Un corrigé du DL6 Fonctions harmoniques M. Lucas

I — Fonctions harmoniques: quelques propriétés

Q 1. Pour $k \in \mathbb{N}$ et $i \in [[1, n]]$, l'application $f \in \mathcal{C}^{k+1}(U) \longmapsto \frac{\partial f}{\partial x_i} \in \mathcal{C}^k(U)$ est linéaire.

Donc par composition et somme l'application Δ est linéaire de $\mathscr{C}^2(U)$ vers $\mathscr{C}^0(U)$. Or $\mathscr{H}(U)$ est le noyau de cette application linéaire ainsi

 $\mathcal{H}(U)$ est un sous-espace vectoriel de $\mathscr{C}^2(U,\mathbb{R})$.

Q 2. On suppose que f est de classe \mathscr{C}^{∞} sur U. Ainsi toutes les dérivées partielles de f est aussi de classe \mathscr{C}^2 sur U.

Soit $j \in [[1, n]]$. En utilisant le théorème de Schwarz et la linéarité de la dérivation, on a :

$$\Delta\left(\frac{\partial f}{\partial x_j}\right) = \sum_{i=1}^n \frac{\partial^3 f}{\partial x_i^2 \partial x_j} = \sum_{i=1}^n \frac{\partial^3 f}{\partial x_j \partial x_i^2} = \frac{\partial}{\partial x_j} \left(\sum_{i=1}^n \frac{\partial^3 f}{\partial x_i^2}\right) = \frac{\partial}{\partial x_j} \left(\Delta f\right)$$

Comme f est harmonique et par dérivation de la fonction nulle, on a : $\forall x \in U$, $\Delta \left(\frac{\partial f}{\partial x_j}\right)(x) = 0$. Ainsi $\frac{\partial f}{\partial x_j} \in \mathcal{H}(U)$. Puis on peut procéder par récurrence ; l'initialisation étant triviale et pour l'hérédité, on utilise ce qui précède en remarquant que :

pour tout
$$k \in \mathbb{N}^*$$
 et $i_1, \dots, i_{k+1} \in [[1, n]]$, on a: $\frac{\partial^{k+1} f}{\partial x_{i_{k+1}} \partial x_{i_k} \cdots \partial x_{i_1}} = \frac{\partial}{\partial x_{i_{k+1}}} \left(\frac{\partial^k f}{\partial x_{i_k} \cdots \partial x_{i_1}} \right)$

On a montré

toute dérivée partielle à tout ordre de f appartient à $\mathcal{H}(U)$.

Q 3. Analyse: Soit $f \in \mathcal{H}(U)$ telle que $f^2 \in \mathcal{H}(U)$.

Pour
$$i \in [[1, n]]$$
, on a $\frac{\partial f^2}{\partial x_i} = 2f \cdot \frac{\partial f}{\partial x_i}$ et ainsi $\frac{\partial^2 f^2}{\partial x_i^2} = 2f \cdot \frac{\partial^2 f}{\partial x_i^2} + 2\left(\frac{\partial f}{\partial x_i}\right)^2$ d'où

$$\Delta(f^2) = 2f \cdot \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} + 2\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2$$

Alors $\forall x \in U$, $\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}(x) \right)^2 = 0$. Comme il s'agit de sommes de réels positifs, on a $\forall x \in U$, $\frac{\partial f}{\partial x_1}(x) = 0$ $\cdots = \frac{\partial f}{\partial x_n}(x) = 0$ donc $\forall x \in U$, $\nabla f(x) = 0_{\mathbb{R}^n}$ or U est un ouvert connexe par arcs donc f est constante sur U.

Synthèse: On suppose que f est constante sur U alors f^2 également d'où

$$\forall x \in U, \ \Delta f(x) = 0 \ \text{ et } \ \Delta (f^2)(x) = 0$$

Ainsi f et f^2 sont harmoniques sur U

Conclusion: Si U est connexe par arcs,

les fonctions f de $\mathcal{H}(U)$ telles que f^2 appartienne aussi à $\mathcal{H}(U)$. sont les fonctions constantes.

Q 4. Comme *U* est un ouvert non vide de \mathbb{R}^n , ceci nous fournit $a = (a_1, ..., a_n)$ et r > 0 tels que $D(a, r) \subset U$. Ainsi pour tout $t \in]a_1 - r, a_1 + r[$ (ensemble infini), on a $(t, a_2, ..., a_n) \in U$. Donc

la fonction $\varphi:(x_1,\ldots,x_n)\in U\longmapsto x_1\in\mathbb{R}$ est clairement harmonique sur U sans y être constante.

De plus $\forall x \in U$, $\Delta(\varphi^2)(x) = 2 \neq 0$ donc $\varphi^2 = \varphi \times \varphi$ n'est pas harmonique sur U.

Le produit de deux fonctions harmoniques n'est pas une fonction harmonique, en général.

II — Exemples de fonctions harmoniques

II.A -

Q 5. Remarque : on a f de classe \mathscr{C}^2 par produit car $(x, y) \mapsto u(x)$ et $(x, y) \mapsto v(y)$ le sont.

On a $\forall (x,y) \in \mathbb{R}^2$, $0 = \Delta f(x,y) = u''(x)v(y) + u(x)v''(y)$. Comme v est non identiquement nulle, ceci nous fournit $t \in \mathbb{R}$ tel que $v(t) \neq 0$. En posant $\lambda = \frac{v''(t)}{v(t)}$, on a alors $\forall x \in \mathbb{R}$, $u''(x) + \lambda u(x) = 0$ donc $\forall (x,y) \in \mathbb{R}^2$, $0 = \Delta f(x,y) = -\lambda u(x)v(y) + u(x)v''(y) = (v''(y) - \lambda v(y))u(x)$. En prenant $t' \in \mathbb{R}$ tel que $u(t') \neq 0$, on a $\forall y \in \mathbb{R}$, $0 = v''(y) - \lambda v(y)$. Ainsi

il existe $\lambda \in \mathbb{R}$ tel que u et v soient solutions respectives des équations $z'' + \lambda z = 0$ et $z'' - \lambda z = 0$.

- **Q 6.** Je note les équations différentielles $E_1: z'' + \lambda z = 0$ et $E_2: z'' \lambda z = 0$.
 - **Si** $\lambda = 0$ Les solutions de E_1 (ou E_2) sont les fonctions de la forme $x \mapsto Ax + B$ avec A et $B \in \mathbb{R}$.
 - Si $\lambda > 0$ Les solutions de E_1 sont les fonctions de la forme $t \mapsto A\cos\left(t\sqrt{\lambda}\right) + B\sin\left(t\sqrt{\lambda}\right)$ avec A et $B \in \mathbb{R}$. Les solutions de E_2 sont les fonctions de la forme $t \mapsto A'\cosh\left(t\sqrt{\lambda}\right) + B'\sinh\left(t\sqrt{\lambda}\right)$ avec A' et $B' \in \mathbb{R}$.
 - Si $\lambda < 0$ Les solutions de E_2 sont les fonctions de la forme $t \mapsto A\cos\left(t\sqrt{-\lambda}\right) + B\sin\left(t\sqrt{-\lambda}\right)$ avec A et $B \in \mathbb{R}$. Les solutions de E_1 sont les fonctions de la forme $t \mapsto A'\cosh\left(t\sqrt{-\lambda}\right) + B'\sinh\left(t\sqrt{-\lambda}\right)$ avec A' et $B' \in \mathbb{R}$.
 - **Réciproquement :** Soit $\lambda \in \mathbb{R}$ et u et v solutions non nulles respectives de $E_1: z'' + \lambda z = 0$ et $E_2: z'' \lambda z = 0$. Alors u et v sont de classe \mathscr{C}^2 sur \mathbb{R} et ainsi $f: (x, y) \longmapsto u(x)v(y)$ est de classe \mathscr{C}^2 sur \mathbb{R}^2 . Et on a: $\forall (x, y) \in \mathbb{R}^2$, $\Delta f(x, y) = u''(x)v(y) + u(x)v''(y) = \lambda u(x)v(y) \lambda u(x)v(y) = 0$ donc f est harmonique sur \mathbb{R}^2 .

Conclusion : Les équations différentielles étant linéaire homogène d'ordre 2 leur solutions forment un plan vectoriel.

Une fonction f à variables séparables sur \mathbb{R}^2 est harmonique non nulles si et seulement si il existe $\lambda \in \mathbb{R}$, (A, B) et $(A', B') \in \mathbb{R}^2 \setminus \{(0, 0)\}$ tels que

si
$$\lambda = 0$$
 alors $f: (x, y) \longmapsto (Ax + B) \left(A'y + B' \right)$
si $\lambda > 0$ alors $f: (x, y) \longmapsto \left(A \cos \left(x \sqrt{\lambda} \right) + B \sin \left(x \sqrt{\lambda} \right) \right) \left(A' \cosh \left(y \sqrt{\lambda} \right) + B' \sinh \left(y \sqrt{\lambda} \right) \right)$
si $\lambda < 0$ alors $f: (x, y) \longmapsto \left(A \cosh \left(x \sqrt{-\lambda} \right) + B \sinh \left(x \sqrt{-\lambda} \right) \right) \left(A' \cos \left(y \sqrt{-\lambda} \right) + B' \sin \left(y \sqrt{-\lambda} \right) \right)$

II.B -

Q 7. Les fonctions $(r,\theta) \mapsto r\cos(\theta)$ et $(r,\theta) \mapsto r\sin(\theta)$ sont de classe \mathscr{C}^2 sur $\mathbb{R}^{*+} \times \mathbb{R}$ par produits. Donc la fonction $(r,\theta) \mapsto (r\cos(\theta),r\sin(\theta))$ est de classe \mathscr{C}^2 sur $\mathbb{R}^{*+} \times \mathbb{R}$ par composantes. De plus cette fonction est à valeurs dans l'ouvert $\mathbb{R}^2 \setminus \{(0,0)\}$ où f y est de classe \mathscr{C}^2 . Donc par composition

$$g$$
 est de classe \mathscr{C}^2 sur $\mathbb{R}^{*+} \times \mathbb{R}$.

Q 8. On utilise la formule de la chaîne dont l'écriture abusive est :

$$\frac{\partial g}{\partial r} = \frac{\partial x}{\partial r} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial f}{\partial y} = \cos(\theta) \frac{\partial f}{\partial x} + \sin(\theta) \frac{\partial f}{\partial y}$$

et

$$\frac{\partial g}{\partial \theta} = \frac{\partial x}{\partial \theta} \frac{\partial f}{\partial x} + \frac{\partial \theta}{\partial r} \frac{\partial f}{\partial y} = -r \sin(\theta) \frac{\partial f}{\partial x} + r \cos(\theta) \frac{\partial f}{\partial y}.$$

Ainsi

$$\frac{\partial g}{\partial r}(r,\theta) = \cos(\theta) \frac{\partial f}{\partial x}(r\cos(\theta), r\sin(\theta)) + \sin(\theta) \frac{\partial f}{\partial y}(r\cos(\theta), r\sin(\theta))$$

et

$$\frac{\partial g}{\partial \theta}(r,\theta) = -r\sin(\theta)\frac{\partial f}{\partial x}(r\cos(\theta), r\sin(\theta)) + r\cos(\theta)\frac{\partial f}{\partial y}(r\cos(\theta), r\sin(\theta)).$$

Q 9. On continue à appliquer la formule de la chaîne avec une écriture abusive en servant du calcul cidessus :

$$\frac{\partial^2 g}{\partial r^2} = \cos(\theta) \left(\cos(\theta) \frac{\partial^2 f}{\partial x^2} + \sin(\theta) \frac{\partial^2 f}{\partial x \partial y} \right) + \sin(\theta) \left(\cos(\theta) \frac{\partial^2 f}{\partial y \partial x} + \sin(\theta) \frac{\partial^2 f}{\partial^2 y} \right)$$

puis à l'aide du théorème de Schwarz avec f de classe \mathscr{C}^2 on a

$$\frac{\partial^2 g}{\partial r^2}(r,\theta) = \cos^2(\theta) \frac{\partial^2 f}{\partial x^2}(r\cos(\theta), r\sin(\theta)) + \sin(2\theta) \frac{\partial^2 f}{\partial x \partial y}(r\cos(\theta), r\sin(\theta)) + \sin^2(\theta) \frac{\partial^2 f}{\partial x^2}(r\cos(\theta), r\sin(\theta)).$$

Puis

$$\frac{\partial^2 g}{\partial \theta^2} = -r\cos(\theta)\frac{\partial f}{\partial x} - r\sin(\theta)\frac{\partial f}{\partial y} - r\sin(\theta)\left(-r\sin(\theta)\frac{\partial^2 f}{\partial x^2}r\cos(\theta)\frac{\partial^2 f}{\partial x\partial y}\right) + r\cos(\theta)\left(-r\sin(\theta)\frac{\partial^2 f}{\partial y\partial x} + r\cos(\theta)\frac{\partial^2 f}{\partial y\partial x}\right)$$

et à l'aide du théorème de Schwarz avec f de classe \mathscr{C}^2 , on a :

$$\frac{\partial^2 g}{\partial \theta^2}(r,\theta) = -r\cos(\theta)\frac{\partial f}{\partial x}(r\cos(\theta),r\sin(\theta)) - r\sin(\theta)\frac{\partial f}{\partial y}(r\cos(\theta),r\sin(\theta)) + r^2\sin^2(\theta)\frac{\partial^2 f}{\partial x^2}(r\cos(\theta),r\sin(\theta)) - r^2\sin(2\theta)\frac{\partial^2 f}{\partial x\partial y}(r\cos(\theta),r\sin(\theta)) + r^2\cos^2(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) - r^2\sin(2\theta)\frac{\partial^2 f}{\partial x\partial y}(r\cos(\theta),r\sin(\theta)) + r^2\cos^2(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\sin(2\theta)\frac{\partial^2 f}{\partial x\partial y}(r\cos(\theta),r\sin(\theta)) + r^2\cos^2(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\cos^2(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\sin(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\cos(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\sin(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\sin(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\sin(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\sin(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\cos(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\sin(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\sin(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^2\cos(\theta)\frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) + r^$$

Q 10. Soit $(r, \theta) \in \mathbb{R}^{*+} \times \mathbb{R}$, on a à l'aide des calculs précédents :

$$r^2 \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{\partial^2 g}{\partial \theta^2}(r,\theta) + r \frac{\partial g}{\partial r}(r,\theta) = r^2 \left(\frac{\partial^2 f}{\partial x^2}(r\cos(\theta),r\sin(\theta)) + \frac{\partial^2 f}{\partial y^2}(r\cos(\theta),r\sin(\theta)) \right).$$

On suppose que pour tout $(r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}$, $r^2 \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{\partial^2 g}{\partial \theta^2}(r,\theta) + r \frac{\partial g}{\partial r}(r,\theta) = 0$ avec ce qui précède :

$$\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ \Delta f(r\cos(\theta), r\sin(\theta)) = \frac{\partial^2 f}{\partial x^2}(r\cos(\theta), r\sin(\theta)) + \frac{\partial^2 f}{\partial y^2}(r\cos(\theta), r\sin(\theta)) = 0.$$

Or pour $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, en prenant $r = \sqrt{x^2 + y^2}$, on a r > 0 et il existe $\theta \in \mathbb{R}$, tel que $(x, y) = (r\cos(\theta), r\sin(\theta))$ et ainsi $\forall (x, y)\mathbb{R}^2 \setminus \{(0, 0)\}, \Delta f(x, y) = 0$ d'où $f \in \mathcal{H}(\mathbb{R}^2 \setminus \{(0, 0)\})$

La réciproque est immédiate. Ainsi on a bien :

$$f \in \mathcal{H}(\mathbb{R}^2 \setminus \{(0,0)\}) \text{ si et seulement si, pour tout } (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ r^2 \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{\partial^2 g}{\partial \theta^2}(r,\theta) + r \frac{\partial g}{\partial r}(r,\theta) = 0$$

Q 11. Analyse: On considère f une fonction harmonique radiale de $\mathbb{R}^2 \setminus \{(0,0)\}$. On note g comme ci dessus. On peut alors trouver h fonction définie sur $]0,+\infty[$ telle que $\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ g(r,\theta) = h(r)$. Comme g est de classe \mathscr{C}^2 sur $\mathbb{R}^{*+} \times \mathbb{R}$ alors h l'est sur $]0,+\infty[$ et

$$\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ \frac{\partial^2 g}{\partial \theta^2}(r,\theta) = 0 \ \text{ et } \ \frac{\partial g}{\partial r}(r,\theta) = h'(r) \ \text{ et } \ \frac{\partial^2 g}{\partial r^2}(r,\theta) = h''(r).$$

La question précédente donne alors : $\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}$, $r^2h''(r) + rh'(r) = 0$ donc h' est solution sur $]0, +\infty[$ de l'équation différentielle linéaire homogène d'ordre 1: tz' + z = 0. Une solution évidente est $t \mapsto 1/t$ ce qui nous fournit $A \in \mathbb{R}$ tel que $h': r \longmapsto A/r$. Ce qui nous fournit $B \in \mathbb{R}$ tel que $h: r \longmapsto A\ln(r) + B$ donc $g: (r,\theta) \longmapsto A\ln(r) + B$ puis $f: (x,y) \longmapsto A\ln(\sqrt{x^2 + y^2}) + B$.

Synthèse: On suppose qu'il existe A et $B \in \mathbb{R}$ tels que $f:(x,y) \longmapsto A\ln(x^2+y^2)+B$. Alors f est de classe \mathscr{C}^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et radiale car la fonction $g:(r,\theta) \longmapsto f(r\cos(\theta),r\sin(\theta)=2A\ln(r)+B)$ est indépendante de θ et on vérifie facilement que $\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, r^2 \frac{\partial^2 g}{\partial r^2}(r,\theta)+\frac{\partial^2 g}{\partial \theta^2}(r,\theta)+r\frac{\partial g}{\partial r}(r,\theta)=0$ donc $f \in \mathscr{H}(\mathbb{R}^2 \setminus \{(0,0)\})$ d'après Q10.

les fonctions harmoniques radiales de $\mathbb{R}^2 \setminus \{(0,0)\}$ sont les fonctions : $(x,y) \mapsto A \ln(x^2 + y^2) + B$ avec $A, B \in \mathbb{R}$

Q 12. En me servant de la question précédente, on cherche A et $B \in \mathbb{R}$ tels que $\begin{cases} 2A\ln(r_1) + B = a \\ 2A\ln(r_2) + B = b \end{cases}$. On remarque que $A = \frac{b-a}{2(\ln(r_2) - \ln(r_1))}$ et $B = \frac{\ln(r_2)a - \ln(r_1)b}{\ln(r_2) - \ln(r_1)}$ conviennent. Alors d'après Q11, en prenant

$$f: (x,y) \longmapsto \frac{(b-a)\ln(x^2+y^2) + 2\ln(r_2)a - 2\ln(r_1)b}{2(\ln(r_2) - \ln(r_1))} \operatorname{sur} \mathbb{R}^2 \setminus \{(0,0)\}, \text{ on a } \begin{cases} f \in \mathscr{C}^2(\mathbb{R}^2 \setminus \{(0,0)\}, \mathbb{R}) \\ \Delta f = 0 \\ f(x,y) = a \text{ si } \|(x,y)\| = r_1 \\ f(x,y) = b \text{ si } \|(x,y)\| = r_2 \end{cases}$$

II.C -

Q 13. On suppose que f n'est pas identiquement nulle. Ceci nous fournit $r_0 = \|(x_0 + y_0)\|$ tel que $u(r_0) \neq 0$. Soit $\theta \in \mathbb{R}$ On a $u(r_0)v(\theta + 2\pi) = f(r\cos(\theta + 2\pi), r\sin(\theta + 2\pi)) = f(r\cos(\theta), r\sin(\theta)) = u(r_0)v(\theta)$ d'où $v(\theta + 2\pi) = v(\theta)$. Ainsi

si f n'est pas identiquement nulle, alors v est 2π -périodique.

Q 14. On suppose que f est harmonique et non identiquement nulle sur $\mathbb{R}^2 \setminus \{(0,0)\}$. On note g comme en II.B. Alors g est de classe \mathscr{C}^2 sur $\mathbb{R}^{*+} \times \mathbb{R}$ et

$$\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ \frac{\partial^2 g}{\partial \theta^2}(r,\theta) = u(r)v''(\theta) \ \text{ et } \frac{\partial g}{\partial r}(r,\theta) = u'(r)v(\theta) \ \text{ et } \frac{\partial^2 g}{\partial r^2}(r,\theta) = u''(r)v(\theta).$$

En utilisant Q10 : on a $\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}$, $r^2 u''(r) v(\theta) + u(r) v''(\theta) + r u'(r) v(\theta) = 0$. Comme f est non identiquement nulle, il existe $\theta_0 \in \mathbb{R}$ tel que $v(\theta_0) \neq 0$. En prenant $\lambda = \frac{-v''(\theta_0)}{v(\theta_0)}$, alors

u est solution de l'équation différentielle (II.1) : $r^2z''(r) + rz'(r) - \lambda z(r) = 0$.

On choisit $r_0 > 0$ tel que $u(r_0) \neq 0$, on a alors

$$\forall \theta \in \mathbb{R}, \ v''(\theta) + \frac{r_0^2 u''(r_0) + r_0 u'(r_0)}{u(r_0)} v(\theta) = 0.$$

Comme u est solution de l'équation différentielle (II.1), on a : $\frac{r_0^2 u''(r_0) + r_0 u'(r_0)}{u(r_0)} = \lambda. \text{ Ainsi}$

v est solution de l'équation différentielle (II.2) : $z''(\theta) + \lambda z(\theta) = 0$.

- **II.C.1**) On suppose ici que $\lambda = 0$.
- **Q 15.** Les solutions de (II.2) sont les fonctions affines.

Les solutions 2π -périodiques de (II.2) sont les fonctions constantes.

Q 16. En faisant comme en Q11.:

Les solutions de (II.1) sur \mathbb{R}^{+*} sont les fonctions de la forme $r \mapsto A \ln(r) + B$

Q 17. D'après Q15. dans le cas où $\lambda = 0$, les fonctions harmoniques à variables polaires séparables sont radiales. Il est clair que toutes fonctions radiale sur $\mathbb{R}^{*+} \times \mathbb{R}$ est à variables polaires séparable. Alors d'après Q11.,

les fonctions harmoniques à variables polaires séparables sont les fonctions : $(x, y) \longmapsto A \ln(x^2 + y^2) + B$ avec $A, B \in \mathbb{R}$.

- **II.C.2**) On suppose désormais $\lambda \neq 0$.
- **Q 18.** Analyse: Soit $\lambda \in \mathbb{R}^*$ tel qu'il existe v solution non nulles 2π -périodiques de (II.2) : $z''(\theta) + \lambda z(\theta) = 0$ Par l'absurde si $\lambda < 0$, comme en Q6 on peut écrire $v : \theta \longmapsto A \mathrm{e}^{\theta \sqrt{-\lambda}} + B \mathrm{e}^{-\theta \sqrt{-\lambda}}$ avec $A, B \in \mathbb{R}$. Si $A \neq 0$, alors $\lim_{\theta \to +\infty} |v(\theta)| = +\infty$.

Si A = 0, alors $B \neq 0$ et $\lim_{\theta \to -\infty} |v(\theta)| = +\infty$.

Or $v(\mathbb{R}) = v\left([0,2\pi]\right)$ car v est 2π -périodique et d'après le théorème des bornes atteintes v est bornée sur le segment $[0,2\pi]$ car v y est continue d'où v est bornée sur \mathbb{R} ce qui est en contradiction avec les limites. Ainsi $\lambda > 0$. Comme en Q6 on peut écrire $v: \theta \longmapsto A\cos\left(\theta\sqrt{\lambda}\right) + B\sin\left(\theta\sqrt{\lambda}\right)$ avec $A, B \in \mathbb{R}$. Ainsi $v': \theta \longmapsto -A\sin\left(\theta\sqrt{\lambda}\right) + B\cos\left(\theta\sqrt{\lambda}\right)$. Or on a $v(0) = v(2\pi)$ et $v'(0) = v'(2\pi)$ donc $\begin{cases} A\cos\left(2\pi\sqrt{\lambda}\right) = A \\ B\cos\left(2\pi\sqrt{\lambda}\right) = B \end{cases}$ d'où $\cos\left(2\pi\sqrt{\lambda}\right) = 1$ car $(A, B) \neq (0, 0)$. Ceci nous fournit $k \in \mathbb{Z}$ tel que

Synthèse: Soit $k \in \mathbb{N}^*$. Prenons $\lambda = k^2$. Alors $\lambda > 0$ et $\sqrt{\lambda} = k$. Les solution de (II.2) sont les fonctions $\theta \longmapsto A\cos(k\theta) + B\sin(k\theta)$ avec $A, B \in \mathbb{R}$. Elles sont toutes $2\pi/k$ périodiques donc 2π périodiques. En prenant (A, B) = (1, 0), on a une solution non nulle.

Conclusion:

Pour que (II.2) admette des solutions 2π -périodiques non nulles, il faut et il suffit qu'il existe $k \in \mathbb{N}^*$ tel que $\lambda = k^2$.

Dans ce cas,

les solutions non nulles 2π -périodiques de (II.2) sont les $\theta \longmapsto A\cos(k\theta) + B\sin(k\theta)$ avec $(A,B) \in \mathbb{R}^2 \setminus \{(0,0)\}$

Q 19. Soit z de classe \mathscr{C}^2 sur \mathbb{R}^{+*} On pose $Z: t \longmapsto z(e^t)$. Alors par composition Z est de classe \mathscr{C}^2 sur \mathbb{R} et on a $\forall r > 0$, $z(r) = Z(\ln(r))$.

Réciproquement si Z est de classe \mathscr{C}^2 sur \mathbb{R} alors $z:r \mapsto Z(\ln(r))$ est de classe \mathscr{C}^2 sur \mathbb{R}^{+*} . Pour r>0, on a $z(r)=Z(\ln(r))$ et $z'(r)=\frac{Z'(\ln(r))}{r}$ et aussi $z''(r)=\frac{Z''(\ln(r))-Z'(\ln(r))}{r^2}$. Ainsi $r^2z''(r)+rz'(r)-\lambda z(r)=Z''(\ln(r))-\lambda Z(\ln(r))$. Comme ln est bijective de \mathbb{R}^{+*} vers \mathbb{R} , z est solution de (II.1) si et seulement si $\forall t \in \mathbb{R}$, $Z''(t)-\lambda Z(t)=0$. On a déjà vu cette équation en $w:w''-\lambda w=0$ (II.1b). Grâce à la remarque sur la classe \mathscr{C}^2 , en début de question, on a une bijection (qui à z associe Z) entre les ensembles des solutions de (II.1) et de (II.1b).

Si $\lambda > 0$, les solutions de (II.1), sont les fonctions $r \longmapsto A \exp\left(\ln(r)\sqrt{\lambda}\right) + B \exp\left(-\ln(r)\sqrt{\lambda}\right)$ avec $(A, B) \in \mathbb{R}^2$.

Si
$$\lambda < 0$$
, les solutions de (II.1), sont les fonctions $r \longmapsto A\cos\left(\ln(r)\sqrt{-\lambda}\right) + B\sin\left(-\ln(r)\sqrt{-\lambda}\right)$ avec $(A,B) \in \mathbb{R}^2$.

Q 20. Analyse : On suppose que f est harmonique à variables polaires séparables non identiquement nulles qui se prolongeant par continuité en 0. Alors d'après les questions précédentes, on peut trouver $k \in \mathbb{N}^*$, $(A, B) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et $(A', B') \in \mathbb{R}^2 \setminus \{(0,0)\}$ tels que

$$\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ f(r\cos(\theta), r\sin(\theta)) = \left(A'\exp(\ln(r)k) + B'\exp(-\ln(r)k)\right) \times \left(A\cos(k\theta) + B\sin(k\theta)\right).$$

Je note $v: \theta \longmapsto A\cos(k\theta) + B\sin(k\theta)$ donc $\forall (r, \theta) \in \mathbb{R}^{*+} \times \mathbb{R}$, $f(r\cos(\theta), r\sin(\theta)) = \left(A'r^k + B'r^{-k}\right)v(\theta)$. Il existe $\alpha \in \mathbb{R}$ tel que $v(\alpha) \neq 0$. Comme il existe $\ell \in \mathbb{R}$, tel que

$$\lim_{(x,y)\to(0,0)} f(x,y) = \ell$$

alors $\lim_{r\to 0} f(r\cos(\theta), r\sin(\theta)) = \ell$. Donc $r \mapsto A'r^k + B'r^{-k}$ admet une limite finie en 0 donc B' = 0. Synthèse On suppose qu'il existe $k \in \mathbb{N}^*$, A et B dans \mathbb{R} tel que

$$\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ f(r\cos(\theta), r\sin(\theta)) = r^k (A\cos(k\theta) + B\sin(k\theta)).$$

Remarque : j'ai rajouté la fonction nulle. Alors f est bien définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ à variables polaires séparables de plus f est alors de classe \mathscr{C}^2 d'après l'énoncé (II.C) car $u: r \mapsto r^k$ est \mathscr{C}^2 sur \mathbb{R}^{+*} et $v: \theta \longmapsto A\cos(k\theta) + B\sin(k\theta)$ est 2π -périodique et \mathscr{C}^2 sur \mathbb{R} . On définit g comme en II.B. Pour tout $(r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}$:

$$r^{2} \frac{\partial^{2} g}{\partial r^{2}}(r,\theta) = k(k-1)g(r,\theta) \text{ et } r \frac{\partial^{2} g}{\partial r}(r,\theta) = kg(r,\theta) \text{ et } \frac{\partial^{2} g}{\partial \theta^{2}}(r,\theta) = -k^{2}g(r,\theta)$$

donc $r^2 \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{\partial^2 g}{\partial \theta^2}(r,\theta) + r \frac{\partial^2 g}{\partial r}(r,\theta) = 0$ d'où f est harmonique sur $\mathbb{R}^2 \setminus \{(0,0)\}$ d'après Q10. De plus $\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ \left| f(r\cos(\theta), r\sin(\theta)) \right| \leq (|A| + |B|) \, r^k$ donc

$$\forall (x, y) \in \mathbb{R}^2, |f(x, y)| \leq (|A| + |B|) (x^2 + y^2)^{k/2}.$$

Or $(x^2 + y^2)^{k/2} \xrightarrow{(x,y) \to (0,0)} 0$ donc $f(x,y) \xrightarrow{(x,y) \to (0,0)} 0$ Ainsi f se prolonge par continuité en 0.

Les fonctions harmoniques sur $\mathbb{R}^2 \setminus \{(0,0)\}$ à variables polaires séparables qui se prolongent par continuité en (0,0) sont les fonctions f vérifiant

$$\forall (r,\theta) \in \mathbb{R}^{*+} \times \mathbb{R}, \ f(r\cos(\theta), r\sin(\theta)) = r^k (A\cos(k\theta) + B\sin(k\theta))$$

avec $(A, B) \in \mathbb{R}^2$ et $k \in \mathbb{N}^*$