z Uy, et est notée Z Up,.-
n=0
C4.160. Remarque. — La série associée a une suite (u,,) d’éléments de E définie pour n > ng est la

n
suite de teme général S, = E uy, définie pour n > ny. La série E u, est dite convergente si la suite

k=ng
400
(Sy) est convergente. Sa limite, encore appelée somme de la série, est notée g U,
n=ng

C4. 161. PROPOSITION (ESPACE VECTORIEL DES SERIES CONVERGENTES). —
1. Lensemble S, des suites (u,)nen € EN telles que E wu,, converge est un sous-espace vectoriel de E™.

2. De plus, Uapplication :

S, — K
ro. +oo
« somme d’une série convergente »
(un)nEN 7 E Up,

n=0

est linéaire.
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C4. 162. PROPOSITION (LE TERME GENERAL D’UN SERIE CONVERGENTE CONVERGE VERS 0). —  Soit
(Un)neN une suite d’éléments de E. Alors :

Zun converge — U, — 0

n—aoo

C4.163. Attention. — La réciproque de la Proposition précédente est fausse. Cf. série harmonique
dans (R, |-|).
C4.164. DEFINITION (RESTE D’UNE SERIE CONVERGENTE). —  Soit Zun une série d’éléments de F,

convergente. Pour tout n € N, le reste R,, d'ordre n est défini par :

+oo n +o0o
Rn o= E U, — E Up = E U -
k=0 k=0

k=n+1

C4.165. PROPOSITION (LA SUITE DES RESTES D’UNE SERIE CONVERGENTE CONVERGE VERS (). —
Soit g uy, une série d’éléments de E, convergente. La suite (R,,) des restes converge vers 0.

C4. 166. DEFINITION (SERIE ABSOLUMENT CONVERGENTE). —  Soit (uy,,) une suite d’éléments de E. La
série E uy, est dite absolument convergente si la série de nombre réels positifs E || wy || est convergente.

C4.167. THEOREME (EN DIM. FINIE UNE SERIE ABSOLUMENT CONVERGENTE EST CONVERGENTE). —
Supposons (E, || .||z) de dimension finie. Soit (u,,) une suite d’éléments de K. Alors :

Z Uy, est absolument convergente — Z Uy, est convergente

C4.168. Remarque (Pas d’extension du théoréme précédent en dimension infinie). — Ce résultat n’est pas
nécessairement vraie en dimension infinie, cf. exercice suivant.

X’n
C4.169. Exercice. — Soit R[X]| muni de la norme || .|| . Démontrer que la série g — est abso-
n!
n=0
lument convergente, mais qu’elle n’est pas convergente.
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C4.170. THEOREME (EXPONENTIELLE D’UNE MATRICE). — Soii p € N*.

An
1. Pour tout A € M,(K), la série Z T est convergente.
2. Pour tout A € M,(K), on note exp(A) Uexponentielle de la matrice A définie par :

+00 An

exp(A) := Z g

n=0

C4.171. Exercice. — Calculer exp(A), ou A := ( ; ? ) .
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9 Connexité par arcs

C4.172. Notation. — Dans toute cette partie, I/ désigne un K-espace vectoriel normé.

C4.173. DEFINITION (CONNEXITE PAR ARCS). — Soit A C E une partie non vide. On dit que A est
connexe par arcs si pour tout couple (a,b) € A?, il existe deux réels o« < [3 et une application continue

e: o, f] — A

telle que p(o) = a et p(P) = 0.

C4.174. THEOREME (CONVEXITE ET CONNEXITE PAR ARCS). —  Une partie convexe de E est connexe
par arcs.

C4.175. Exemple. —
1. Les intervalles de R sont connexes par arcs.

2. Une boule d’un espace vectoriel normé est connexe par arcs.

C4.176. THEOREME (PARTIES CONNEXES PAR ARCS DE R). — Soit A C R une partie non vide. Alors
A est connexe par arcs si et seulement si A est un intervalle.

C4.177. Exercice. —
1. Lintersection de deux parties connexes par arcs est-elle connexe par arcs?

2. Une réunion de deux parties connexes par arcs est-elle connexe par arcs?

C4.178. THEOREME (Image continue d’une partie connexe par arcs). — Soit (F,||.||z) un espace
vectoriel normé. Soit f: E — F une application continue. Soit A C E une partie connexe par arcs.
Alors f(A) est connexe par arcs.

C4.179. COROLLAIRE (GENERALISATION DU THEOREME DES VALEURS INTERMEDIAIRES). —  Soit
[+ E— R une application continue. Soit A C E une partie connexe par arcs.
S’il existe 11,19 € A tels que f(x1) f(x2) < 0, alors Péquation :

d’inconnue x € A posséde au moins une solution.
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Démonstration. Si f(x1) =0 ou f(z2) = 0, alors ’assertion est établie. Supposons donc f(x;)f(z2) < 0.
L’image f(A) de A par f est une partie connexe par arcs de R (Théoréme C4.178), donc un intervalle
de R (Théoréme C4.176). Comme f(z;) et f(z2) sont dans f(A), et de signes opposés, 0 se trouve donc
aussi dans f(A) qui est un intervalle de R. Donc 0 € R posséde au moins un antécédent par f dans
A. Q.E.D.

C4.180. Exercice. — Un homéomorphisme de R vers R? est une application bijective et continue,
dont la bijection réciproque est également continue. Montrer qu’il n’existe pas d’homéomorphisme de
R vers R?.
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10 TUne sélection d’exercices

C4.181. Exercice (CCINP).. — Notons E = C°([0 ; 1], R). Pour tout f € F, notons :

Nu(f) = swp [f(@)] et Ni(f)= / (@) da

z€[0; 1]

1. (a) Démontrer succintement que N, et /V; sont des normes sur .
(b) Démontrer qu’il existe un réel k£ > 0 tel que pour tout f € E, N1(f) < k Noo(f).
(c) Démontrer que tout ouvert pour la norme N; est un ouvert pour la norme N.

2. Démontrer que les normes N, et N; ne sont pas équivalentes.

C4.182. Exercice (CCINP). — Notons E = R[X]. Pour tout polynome P(X) = Zaka € E,
k=0

posons :

Ni(P) = lag| et Ny(P)= max |a|
k=0

0<k<n

1. (a) Démontrer succinctement que N; et N, sont des normes sur E£.
(b) Démontrer que tout ouvert pour la norme N, est un ouvert pour la norme /V;.
(c) Démontrer que les normes N; et N, ne sont pas équivalentes.

2. Soit n € N. Notons respectivement N et N/_ les restrictions de N; et N, a R,,[X]. Les normes
N{ et N/ sont-elles équivalentes ?

C4. 183. Exercice (CCINP). —

1. Soit (£, || .||) un espace vectoriel normé, soit A C F une partie non vide, soit x € E. Démontrer
que :
r€A <= Iz,)nen € AN telle que T, —— T
n—>-+00

2. Démontrer que si A est un sous-espace vectoriel de £, alors A est un sous-espace vectoriel de
E.

C4.184. Exercice (CCINP). — L' et I désignent deux espaces vectoriels normés.
1. Soit f: £ — F, soit a € E. Montrer que f est continue en a si et seulement si pour toute
suite (2, )nen d’éléments de E telle que z,, ——— a, f(z,) — f(a).
n—r--+o0o n—>--+40o0

2. Soit A C E une partie dense dans £, soient f, g deux applications continues de £ dans F' telles
que pour tout = € A, f(z) = g(x). Montrer que f = g.
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C4.185. Exercice. — Soit (E,||.||) un espace vectoriel normé. Montrer qu’une boule ouverte de F
est convexe.

C4.186. Exercice (CCINP). — Notons E = C°([0 ; 1], R). Pour toute fonction f € E, posons :

Mﬁzlaumwx

1. Montrer que N est une norme sur £. Comparer N et ||.||_.

2. Trouver la meilleure constante 3 > 0 telle que pour tout f € £, N(f) <3 || f||..

C4.187. Exercice. — Soit E un R-espace vectoriel, soient /V; et N, deux normes sur ~. Montrer
que les boules ouvertes By, (0,1) et By, (0, 1) sont égales si et seulement si N; = No.

C4.188. Exercic. — Munissons E' = R[X] des normes || .|| et||.]||. définies pour tout polynome

P = Zaka par :
k=0

Pll, = t Pl = P
1Pl = max lar| et [[ Pl e |P(@)]
1. Montrer que || .|| et ||.||., sont des normes.

2. Sont-elles équivalentes?

3. Soit n € N*. Montrer que les normes induites sur R,,[X] par ||.||__ et || .||, sont équivalentes.
C4.189. Exercice. — Munissons £ = R[X] de la norme || . || définie dans ’exercices précédent et
de la norme || . ||, définie par :

1
W%RWLHPMZAHWHM

1. Vérifier que || . ||| est bien une norme sur R[X].
2. Les normes || .|| et ||.||] sontelles équivalentes ?
3. Montrer que les normes induites sur R,,[X] par || .|| et || .||} sont équivalentes.
C4.190. Exercice (ENSEA)). — Notons E' = R[X]. Pour tout P € R[X] et tout n € N, posons :

0,(P) = /0 1 P(t)t" dt
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Posons N(P) = sup |0, (P)|. Montrer que N (P) est bien définie et qu’elle induit une norme sur R[X].
neN

C4.191. Exercic. — Munissons R[X] des normes || .|| et ||.]|. définies dans 'exercice 10.188.
Notons(P,) la suite de polynémes de terme général P, (X) = R
k=0
1. Montrer que (P,) est bornée pour les normes || .|| et || .|| .

2. Montrer que (P,) est divergente pour la norme ||.||_.
3. Munissons C([0 ; 1], R) de la norme || . ||, définie par :
vfec(o; 1,R), [[fll= sup [f(z)].

z€[0; 1]

Montrer que la suite (P,), vue comme suite d’éléments de C([0 ; 1], R), converge. Déterminer
sa limite.

4. La suite (P,) converge-t-elle dans (R[X], || .|[.)?

C4.192. Exercice. — Munissons (>*°(R) de la norme || . || définie pour toute suite bornée (u,,) par:

|| () || oo = sup |un]
neN

1. Notons (uy) la suite d’éléments de (>°(R) telle que pour tout k, uy soit la suite constante de

Il 1o

T Montrer que u;, ———— 0.

terme général
k—s4-00

k
n+1

2. Notons (vg) la suite d’éléments de /*°(R) définie de terme général v, = ( ) . La suite
neN

(vk)ken est-elle bornée dans (€, | .]])?

3. La suite (wy) d’éléments de (*°(R) de terme général wy = (sin(kn)),en est-elle bornée ? Admet-
elle une valeur d’adhérence?

C4.193. Exercice. — Munissons (>°(R) de la norme || .|| définie dans ’exercice précédent.

1. Soit (Ug) une suite d’éléments de (*°(R). Pour tout £ € N, U est une suite bornée notée

(u%k)> N Supposons que (Uy) converge vers une suite U € (*°(R) de terme général u,,. Montrer

)

que pour tout n € N, u%k — Up.

k— 00

2. Réciproquement, si pour tout n € N, la suite (u,(lk)>keN converge vers un réel u,, la suite (Uy)
converge-t-elle vers la suite (u,,)?
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C4.194. Exercic. — Munissons C°([0 ; 1], R) de la norme ||. || définie par :

viec([0; 1L R), |[fllo= sup [f(2)]

z€[0; 1]
L’espace des fonctions polynomiales est-il fermé dans (C°([0; 1,R),]||.]|.)?
C4.195. Exercice. — Munissons R[X] de la norme || . ||, définie par :
S| =3l
k=0 1 k=0

Le sous-espace F' = Vect ({X?" : n € N}) est-il fermé dans (R[X],||.||,)?

C4.196. Exercice. — Soit f: C — C une fonction polynomiale. Montrer que pour tout ouvert U,
f(U) est un ouvert et que pour tout fermé F, f(F') est un fermé.

C4.197. Exercice (TPE). — Soit (E,||.||) un espace vectoriel normé. Montrer que E est le seul
sous-espace vectoriel de F d’intérieur non vide.

C4.198. Exercice (TPE)). — Soit (E, || .||) un espace vectoriel normé, soit C' C E une partie convexe.
Montrer que ’adhérence et I'intérieur de C' sont convexes.

C4.199. Exercice. — Notons ¢*(R) ensemble des suites © = (x,),en telles que la série Z ||
converge. Pour toute suite 2 = (z,,),en € ¢*(R), notons :

1. Montrer que || . ||, est une norme sur ¢*(R).

2. Posons F' I'ensemble des suites nulles & partir d’un certain rang. Montrer que F' est un sous-
espace vectoriel de /?(R). L'ensemble F' est-il fermé?
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C4. 200. Exercice. — Notons (>°(R) 'espace vectoriel des suites réelles bornées. Pour toute suite
T = (z)nen € (*°(R), posons ||z || = sup |z,|.
ne

1. Notons Cy le sous-espace vectoriel de /*°(R) constitué des suites convergeant vers 0. Déterminer
la distance de la suite constante égale a 1 a C,.

2. Notons C le sous-espace vectoriel de /*°(R) constitué des suites convergentes. Déterminer la
distance de la suite ((—1)"),en 2 C.

C4. 201. Exercice. — Soit (E,||.||) un espace vectoriel normé. Soit (u,,) une suite d’éléments de E.
Montrer que I'ensemble des valeurs d’adhérences de (u,,) est un fermé de E.

C4.202. Exercice. — Soient (E.||.]|) et (F,||.]||) deux espaces vectoriels normés.

1. Soit A C E, soit f: E — F une fonction continue. Montrer que si A est un compact de F,
alors f(A) est un compact de F.

2. Soit g: E — C une fonction continue. Montrer que si A est un compact de E, alors :
(a) g(A) est une partie bornée de C.
(b) 1l existe xy € A tel que |g(zo)| = sup|g(z)].
z€A

C4. 203. Exercice (CCINP). — Soient (E,||.||), (F,||.||) deux espaces vectoriels normés.
1. Démontrer que si f € L(E, F), les trois propriétés suivantes sont équivalentes :
(a) f est continue sur FE.
(b) f est continue en 0.
(c) 3k >0tel que Ve € E, || f(x) || < k|| x]|.
2. Notons E l'espace des fonctions continues sur [0 ; 1] & valeurs dans R, munissons-le de la

norme || .|| . On considére I'application :

EFE — R

i fo— /Olf(m)dx

Montrer que ¢ est continue.

C4. 204. Exercice (CCINP). — Soit (A, || .||) une algébre unitaire normée de dimension finie, d’élé-
ment unité e.

1. Soit u € A tel que ||u || < 1.

(a) Montrer que la série E u" converge.
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+oo
(b) Montrer que (e — u) est inversible, d’inverse Z u™.

n=0

u?’l
2. Montrer que pour tout u € A, la série Z — converge.
n!

C4. 205. Exercice (CCINP trongué). — Munissons Pespace vectoriel £ = C°([0 ; 1], R) de la norme
.||, et Pespace vectoriel ' = C!([0; 1], R) de la norme || .||, définie par :
VIEF, [[flle=Iflle+If s
1. Vérifier que || .|| est une norme sur F.

2. Notons ¢: E — F I’application linéaire définie par :

Vi€ ENrelo: 1), wumwzzfﬂww

Montrer que ¢ est continue.

C4.206. Exercice (CCINP trongué). — Munissons 1’espace vectoriel £ = CY([0 ; 1], R) de la norme
|| . ||o- Notons ¢ la forme linéaire sur E définie par :

VieE,  o(f)=rf1)-f(0)

1. Montrer que ¢ est continue.

2. Lapplication ¢ est-elle continue si I'on remplace || .|| par||.]||;?

C4.207. Exercice (CCINP tronqué). — Munissons espace vectoriel £ = C([0 ; 1], R) de la norme
|| . ||;- Notons ¢ la forme linéaire sur £ définie par :

Vi e E, wu»—Atﬂw&

Montrer que ¢ est continue.

C4. 208. Exercice (CCINP). — Soit P € R[X] un polynome réel de degré n scindé a racines simples
sur R. Montrer qu’il existe o > 0 tel que pour tout € € [—a, ], le polynome P(X)+eX"*! soit scindé
a racines simples dans R.
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C4. 209. Exercice (CCINP). — Soit A € M,,(Z) telle que 44% + 2A% + A = 0.
1. Montrer que pour tout P € GL,(R), M + P~ 'MP est un endomorphisme continu dans
M., (R).
2. Montrer que les valeurs propres de A sont toutes de module inférieur ou égal a 1/2. En déduire :

AF—— 0
k—+4oc0

3. Montrer qu’une suite d’entiers relatif qui converge est stationnaire. En déduire que A est nilpo-
tente. Que peut-on alors dire de A?

C4.210. Exercice (CCINP). — Munissons M,,(C) de la norme || (a;;)1<ij<p || = nax |ai ;|-
SHISP

1. Soit A € M, (C) telle que la suite (|| A" ||) o soit bornée. Montrer que les valeurs propres de
A sont toutes de module inférieur ou égal a 1.

2. Soit B € M,(C). On suppose que la suite (5"), .5 converge vers une matrice C' € M,(C).
(a) Montrer que C? = C' et que Spec(C) C {0, 1}.

(b) Monter que les valeurs propres de B sont toutes de module inférieur ou égal a 1, et qu’une
valeur propre de B de module 1 est égale a 1.

C4.211. Exercice (TPE). — Munissons E = C°([0; 1], R) de la norme ||.||,. Soit 2o € [0 ; 1].

1. Montrer que I'application :
R

E —
[ — f(xo)

¥

n’est pas continue.

2. Que dire de Ker (p)?

C4. 212. Exercice (TPE tronqué). — Notons (*°(R) ’ensemble des suites bornées sur R. Munissons-le
de la norme || . ||__. Pour toute suite u = (uy)n;nn € (>°(R), posons :

A(“) = (un+1 - un)ﬂEN

Montrer que A est un endomorphisme continu de (¢, || .|| ).
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C4. 213. Exercice. —

1. Soit (E,||.||) un espace vectoriel normé, soit F' un sous-espace vectoriel de £ de dimension
finie. Montrer que F' est fermé.

2. Le résultat précédent demeure-t-il si F' n’est pas supposé de dimension finie? On pourra s’inté-
resser au sous-espace F' de /!(R) de constitué des suites nulles a partir d'un certain rang.

C4. 214. Exercice (Mines). —  Soit K une partie fermée de [0 ; 1]>. On suppose que pour tout
z € [0; 1], ensemble :
yelo; 1] : (z,y) € K}

est un intervalle non vide. Montrer que K intersecte la droite d’équation y = .

C4. 215. Exercic. — Munissons M,,(R) d’une norme matricielle, i.e. d’'une norme d’algébre.
1. Soit M € M, (R) telle que || M || < 1.

(a) Montrer que la série M* converge.
+o0

(b) Que vaut (I, — M)Z M"?
k=0

2. En déduire que GL,(R) est un ouvert de M, (R). Donner une autre démonstration de ce résultat
a 'aide du déterminant.

3. Montrer que 'application :

. GL,(R) — GL,(R)
m A — ATl
est continue. )
C4. 216. Exercic. — Montrer que I'ensemble des matrices diagonalisables est dense dans M,,(C). J
C4.217. Exercice (Navale). — Montrer que toute suite réelle admet une suite extraite monotone. J
C4. 218. Exercice (Mines). —  Soit (FPy) une suite de polynomes de R,,[X| convergeant simplement

vers un polynéme P € R, [X]. Montrer que la convergence est uniforme sur toute partie compacte et
R, [X].
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C4.219. Exercice. — Soient (E,||.]|) et (F,||.||) deux espaces vectoriels normés. Soit f: E — F
une application injective.

1. Montrer que f est continue si et seulement si pour tout compact K de F, f(K') est un compact
de f.

2. Le résultat subsiste-t-il si f n’est pas supposée injective ?

C4. 220. Exercice. — Soient (E,||.]|) et (F,||.||) deux espaces vectoriels normés. Soit f: E — F
une application continue telle que pour tout compact K de F, f~!(K) est un compact de E.

1. Montrer que pour tout femé A de E, f(A) est un fermé de F.

2. En général, 'image d’un fermé par une application continue est-elle nécessairement fermée ?

C4.221. Exercice (Centrale) —  Soit K un compact d’un espace vectoriel normé (F,||.]||). Soit
f: K — K une application continue telle que :

V(z,y) € K%, || f(2) = f) || > [z —y ]

Soit (z,y) € K. Notons (z,), (y,) les suites d’éléments de K définies par Vn € N, x, = f"(z) et
Yn = f"(y). En d’autres termes, 2o = x et yo =y, et Vn € N, x,,11 = f(2n) et Yns1 = f(yn).

1. Montrer qu’il existe une application ¢ :: N — N strictement croissante telle que les suites
(T y(m)) et (Yp(n)) convergent. Notons z' et ¢ leurs limites respectives.

2. Montrer que H T — Tp(nt1)—p(n) H m 0.

3. Montrer que Ty (,41)—p(n) : T et Yo(nt1)—p(n) : Y.

4. Montrer que :

o=yl < N f@) = F@) || < || poermei(a) — petrtn=stgyy |

5. En déduire que || f(z) — f(y) || = [[z —y|I.
6. Montrer que f est bijective.

C4.222. Exercice (Centrale). — Soit K un convexe compact non vide d’un espace vectoriel normé
(E,]|.]), soit f € L(() £) un endomorphisme continu tel que f(X) C K. Montrer que f posséde un
point fixe.

1 n
Indication : étant donné un a € K, on pourra considérer la suite de terme général x,, = — E fF(a).
n
k=0
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C4.223. Exercice (Cenirale). — Soit (F,||.||) un espace vectoriel normé, soit X C E un compact
non vide, soit f: K — K telle que pour tout (z,y) € K?,

v#Fy=||flx) - fyll <llz -yl

Montrer que f posséde un unique point fixe c € K, et que pour tout x € K, la suite définie par 7o = «
et pour tout n € N, x,,.; = f(z,) converge vers c.

C4. 224. Exercice. — Soit (E,||-||) un R-espace vectoriel normé, soit C' C E un ouvert convexe de
E, contenant 0, borné et symétrique par rapport a 0, i.e. tel que Vo € C, —x € C. Pour tout z € £,
posons :

||3:||C:inf{t>0 : %ec}

On dit que || .|| est la jauge associée a C.

1. Montrer que || .|| est bien définie sur F.

2. Montrer que || .||, est une norme sur £.

3. Quelle est la boule unité ouverte pour la norme ||. ||, ?
C4.225. Exercice (Centrale). — Notons (*(R) 'espace des suites réelles bornées et /' (R) I'espace
des suites réelles x = (z,,) telles que la série Z |z,| converge. Pour tout a = (a,) € (*(R) et

z = (z,) € (*(R), posons :
+oo
(a,z)= Zanxn
n=0

1. Justifier ’existence de (a, x ).
2. Soit a € (*°(R). Montrer que I'application :
R) — R
1 r +— (a,x)
est une forme linéaire continue sur ¢*(R).
3. Soit z € ('(R). Montrer que I’application :
*R) — R
v a — (a, )
est une forme linéaire continue sur /*°(R).

4. Question subsidiaire : soit f une forme linéaire continue sur ¢'(R). Montrer qu’il existe a €
(>(R) telle que :
Vo € (M(R), f(x)=(a, ).
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C4. 226. Exercice. — Soit n € N*, soit p > 1. Pour tout x = (zy,...,2,) € R", posons :

n 1/p
[z ]|, = (Z |~"6k|p>
k=1
1

1
Soit ¢ > 1 I'unique réel tel que — + — = 1.
p q

1 1
1. Montrer que pour tout (z,y) € (R**)?, 2/Py"1 < —z 4+ —y.
p q

2. Notons (.|.) le produit scalaire usuel sur R". Montrer que pour tout (z,y) € (R")?, |(z]y)] <

{1y -
3. Soient = = (z1,...,2,) € R" ety = (y1,...,y,) € R". En remarquant que :

(el + yeD)? =l (2l + Lyl + Lyl (wl + lyl)"™

montrer que || .|| est une norme sur R".

4. Montrer que pour tout z € R", [z |, P IE21

C4.227. Exercice. — Notons f = C°([0; 1],R), soit p > 1. Pour toute fonction f € E, notons :
1 1/p
171, = (/ @) dw)
0
1. En s’inspirant de I'exercice précédent, démontrer que ||. ||, est une norme sur F.

2. Montrer que pour toute fonction f € E, || f ||, ——— || [l
p—>+o0

C4.228. Exercice (Centrale). — Posons E = C*([0 ; 1], R). Pour toute fonction f € E, notons :

\/ 70 /0 @) da

1. Montrer que N est une norme sur F.

2. Comparer N et ||.||

C4. 229. Exercice (X). — Déterminer tous les morphismes continus de (U, x) dans lui-méme.
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C4.230. Exercice (X). — Que dire d’'une partie convexe et dense d’un espace vectoriel normé? J

C4. 231. Exercice (Centrale). — Montrer que GL,,(C) est connexe par arcs. Qu’en est-il de GL,(R)? J

C4.232. Exercice. —  Soit I un ouvert non vide de R. Montrer qu’il existe une famille au plus
dénombrable (I,,),c; d’intervalles ouverts deux- a-deux disjoints telle que :

I = U I,
nel

Indication : on pourra considérer la relation d’équivalence sur I définie par xRy <= (v —y) € I et étudier
les classes d’équivalence pour cette relation.

C4. 233. Exercice. — Soit A € M,,(C). On note :
p(A) = max{|A| : X € Spec(A)}

le rayon spectral de A.
1. Soit || . || une norme d’algébre unitaire sur M,,(C). Montrer que pour toute matrice A € M, (C),
1Al < p(A).
2. Soit A € M,(C), soit ¢ > 0. Montrer qu’il existe une norme d’algébre ||.[[,_ telle que
A4 < p(A) + e
3. Soit A € M,,(C). Montrer que les conditions suivantes sont équivalentes :

(a) A¥ —— 0.

k— 00
(b) VX € M, 1(C), AFX ——— 0.
k—4o00
(c) La série Z AF converge.
(d) p(4) <1.
C4.234. Exercice (X). — Déterminer ’adhérence et I'intérieur de ’ensemble des matrices diagona-
lisables de M,,(C).

64



C4.235. Exercice (X). — Déterminer les matrices de M,,(C) dont la classe similitude, i.e. ’ensemble
{PT'AP : P e GL,(C)}

est fermée.

C4.236. Exercice (X). — Soit A € M,,(C). Montrer que A est nilpotente si et seulement si il existe
une suite (A;) de matrices semblables & A convergeant vers 0.

C4. 237. Exercice (ENS). — Déterminer les matrices A € M,,(C) telles que la suite (Ak)k N Soit J
bornée.
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